JPH0361497B2 - - Google Patents

Info

Publication number
JPH0361497B2
JPH0361497B2 JP57076938A JP7693882A JPH0361497B2 JP H0361497 B2 JPH0361497 B2 JP H0361497B2 JP 57076938 A JP57076938 A JP 57076938A JP 7693882 A JP7693882 A JP 7693882A JP H0361497 B2 JPH0361497 B2 JP H0361497B2
Authority
JP
Japan
Prior art keywords
catalyst
catalysts
aqueous solution
treatment
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57076938A
Other languages
Japanese (ja)
Other versions
JPS58193739A (en
Inventor
Masahiko Morimoto
Tamotsu Kotani
Tadashi Kurikawa
Teruaki Tsujino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP57076938A priority Critical patent/JPS58193739A/en
Publication of JPS58193739A publication Critical patent/JPS58193739A/en
Publication of JPH0361497B2 publication Critical patent/JPH0361497B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、炭化水素類の水蒸気改質反応、水添
分解反応又は部分燃焼に使用される担体付白金族
金属触媒の再生方法に関する。 上記触媒は、通常アルミナ、マグネシア、ジル
コニア、チタニア等の酸化物担体にルテニウム、
ロジウム、パラジウム、オスミウム、イリジウム
及び白金の1種以上を触媒成分として担持させて
構成されている。そしてクロム、モリブデン及び
タングステンの化合物の1種以上を触媒成分とし
て併せて担持させる場合もある。この様な触媒
(以下単に白金族金属触媒と称する)は、周知の
如く非常に高価なものであるから、工業的規模で
使用する場合には活性の低下した触媒を再生し、
繰返し使用することが是非とも必要となる。従来
水素、水蒸気、酸素等による白金族金属触媒の再
生法が知られている。しかしながらこれ等従来法
による再生では、触媒表面に附着した被毒物質は
比較的良好に除去されるにもかかわらず、触媒活
性の回復が十分に行なわれないという重大な欠点
がある。 本発明者は、白金族金属触媒の再生法について
鋭意検討を重ねた結果、アルカリ金属及びアルカ
リ土類金属の水酸化物、炭酸塩、硝酸塩及び硫酸
塩(以下これ等を無機アルカリという)の水溶液
及びヒドラジン、ホルムアルデヒド及び水素化ホ
ウ素ナトリウムの水溶液による二段階処理が、白
金族金属の再生に極めて有効であることを先に見
出した(特公昭56−25190号)。しかしながら、こ
の先願発明方法においては、再生処理時における
触媒の破損が10重量%程度にも達する場合があ
り、改善の余地があることも判明した。また、反
応履歴の異なる同種または異種の触媒の再生を同
時に行なうためには、先願発明方法をそのまま適
用することはできないことも判明した。そこで、
本発明者は、更に研究を重ねた結果、白金族金属
触媒を網目構造の容器に収容し、触媒を流動しな
い様に拘束保持した状態で、先願発明方法と同様
の第1段及び第2段処理からなる再生処理を行な
う場合には、触媒の破損が防止されるのみなら
ず、再生による触媒活性回復の程度も著るしく向
上することを見出した。さらにまた、反応履歴の
異なる同種または異種の触媒を複数個の網目構造
の容器にそれぞれ収容して再生処理を行ない、所
定の活性を回復した触媒を順次回収するととも
に、所定の活性を回復するに至らない触媒につい
ては、引続き上記の同様の再生処理を行なう場合
には、反応履歴の異なる同種または異種の触媒の
再生を並行して行ない得ることを見出した。 すなわち、本発明は、下記の触媒の再生方法を
提供するものである: 炭化水素の水蒸気改質用、水添分解用または部
分燃焼用の担体付白金族金属触媒を洗浄再生する
に際し、洗浄液を流通させ得る網目構造の複数個
の容器に反応履歴の異なる触媒をそれぞれ収容
し、各触媒を拘束保持した状態で、()アルカ
リ金属およびアルカリ土類金属の水酸化物、炭酸
塩、硝酸塩および硫酸塩の少なくとも1種の水溶
液により処理し、次いで()ヒドラジン、ホル
ムアルデヒドまたは水素化ホウ素ナトリウムの水
溶液により処理した後、所定の活性を回復した触
媒を回収するとともに、所定の活性を回復するに
至らない触媒をさらに上記の手法により処理する
ことを特徴とする触媒の再生方法。 一般に、白金族金属触媒を炭化水素の水蒸気改
質、水添分解又は部分燃焼に使用すると、炭素質
物質の析出、炭化水素中に含まれる硫黄化合物の
附着及び触媒金属の焼結による粒子粗大化(即ち
分散性の低下)に加えて、触媒金属の化学的性質
の変化等の要因により触媒の活性は漸次低下す
る。特に後者の触媒金属の化学的性質の変化等
は、現在の分析技術では明確に察知され得ないも
のであり、未だ十分に解明されていないが、前者
の原因と同等若しくはそれ以上の触媒活性低下要
因であると推測される。しかるに本発明方法によ
れば、これ等の触媒活性低下要因が取り除かれ
て、再使用可能な程度まで白金族金属触媒の活性
が回復し、処理条件によつては新触媒にほぼ等し
い程度にまで活性が回復するものである。 本発明の第1段処理に於て使用する処理剤は、
アルカリ金属及びアルカリ土類金属の水酸化物、
炭酸塩、硝酸塩及び硫酸塩であり、これ等の少な
くとも1種を含む水溶液の形態で使用される。水
溶液としての濃度は、担持された触媒金属の量、
触媒活性低下の程度(特に被毒物質の附着量及び
分散性低下の度合)、再生時の温度及び圧力条件
等により変り得るが、通常0.001〜10規定の範囲
にあり、より好ましくは0.001〜5規定とする。
濃度が低過ぎる場合には、処理時間を長くしたり
或いは温度及び圧力条件を著るしく苛酷にしたり
或いは本処理として併用されるヒドラジン等の水
溶液による処理をより苛酷な条件下に行なう必要
が生じるのに対し、濃度があまり大となると担持
自体が溶解しはじめる難点を生じる。従つて前記
無機アルカリの少なくとも1種を選択して上記濃
度範囲内で使用するのが良い。処理は、触媒を流
動させない様に拘束保持するが処理水溶液の流通
は妨げない網目構造の容器に活性の低下した白金
族金属触媒を収容し、常温若しくは加熱した無機
アルカリ水溶液をして該容器内を通過させて行な
う。本発明に於ては、触媒活性低下の度合が甚だ
しい場合等を除き、無機アルカリの水溶液による
処理を高圧高温という苛酷な条件下に行なう必要
はない。 本発明の第2段処理で使用するヒドラジン、ホ
ルムアルデヒド又は水素化ホウ素ナトリウムの水
溶液としての濃度は、担持された触媒金属の量、
触媒活性低下の程度、処理時の温度等によりやは
り変り得るが、通常0.01重量%以上であれば良
い。濃度があまり低過ぎる場合には、最終的な再
生効果が十分顕著ではなく、一方濃度が大となる
に従つて再生効果は漸次増加するが、10重量%を
越えても再生効果のより一層の改善はほとんど認
められない。本処理も、第一段処理の場合と同様
に、再生すべき触媒を拘束保持している網目構造
の容器内をヒドラジン、ホルムアルデヒド又は水
素化ホウ素ナトリウムの水溶液を通過させること
により行なう。水溶液の温度は特に前提されない
が、温度が高過ぎるとヒドラジン等が分解する危
険性がある。本処理に際しての圧力は大気圧で良
く、加圧する必要は特にないが、加圧下に行なつ
ても何らの不利益も生じない。 本発明に於ては、第1段処理の終えた触媒は、
そのまま若しくは必要に応じて水洗及び乾燥を行
なつた後、第2段処理に供せられ、第2段処理を
終えた触媒は、水洗及び乾燥後再使用可能とな
る。 第1図に本発明による触媒の再生処理を行なう
為の装置の一例を示す。 再生処理さるべき触媒は、再生処理装置1内の
少なくとも上面と下面とを網目構造とした複数個
の容器、図示の装置においては3個の容器3a,
3b,3c内に収容されている。複数個の容器を
使用するので、反応履歴の異なる同種の触媒或い
は異種の触媒を夫々別個の容器に収容し、夫々の
所要時間に応じて処理することができる。再生処
理装置1には、第一段処理で使用する無機アルカ
リの水溶液を収容するタンク5からライン7、ポ
ンプ9及びライン11を経て、無機アルカリ水溶
液が供給される。容器3a,3b,3c内の触媒
は、水溶液が容器内を通過する際にも、流動する
ことのない様に保持されているので、自由流動に
よる触媒粒子の相互衝突或いは壁面との衝突によ
る割れ等の損傷は実質的に防止される。容器3
a,3b,3c及び再生処理装置1を通過した無
機アルカリの水溶液は、ライン13からタンク5
に循環される。水溶液が消費され、減少した場合
には、ホツパー15から所定量が補充される。 本発明の第二段処理は、第一段処理に使用した
ものと同様の他の装置により行なつても良く、或
いは無機アルカリの水溶液に代えてヒドラジン等
の水溶液を用い第一段処理に使用したと同一装置
により行なつても良いので、詳細な説明は省略す
る。 尚、第1図に示す実施態様においては、水溶液
の流れ方向を再生処理装置1の下方から上方とす
ることが最も好ましいが、上方から下方への流下
方式とすることも可能である。 複数個の容器に別個に収容された反応履歴の異
なる複数種の触媒の中で本発明処理により触媒活
性が所定の水準まで回復したものは、容器から順
次回収される。所定の活性を回復するに至らない
触媒は、さらに引続き同様の処理を受ける。この
際、触媒の回収により空となつた容器には、活性
を回復すべき触媒を新たに収容しても良い。 本発明方法によれば、以下の如き顕著な効果が
奏される。 () 再生処理時の触媒の収容及び取出しに際し
ての破損が防止される。 () 被毒物質の除去等により触媒活性が大巾に
回復する。 () 自由流動による触媒の破損を生じないの
で、再生処理液の流入速度を大巾に増加させる
ことが出来る。従つて、再生効果が更に一層高
まり、触媒活性の回復が一層顕著となる。 () 触媒が、網目状容器に収容された状態で、
一括して取扱われるので、再生処理操作が極め
て簡素化される。 () 複数個の網目構造の容器を使用する場合に
は、反応履歴の異なる同種の触媒或いは2種以
上の異種触媒を同時に且つ所要時間に応じて再
生処理し得る。 () 触媒の自由流動がないので、偏流に基く不
均一な再生が防止される。 参考例 1 直径および高さ3.2mmの円柱状アルミナにルテ
ニウム2.0重量%を担持させた触媒(Aとする:
比表面積=43m2/g−Ru、反応必要触媒量=110
ml)340mlを直径1センチの反応器に充填し、硫
黄含量2ppmのナフサ(最終沸点220℃)および水
蒸気を供給し、下記第1表に示し条件下に750時
間の連続水蒸気改質を行なつた。この時点での触
媒をB(比表面積=21m2/g−Ru)とする。 第1表 反応器温度 入口 510℃ 出口 518℃ 空間速度 2000/hr 水蒸気/炭化水素比 1.9(供給原料中の炭素1原
子当たりの酸素の原子数) 圧力 13気圧(絶対) 参考例 2 直径4mmの球状アルミナにルテニウム3.8重量
%を担持させた触媒(Cとする:比表面積=43
m2/g−Ru、反応必要触媒量=91ml)325mlを直
径1インチの反応器に充填し、参考例1における
と同様の条件下に750時間の連続水蒸気改質を行
なつた。この時点での触媒をD(比表面積=20
m2/g−Ru)とする。 参考例 3 直径4mmの球状アルミナにルテニウム1.5重量
%および酸化クロム0.1重量%を担持させた触媒
(Eとする:比表面積=43m2/g−Ru、反応必要
触媒量=51ml)290mlを直径1インチの反応器に
充填し、メタンと空気とを供給し、下記第2表に
示す条件下に500時間の連続部分燃焼反応を行な
つた。この時点での触媒をF(比表面積=17m2
g−Ru)とする。 第2表 反応器温度 入口 310℃ 出口 700℃ 空間速度 17500/hr 空気/メタン比 2.37(モル比) 圧力 1気圧(絶対) 実施例 1 上記参考例1〜3で得られた触媒B、Dおよび
Fを第1図に示す形式の装置の網目構造の容器3
a,3bおよび3cにそれぞれ収容し、下記第3
表に示す条件下に第1段処理および第2段処理を
2回ずつ行なつた後、触媒BおよびDをそれぞれ
収容した容器3aおよび3bを装置から取り外
し、容器3cに収容した触媒Fのみを第1段処理
および第2段処理にさらに2回供した。なお、網
目構造の容器は、直径5cm、高さ17cmで、上下面
の網目は10メツシユであつた。 第3表 第1段処理 再生剤 0.375N−NaOH 温度(℃) 100 圧力(ata) 1.0 時間(hr) 3.0 循環速度(cm/秒) 5.0 後処理 100℃で2時間水洗後 100℃で16時間乾燥 第2段処理 再生剤 0.4%ヒドラジン 温度(℃) 20 圧力(ata) 1.0 時間(hr) 3.0 循環速度(cm/秒) 5.0 後処理 75℃で3時間水洗後 100℃で16時間乾燥 各触媒の再生処理後の結果は、第4表に示す通
りである。
The present invention relates to a method for regenerating a supported platinum group metal catalyst used for steam reforming, hydrogenolysis, or partial combustion of hydrocarbons. The above catalysts usually contain ruthenium and oxide supports such as alumina, magnesia, zirconia, and titania.
It is constructed by supporting one or more of rhodium, palladium, osmium, iridium, and platinum as a catalyst component. In some cases, one or more compounds of chromium, molybdenum, and tungsten are also supported as catalyst components. As is well known, such catalysts (hereinafter simply referred to as platinum group metal catalysts) are very expensive, so when used on an industrial scale, it is necessary to regenerate the catalysts whose activity has decreased.
Repeated use is absolutely necessary. Conventionally, methods for regenerating platinum group metal catalysts using hydrogen, steam, oxygen, etc. are known. However, these conventional regeneration methods have a serious drawback in that, although poisonous substances adhering to the catalyst surface are relatively well removed, the catalyst activity is not sufficiently restored. As a result of extensive research into methods for regenerating platinum group metal catalysts, the present inventor discovered an aqueous solution of hydroxides, carbonates, nitrates, and sulfates (hereinafter referred to as inorganic alkalis) of alkali metals and alkaline earth metals. We have previously discovered that a two-step treatment using an aqueous solution of hydrazine, formaldehyde and sodium borohydride is extremely effective for regenerating platinum group metals (Japanese Patent Publication No. 56-25190). However, in the method of this prior invention, the damage to the catalyst during the regeneration process can reach as much as 10% by weight, and it has been found that there is room for improvement. It has also been found that the method of the prior invention cannot be applied as is in order to simultaneously regenerate catalysts of the same or different types with different reaction histories. Therefore,
As a result of further research, the present inventor discovered that the platinum group metal catalyst was housed in a mesh-structured container, and the catalyst was restrained and held so as not to flow, and the first and second stages were carried out in the same manner as in the method of the prior invention. It has been found that when regeneration treatment consisting of stage treatment is performed, not only damage to the catalyst is prevented, but also the degree of catalyst activity recovery by regeneration is significantly improved. Furthermore, catalysts of the same type or different types with different reaction histories are housed in a plurality of mesh-structured containers and regenerated, and the catalysts that have recovered a predetermined activity are sequentially recovered, and the catalysts that have recovered a predetermined activity are collected in sequence. It has been found that when the same regeneration treatment as described above is subsequently performed for catalysts that have not reached the desired level, it is possible to regenerate catalysts of the same type or different types with different reaction histories in parallel. That is, the present invention provides the following method for regenerating a catalyst: When cleaning and regenerating a supported platinum group metal catalyst for steam reforming, hydrogenolysis, or partial combustion of hydrocarbons, a cleaning liquid is used. Catalysts with different reaction histories are housed in multiple containers with a network structure that can be circulated, and each catalyst is held in a restrained state. After treatment with an aqueous solution of at least one salt and then with an aqueous solution of () hydrazine, formaldehyde or sodium borohydride, recovering the catalyst which has recovered the desired activity and which does not lead to recovery of the desired activity. A method for regenerating a catalyst, comprising further treating the catalyst by the method described above. Generally, when a platinum group metal catalyst is used for steam reforming, hydrogenolysis, or partial combustion of hydrocarbons, precipitation of carbonaceous substances, adhesion of sulfur compounds contained in the hydrocarbons, and particle coarsening due to sintering of the catalyst metal occur. (i.e., a decrease in dispersibility), the activity of the catalyst gradually decreases due to factors such as changes in the chemical properties of the catalyst metal. In particular, the latter cause, such as a change in the chemical properties of the catalytic metal, cannot be clearly detected with current analytical techniques and is not yet fully understood, but it may be the same as or more than the cause of the former cause. It is assumed that this is a factor. However, according to the method of the present invention, these factors that reduce the catalyst activity are removed, and the activity of the platinum group metal catalyst is recovered to the extent that it can be reused. The activity is restored. The processing agent used in the first stage treatment of the present invention is:
alkali metal and alkaline earth metal hydroxides,
They are carbonates, nitrates, and sulfates, and are used in the form of an aqueous solution containing at least one of these. The concentration as an aqueous solution is the amount of supported catalytic metal,
Although it may vary depending on the degree of reduction in catalyst activity (particularly the amount of attached poisonous substance and the degree of reduction in dispersibility), the temperature and pressure conditions during regeneration, etc., it is usually in the range of 0.001 to 10N, more preferably 0.001 to 5N. As stipulated.
If the concentration is too low, it will be necessary to lengthen the treatment time, make the temperature and pressure conditions significantly harsher, or perform treatment under harsher conditions with an aqueous solution such as hydrazine used in conjunction with the main treatment. On the other hand, if the concentration is too high, the support itself will begin to dissolve. Therefore, it is preferable to select at least one of the inorganic alkalis and use it within the above concentration range. In the treatment, a platinum group metal catalyst with reduced activity is placed in a container with a mesh structure that restrains and holds the catalyst so that it does not flow, but does not impede the flow of the treated aqueous solution. This is done by passing the In the present invention, it is not necessary to carry out the treatment with an inorganic alkali aqueous solution under severe conditions of high pressure and high temperature, except in cases where the degree of reduction in catalyst activity is severe. The concentration of hydrazine, formaldehyde or sodium borohydride used in the second stage treatment of the present invention as an aqueous solution depends on the amount of supported catalyst metal,
Although it may vary depending on the degree of reduction in catalyst activity, temperature during treatment, etc., it is usually sufficient if it is 0.01% by weight or more. If the concentration is too low, the final regeneration effect will not be sufficiently pronounced; on the other hand, as the concentration increases, the regeneration effect will gradually increase, but even beyond 10% by weight, the regeneration effect will become even more pronounced. Almost no improvement is observed. As in the case of the first stage treatment, this treatment is also carried out by passing an aqueous solution of hydrazine, formaldehyde, or sodium borohydride through a container with a network structure that restrains and holds the catalyst to be regenerated. Although the temperature of the aqueous solution is not particularly prerequisite, if the temperature is too high, there is a risk that hydrazine and the like will decompose. The pressure during this treatment may be atmospheric pressure, and there is no particular need to pressurize it, but there will be no disadvantages even if it is carried out under pressure. In the present invention, the catalyst after the first stage treatment is
The catalyst is subjected to the second stage treatment either as it is or after being washed and dried as necessary, and the catalyst that has completed the second stage treatment can be reused after being washed and dried. FIG. 1 shows an example of an apparatus for regenerating a catalyst according to the present invention. The catalyst to be regenerated is stored in a plurality of containers in the regeneration processing device 1, each of which has a mesh structure at least on its upper and lower surfaces; in the illustrated device, three containers 3a;
3b and 3c. Since a plurality of containers are used, catalysts of the same type or different types having different reaction histories can be housed in separate containers and processed according to the required time. The regeneration processing apparatus 1 is supplied with an inorganic alkali aqueous solution through a line 7, a pump 9, and a line 11 from a tank 5 containing an inorganic alkali aqueous solution used in the first stage treatment. The catalysts in the containers 3a, 3b, and 3c are held so that they do not flow even when the aqueous solution passes through the containers, so that the catalyst particles collide with each other due to free flow or crack due to collision with the wall surface. Such damage is substantially prevented. container 3
The inorganic alkali aqueous solution that has passed through a, 3b, 3c and the regeneration processing device 1 is transferred from the line 13 to the tank 5.
is circulated. When the aqueous solution is consumed and reduced, a predetermined amount is replenished from the hopper 15. The second stage treatment of the present invention may be carried out using other equipment similar to that used in the first stage treatment, or an aqueous solution of hydrazine or the like may be used in place of the inorganic alkali aqueous solution used in the first stage treatment. Since this may be performed using the same device as above, detailed explanation will be omitted. In the embodiment shown in FIG. 1, it is most preferable that the aqueous solution flows from the bottom to the top of the regeneration processing apparatus 1, but it is also possible to flow from the top to the bottom. Among a plurality of types of catalysts having different reaction histories stored separately in a plurality of containers, those whose catalytic activity has been recovered to a predetermined level by the treatment of the present invention are sequentially recovered from the containers. Catalysts that have not yet regained the desired activity are subsequently subjected to similar treatment. At this time, the container emptied by the recovery of the catalyst may contain a new catalyst whose activity is to be restored. According to the method of the present invention, the following remarkable effects are achieved. () Damage to the catalyst during storage and removal during regeneration treatment is prevented. () Catalytic activity is largely restored by removing poisonous substances. () Since the catalyst is not damaged by free flow, the inflow speed of the regenerated treatment liquid can be greatly increased. Therefore, the regeneration effect is further enhanced and the recovery of catalyst activity becomes even more remarkable. () With the catalyst housed in a mesh container,
Since they are handled all at once, the regeneration processing operation is extremely simplified. () When using a plurality of containers with a network structure, the same type of catalyst having different reaction histories or two or more types of different types of catalysts can be regenerated simultaneously depending on the required time. () Since there is no free flow of catalyst, uneven regeneration due to uneven flow is prevented. Reference Example 1 Catalyst (referred to as A:
Specific surface area = 43m 2 /g-Ru, amount of catalyst required for reaction = 110
ml) was charged into a reactor with a diameter of 1 cm, and naphtha with a sulfur content of 2 ppm (final boiling point: 220°C) and steam were supplied, and continuous steam reforming was performed for 750 hours under the conditions shown in Table 1 below. Ta. The catalyst at this point is designated as B (specific surface area=21 m 2 /g-Ru). Table 1 Reactor temperature Inlet 510℃ Outlet 518℃ Space velocity 2000/hr Steam/hydrocarbon ratio 1.9 (number of oxygen atoms per carbon atom in the feedstock) Pressure 13 atm (absolute) Reference example 2 Diameter of 4 mm Catalyst with 3.8% by weight of ruthenium supported on spherical alumina (referred to as C: specific surface area = 43
m 2 /g-Ru, amount of catalyst required for reaction = 91 ml) was filled into a 1 inch diameter reactor, and continuous steam reforming was carried out for 750 hours under the same conditions as in Reference Example 1. The catalyst at this point is D (specific surface area = 20
m 2 /g-Ru). Reference example 3 Catalyst in which 1.5% by weight of ruthenium and 0.1% by weight of chromium oxide are supported on spherical alumina with a diameter of 4 mm (denoted as E: specific surface area = 43 m 2 /g-Ru, amount of catalyst required for reaction = 51 ml) 290 ml with a diameter of 1 An inch-inch reactor was filled, methane and air were supplied, and a continuous partial combustion reaction was carried out for 500 hours under the conditions shown in Table 2 below. The catalyst at this point is F (specific surface area = 17 m 2 /
g-Ru). Table 2 Reactor temperature Inlet 310℃ Outlet 700℃ Space velocity 17500/hr Air/methane ratio 2.37 (mole ratio) Pressure 1 atm (absolute) Example 1 Catalysts B, D and F is a mesh-structured container 3 of an apparatus of the type shown in FIG.
a, 3b and 3c respectively, and the following third
After carrying out the first stage treatment and second stage treatment twice under the conditions shown in the table, containers 3a and 3b containing catalysts B and D, respectively, were removed from the apparatus, and only catalyst F contained in container 3c was removed. The sample was subjected to the first stage treatment and second stage treatment two more times. The mesh-structured container had a diameter of 5 cm, a height of 17 cm, and a mesh size of 10 meshes on the top and bottom surfaces. Table 3 1st stage treatment Regenerant 0.375N-NaOH Temperature (℃) 100 Pressure (ata) 1.0 Time (hr) 3.0 Circulation speed (cm/sec) 5.0 Post-treatment 2 hours at 100℃ After washing with water 16 hours at 100℃ Second stage drying treatment Regenerant 0.4% hydrazine Temperature (°C) 20 Pressure (ata) 1.0 Time (hr) 3.0 Circulation speed (cm/sec) 5.0 Post-treatment After washing with water at 75°C for 3 hours Drying at 100°C for 16 hours Each catalyst The results after the regeneration process are shown in Table 4.

【表】 第4表に示す結果から、反応履歴の異なる触媒
を同時に再生処理する本発明方法の優れた効果が
明らかである。
[Table] From the results shown in Table 4, it is clear that the excellent effect of the method of the present invention in which catalysts with different reaction histories are simultaneously regenerated is treated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法による触媒の再生方法に
使用する装置の一例を示す。 1……再生処理装置、3a,3b,3c……上
面と下面を網目構造とした容器、5……再生処理
液タンク、9……ポンプ、15……再生処理液ホ
ツパー。
FIG. 1 shows an example of an apparatus used in the catalyst regeneration method according to the present invention. DESCRIPTION OF SYMBOLS 1... Regeneration processing device, 3a, 3b, 3c... Container with a mesh structure on the upper and lower surfaces, 5... Regeneration processing liquid tank, 9... Pump, 15... Regeneration processing liquid hopper.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素の水蒸気改質用、水添分解用または
部分燃焼用の担体付白金族金属触媒を洗浄再生す
るに際し、洗浄液を流通させ得る網目構造の複数
個の容器に反応履歴の異なる触媒をそれぞれ収容
し、各触媒を拘束保持した状態で、()アルカ
リ金属およびアルカリ土類金属の水酸化物、炭酸
塩、硝酸塩および硫酸塩の少なくとも1種の水溶
液により処理し、次いで()ヒドラジン、ホル
ムアルデヒドまたは水素化ホウ素ナトリウムの水
溶液により処理した後、所定の活性を回復した触
媒を回収するとともに、所定の活性を回復するに
至らない触媒をさらに上記の手法により処理する
ことを特徴とする触媒の再生方法。
1. When cleaning and regenerating supported platinum group metal catalysts for hydrocarbon steam reforming, hydrogen cracking, or partial combustion, catalysts with different reaction histories are placed in multiple containers with a network structure that allows the cleaning liquid to flow through them. treated with an aqueous solution of at least one of alkali metal and alkaline earth metal hydroxides, carbonates, nitrates and sulfates, and then () treated with hydrazine, formaldehyde or A method for regenerating a catalyst, which comprises recovering the catalyst that has recovered a predetermined activity after being treated with an aqueous solution of sodium borohydride, and further treating the catalyst that has not recovered the predetermined activity using the above method. .
JP57076938A 1982-05-07 1982-05-07 Regeneration method of catalyst Granted JPS58193739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57076938A JPS58193739A (en) 1982-05-07 1982-05-07 Regeneration method of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076938A JPS58193739A (en) 1982-05-07 1982-05-07 Regeneration method of catalyst

Publications (2)

Publication Number Publication Date
JPS58193739A JPS58193739A (en) 1983-11-11
JPH0361497B2 true JPH0361497B2 (en) 1991-09-20

Family

ID=13619673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076938A Granted JPS58193739A (en) 1982-05-07 1982-05-07 Regeneration method of catalyst

Country Status (1)

Country Link
JP (1) JPS58193739A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8623482D0 (en) * 1986-09-30 1986-11-05 Johnson Matthey Plc Catalytic generation of hydrogen
ITMI20040798A1 (en) * 2004-04-23 2004-07-23 Eni Spa PROCESS AND CATALYSTS FOR THE OPENING OF NAFTENIC RINGS
JP2017149655A (en) * 2016-02-22 2017-08-31 日本化薬株式会社 Method for producing conjugated diolefin

Also Published As

Publication number Publication date
JPS58193739A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
CA1183116A (en) Catalyst regeneration process including metal contaminants removal
US4359400A (en) Catalyst regeneration procedure
JP2000514351A (en) Method for cleaning and / or regenerating a totally or partially deactivated flue gas denitrification catalyst
AU2003202874A1 (en) Regeneration of catalysts for carbon monoxide hydrogenation
WO2012022942A1 (en) Fischer-tropsch catalyst regeneration
US4595666A (en) Catalyst rejuvenation process for removal of metal contaminants
EP0071397A2 (en) Process for regenerating coked noble metal-containing catalysts
ZA200404975B (en) Catalyst enhancement.
US3578395A (en) Recovery of metals
JPH08507468A (en) Catalyst regeneration
JPH0361497B2 (en)
US5516421A (en) Sulfur removal
US2758063A (en) Method of regenerating hydroforming catalysts
US3835063A (en) Regeneration of halogen promoted bimetallic reforming catalyst
JP3715893B2 (en) Method for regenerating hydrotreating catalyst
US4444896A (en) Reactivation of iridium-containing catalysts by halide pretreat and oxygen redispersion
US4738939A (en) Regeneration and reactivation of reforming catalysts while passivating iron scale carryover from the regenerator circuit to the reactors
EP0295870A2 (en) A catalytic reforming process involving regeneration and reactivation of catalyst avoiding iron scale carryover from the regeneration circuit to the reactor
US4826792A (en) Method of noble metal-zeolite catalyst activation with Bronsted acid compound
CN107362834B (en) Treatment method of in-use continuous reforming catalyst
US3578582A (en) Startup procedure for cyclic regenerative platinum-rhenium reforming process
US3617523A (en) Regeneration procedure for sulfur-contaminated hydroconversion unit
JPS58114732A (en) Regenerating method of catalyst
CN106179488A (en) A kind of containing noble metal with the renovation process of TON type molecular sieve catalyst
US2737476A (en) Method of regenerating hydroforming catalysts