JPH09252009A - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device

Info

Publication number
JPH09252009A
JPH09252009A JP5777496A JP5777496A JPH09252009A JP H09252009 A JPH09252009 A JP H09252009A JP 5777496 A JP5777496 A JP 5777496A JP 5777496 A JP5777496 A JP 5777496A JP H09252009 A JPH09252009 A JP H09252009A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
conductive film
gate electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5777496A
Other languages
Japanese (ja)
Inventor
Misao Yoshimura
村 操 吉
Yoshiaki Kitaura
浦 義 昭 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5777496A priority Critical patent/JPH09252009A/en
Publication of JPH09252009A publication Critical patent/JPH09252009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor device provided with a gate which has a low resistance in spite of miniaturization. SOLUTION: This semiconductor device is provided with a semiconductor substrate 1, a conductive film 5 formed on the surface of the semiconductor substrate which comprises a gate electrode, side wall conductive films 6 formed on the side walls of the conductive film, impurities areas 3a and 3b formed on the surface area of the semiconductor device which sandwiches the conductive film from both sides and a film 12 made of precious metals comprising the gate electrode which extends on the insulating film and at least a part of the side wall conductive films.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置及び半導
体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.

【0002】[0002]

【従来の技術】一般にショットキーゲート型電界効果ト
ランジスタの高性能化の手段として、ゲート長の微細化
が行われている。しかしながら、ゲート電極の膜厚を一
定とした場合、微細化とともにゲート抵抗が増大して高
周波的な相互コンダクタンスを低下させ、更に高周波雑
音特性に対して直接的に悪影響を及ぼす。このため、上
述の場合はゲート電極の膜厚を厚くして低抵抗化する方
法がとられる。しかし一般に厚い金属膜を微細に加工す
ることが難しいため、まず通常の方法を用いてショット
キーゲートを半導体基板上に形成した後、このゲート上
部に例えば鍍金法により更に金属を積み増す方式がとら
れる。
2. Description of the Related Art Generally, as a means for improving the performance of Schottky gate type field effect transistors, the gate length has been reduced. However, when the film thickness of the gate electrode is constant, the gate resistance increases with the miniaturization, the high-frequency transconductance is lowered, and the high-frequency noise characteristic is directly adversely affected. Therefore, in the above case, the method of increasing the film thickness of the gate electrode to reduce the resistance is adopted. However, since it is generally difficult to finely process a thick metal film, there is a method in which a Schottky gate is first formed on a semiconductor substrate by using an ordinary method and then metal is further stacked on the gate by, for example, a plating method. To be

【0003】このようにショットキーゲート上に金属層
が積層された構造を有する従来の半導体装置の製造工程
を図3を参照して説明する。
A manufacturing process of a conventional semiconductor device having a structure in which a metal layer is stacked on a Schottky gate as described above will be described with reference to FIG.

【0004】まず、図3(a)に示すように半導体基板
21の表面領域にイオン注入法等によりチャネル層22
を形成し、続いて窒化タングステンの膜を基板21の全
面に形成した後、フォトリソグラフィ技術を用いて上記
窒化タングステンの膜をパターニングすることによりゲ
ート電極25を形成する。次にこのゲート電極25の両
側部の基板21の表面領域に不純物イオンを注入するこ
とにより低濃度の不純物領域23aを形成する。続いて
基板21の全面に絶縁物、例えばSiOからなる膜
(図示せず)を堆積しRIE等の異方性エッチングを施
すことによりゲート電極25の側壁(図示せず)を形成
する。この側壁をマスクにして不純物イオンを注入する
ことにより基板21の表面領域に不純物領域23aに隣
接する高濃度の不純物領域23bを形成し、その後上記
側壁を除去する(図3(a)参照)。
First, as shown in FIG. 3A, the channel layer 22 is formed in the surface region of the semiconductor substrate 21 by ion implantation or the like.
Then, a tungsten nitride film is formed on the entire surface of the substrate 21, and then the tungsten nitride film is patterned by using a photolithography technique to form a gate electrode 25. Next, impurity ions are implanted into the surface regions of the substrate 21 on both sides of the gate electrode 25 to form low-concentration impurity regions 23a. Subsequently, an insulator (for example, a film (not shown) made of SiO 2 ) is deposited on the entire surface of the substrate 21 and anisotropic etching such as RIE is performed to form a sidewall (not shown) of the gate electrode 25. Impurity ions are implanted using this side wall as a mask to form a high-concentration impurity region 23b adjacent to the impurity region 23a in the surface region of the substrate 21, and then the side wall is removed (see FIG. 3A).

【0005】次にアニールを行って上記不純物領域23
a,23bを活性化した後に、基板21の全面に、鍍金
時の下地電極となる例えば厚さが500オングストロー
ム以上の金属膜27を蒸着により形成する(図3(b)
参照)。なお金属膜27の材料としては金または銅が用
いられる。
Next, annealing is performed to make the impurity regions 23.
After activating a and 23b, a metal film 27 having a thickness of, for example, 500 Å or more, which is a base electrode during plating, is formed on the entire surface of the substrate 21 by vapor deposition (FIG. 3B).
reference). Gold or copper is used as the material of the metal film 27.

【0006】次に基板21の全面にレジストを厚く塗布
した後、露光・現像することによりゲート電極25上に
開口部を有するレジストパターン30を形成する(図3
(c)参照)。そしてこのレジストパターン30の開口
部に鍍金法により、ゲート電極25上の金属膜27上に
例えば金からなる金属層32を形成する(図3(c)参
照)。
Next, a resist is applied thickly on the entire surface of the substrate 21 and then exposed and developed to form a resist pattern 30 having an opening on the gate electrode 25 (FIG. 3).
(C)). Then, a metal layer 32 made of, for example, gold is formed on the metal film 27 on the gate electrode 25 in the opening of the resist pattern 30 by plating (see FIG. 3C).

【0007】次に上記レジストパターン30を剥離液で
剥離した後、イオンミリングを行い金属層32下の金属
膜を残して、この他の領域の金属膜27を除去する(図
3(d)参照)。続いて不純物領域23b上にソース・
ドレイン電極(図示せず)を形成した後、パッシベーシ
ョン膜で覆い半導体装置を完成する。
Next, after removing the resist pattern 30 with a removing solution, ion milling is performed to leave the metal film under the metal layer 32 and remove the metal film 27 in other regions (see FIG. 3D). ). Then, on the impurity region 23b, the source
After forming a drain electrode (not shown), the semiconductor device is completed by covering it with a passivation film.

【0008】[0008]

【発明が解決しようとする課題】上述の従来の製造方法
によって製造される半導体装置においては、ゲート電極
25の寸法が、鍍金マスク用レジスト30の開口寸法及
び合わせ精度によって制限され、1μm以下の微細な低
抵抗ゲートを形成することができないという問題があっ
た。
In the semiconductor device manufactured by the above-described conventional manufacturing method, the size of the gate electrode 25 is limited by the opening size of the plating mask resist 30 and the alignment accuracy, and the size of the gate electrode 25 is 1 μm or less. There is a problem that it is not possible to form a low resistance gate.

【0009】例えばg線を使用するステッパを用いた場
合に形成できるゲート長の最小寸法は、レジストパター
ン30の解像限界が約0.7μmであってばらつきが±
0.1μmであるため、一番最悪の条件のときで0.8
μmとなる(図4(a)参照)。これにパターンの合わ
せ精度±0.2μmを考慮するとゲート長の最小寸法は
1.2μmとなる(図4(a)参照)。したがってゲー
ト長が1.0μm以下のゲート電極25を形成しようと
すると図4(b)に示すように積層金属層27,32が
ゲート電極25の側部にも形成されて素子特性に異常
(ゲート電極とソース・ドレイン領域が導通する等)が
生じるという問題があった。
For example, the minimum size of the gate length that can be formed when a stepper using the g-line is formed is such that the resolution limit of the resist pattern 30 is about 0.7 μm and the variation is ±.
Since it is 0.1 μm, 0.8 under the worst conditions
μm (see FIG. 4A). Considering the pattern alignment accuracy of ± 0.2 μm, the minimum gate length is 1.2 μm (see FIG. 4A). Therefore, when it is attempted to form the gate electrode 25 having a gate length of 1.0 μm or less, the laminated metal layers 27 and 32 are formed on the side portions of the gate electrode 25 as shown in FIG. There is a problem that the electrodes are electrically connected to the source / drain regions.

【0010】本発明は上記事情を考慮してなされたもの
であって、微細化しても低抵抗なゲート電極を有する半
導体装置及びその製造方法を提供することを目的とす
る。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a semiconductor device having a gate electrode which has a low resistance even when miniaturized, and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

[概 要]本発明による半導体装置の第1の態様は、半
導体基板と、この半導体基板の表面に形成された導電膜
と、この導電膜の側壁部に形成された側壁絶縁膜と、前
記導電膜を両側から挟むように前記半導体基板の表面領
域に形成された不純物領域と、前記導電膜及び少なくと
も前記側壁絶縁膜の部分領域上に延在する貴金属材料か
らなる膜と、が備えられたことを特徴とする。
[Summary] A first aspect of a semiconductor device according to the present invention is a semiconductor substrate, a conductive film formed on a surface of the semiconductor substrate, a sidewall insulating film formed on a sidewall of the conductive film, and the conductive film. An impurity region formed in a surface region of the semiconductor substrate so as to sandwich the film from both sides, and a film made of a noble metal material extending on a partial region of the conductive film and at least the sidewall insulating film are provided. Is characterized by.

【0012】また本発明による半導体装置の第2の態様
は第1の態様の半導体装置において、前記不純物領域は
前記導電膜に自己整合的に形成された第1の不純物領域
と、前記側壁絶縁膜に自己整合的に形成された第2の不
純物領域を含むことを特徴とする。
A second aspect of the semiconductor device according to the present invention is the semiconductor device according to the first aspect, wherein the impurity region is a first impurity region formed in self-alignment with the conductive film, and the sidewall insulating film. And a second impurity region formed in a self-aligned manner.

【0013】また本発明による半導体装置の製造方法の
第1の態様は、半導体基板の表面に、導電膜を形成する
工程と、前記導電膜の側壁部に側壁絶縁膜を形成する工
程と、めっき法、あるいはリフトオフ法により前記導電
膜上及び前記側壁導電膜上に延在する貴金属材料からな
る膜を形成する工程と、を備える。 [作 用]上述のように構成された本発明による半導体
装置及び半導体装置の製造方法によれば、ゲート電極を
構成する貴金属材料からなる膜が、ゲート電極を構成す
る導電膜及び少なくとも上記ゲート電極の側壁絶縁膜の
部分領域上に延在しているため、合わせずれによる特性
異常がなく、ゲート長を微細化しても低抵抗なゲートを
得ることができる。
A first aspect of the method for manufacturing a semiconductor device according to the present invention is the step of forming a conductive film on the surface of a semiconductor substrate, the step of forming a side wall insulating film on the side wall of the conductive film, and plating. Or a lift-off method, a step of forming a film made of a noble metal material on the conductive film and the sidewall conductive film. [Operation] According to the semiconductor device and the method for manufacturing a semiconductor device of the present invention configured as described above, the film made of a noble metal material forming the gate electrode is the conductive film forming the gate electrode and at least the gate electrode. Since it extends over the partial region of the side wall insulating film, there is no characteristic abnormality due to misalignment, and a low resistance gate can be obtained even if the gate length is miniaturized.

【0014】[0014]

【発明の実施の形態】本発明による半導体装置の製造方
法の第1の実施の形態を図1を参照して説明する。まず
図1(a)に示すように半導体基板1の表面領域にチャ
ネル層2をイオン注入法等により形成し、続いて例えば
厚さが0.5μmの窒化タングステンの膜を基板1の全
面に形成した後、フォトリソグラフィ技術を用いて上記
窒化タングステンの膜をパターニングすることによりゲ
ート電極5を形成する。次に基板1に不純物イオンを注
入することによりゲート電極5を両側から挟む低濃度の
不純物領域3a(LDD構造)を形成する。続いて基板
1の全面に絶縁物、例えばSiOからなる膜(図示せ
ず)を堆積しRIE等の異方性エッチングを施すことに
よりゲート電極5の側壁絶縁膜を形成する。この側壁絶
縁膜をマスクにして不純物イオンを注入することにより
高濃度の不純物領域3bを形成し、その後上記側壁絶縁
膜を除去し、アニール処理を施すことにより不純物領域
3a,3bを活性化する(図1(a)参照)。このアニ
ール処理は、不純物のイオン注入後に行うが、側壁絶縁
膜のアニールによる基板の結晶状態への影響や後に形成
する貴金属膜の影響を考慮すれば、側壁絶縁膜を除去し
た後に行うのが好ましい。
DETAILED DESCRIPTION OF THE INVENTION A first embodiment of a method of manufacturing a semiconductor device according to the present invention will be described with reference to FIG. First, as shown in FIG. 1A, a channel layer 2 is formed in a surface region of a semiconductor substrate 1 by an ion implantation method or the like, and then a film of tungsten nitride having a thickness of 0.5 μm, for example, is formed on the entire surface of the substrate 1. After that, the gate electrode 5 is formed by patterning the tungsten nitride film using a photolithography technique. Then, impurity ions are implanted into the substrate 1 to form low-concentration impurity regions 3a (LDD structure) sandwiching the gate electrode 5 from both sides. Subsequently, an insulator, for example, a film (not shown) made of SiO 2 is deposited on the entire surface of the substrate 1 and anisotropic etching such as RIE is performed to form a sidewall insulating film of the gate electrode 5. Impurity ions are implanted using this sidewall insulating film as a mask to form a high-concentration impurity region 3b, and then the sidewall insulating film is removed and an annealing process is performed to activate the impurity regions 3a and 3b ( See FIG. 1 (a). This annealing treatment is performed after ion implantation of impurities, but considering the influence of the annealing of the sidewall insulating film on the crystalline state of the substrate and the influence of a noble metal film to be formed later, it is preferable to perform after the sidewall insulating film is removed. .

【0015】次に基板1の全面に絶縁膜例えばSiO
膜を堆積し、RIE等の異方性エッチングを施すことに
より不純物領域3aに隣接するゲート電極5の側壁絶縁
膜6を形成する(図1(b)参照)。
Next, an insulating film such as SiO 2 is formed on the entire surface of the substrate 1.
A film is deposited and anisotropic etching such as RIE is performed to form a sidewall insulating film 6 of the gate electrode 5 adjacent to the impurity region 3a (see FIG. 1B).

【0016】次に基板1の全面に、鍍金時の下地電極と
なる例えば厚さが500オングストローム以上の金から
なる金属膜7を形成する(図1(c)参照)。
Next, a metal film 7 made of gold, for example, having a thickness of 500 angstroms or more is formed on the entire surface of the substrate 1 to serve as a base electrode during plating (see FIG. 1C).

【0017】次に基板1の全面にレジストを厚く(例え
ば3μm)塗布した後、露光・現像することにより、ゲ
ート電極5上の領域を覆い、側壁絶縁膜6上に延在する
開口部を有するレジストパターン10を形成する(図1
(d)参照)。そしてこのレジストパターン10の開口
部に鍍金法により、ゲート電極5及び側壁絶縁膜6の一
部を覆う例えば金等の貴金属材料からなる厚さが2μm
程度の金属層12を形成する(図1(d)参照)。
Next, a resist (thickness: 3 μm, for example) is applied over the entire surface of the substrate 1 and then exposed and developed to cover an area on the gate electrode 5 and have an opening extending on the sidewall insulating film 6. A resist pattern 10 is formed (FIG. 1
(D)). Then, the opening of the resist pattern 10 is plated with a noble metal material such as gold having a thickness of 2 μm by plating to cover a part of the gate electrode 5 and the side wall insulating film 6.
The metal layer 12 having a certain degree is formed (see FIG. 1D).

【0018】次に上記レジストパターン10を剥離液で
剥離した後、イオンミリングを行い金属層12下の貴金
属膜を残して他の領域の金属膜7を除去する(図1
(e)参照)。続いて不純物領域3b上に基板とオーミ
ック接合するソース・ドレイン電極(図示せず)を形成
した後、層間絶縁膜(図示せず)及びパッシベーション
膜(図示せず)で覆い半導体装置を完成する。
Next, after the resist pattern 10 is stripped with a stripping solution, ion milling is performed to remove the noble metal film under the metal layer 12 and remove the metal film 7 in other regions (FIG. 1).
(E)). Then, after forming source / drain electrodes (not shown) which make ohmic contact with the substrate on the impurity regions 3b, a semiconductor device is completed by covering with a interlayer insulating film (not shown) and a passivation film (not shown).

【0019】以上説明したように本実施の形態によれ
ば、ゲート電極5を覆い、側壁絶縁膜6上の一部の領域
上に延在する金属層12を形成することができるため、
あわせずれによる特性異常がなくゲート長を微細化して
も低抵抗なゲートを得ることができる。
As described above, according to the present embodiment, it is possible to form the metal layer 12 that covers the gate electrode 5 and extends over a part of the region on the sidewall insulating film 6.
There is no characteristic abnormality due to misalignment, and a low resistance gate can be obtained even if the gate length is miniaturized.

【0020】なお、上記実施の形態においては、金属層
12の材料として金を用いたが、低抵抗であるがエッチ
ング除去が困難で鍍金法により形成する貴金属材料を採
用する場合に、本発明はあわせずれによる問題がなく、
かつ低抵抗のゲート電極が得られる。この様な貴金属と
して例えば銅、プラチナ等がある。
Although gold is used as the material of the metal layer 12 in the above-mentioned embodiment, the present invention is applicable to the case of using a noble metal material which has a low resistance but is difficult to remove by etching and is formed by a plating method. There is no problem due to misalignment,
In addition, a low resistance gate electrode can be obtained. Examples of such precious metals include copper and platinum.

【0021】次に本発明による半導体装置の製造方法の
第2の実施の形態を図2を参照して説明する。この実施
の形態の製造方法は、図2(b)に示すゲート電極5の
側壁絶縁膜6を形成するまでは図1(a)乃至(b)に
示す第1の実施の形態と同様にして行う。
Next, a second embodiment of the method of manufacturing a semiconductor device according to the present invention will be described with reference to FIG. The manufacturing method of this embodiment is the same as that of the first embodiment shown in FIGS. 1A to 1B until the sidewall insulating film 6 of the gate electrode 5 shown in FIG. 2B is formed. To do.

【0022】その後、基板1の全面にレジストを厚く塗
布し、続いて露光、現像することにより、ゲート電極5
及び側壁絶縁膜6を露出する逆テーパ形状の開口部を有
するレジトスパターン11を形成する(図2(c)参
照)。そしてこのレジストパターン11をマスクにして
抵抗低減のために充分な膜厚を有する金属膜13,13
aを蒸着する。なお金属膜13の材料が金ならば1μm
以上の膜厚とする。
After that, a resist is thickly applied to the entire surface of the substrate 1 and then exposed and developed to form a gate electrode 5.
Then, a resist pattern 11 having an inversely tapered opening exposing the sidewall insulating film 6 is formed (see FIG. 2C). Then, using the resist pattern 11 as a mask, the metal films 13, 13 having a sufficient film thickness for reducing the resistance are formed.
a is deposited. If the material of the metal film 13 is gold, 1 μm
The above film thickness is used.

【0023】その後、リフトオフ法によりレジストパタ
ーンを剥離液で除去することにより、不要部の金属膜1
3aを除去する(図2(d)参照)。続いて第1の実施
の形態の場合と同様に不純物領域3b上にオーミック接
合を形成するソース・ドレイン電極(図示せず)を形成
した後、層間絶縁膜(図示せず)及びパッシベーション
膜(図示せず)で覆い半導体装置を完成する。
After that, the resist pattern is removed by a lift-off method with a stripping solution to remove unnecessary portions of the metal film 1.
3a is removed (see FIG. 2 (d)). Subsequently, as in the case of the first embodiment, after forming source / drain electrodes (not shown) for forming ohmic junctions on the impurity regions 3b, an interlayer insulating film (not shown) and a passivation film (see FIG. (Not shown) to complete the semiconductor device.

【0024】この第2の実施の形態も第1の実施の形態
と同様に、ゲート電極5を覆い、側壁絶縁膜6上の一部
の領域上に延在する金属層13を形成することができる
ため、ゲート長を微細化しても低抵抗なゲートを得るこ
とができる。
In the second embodiment as well, similar to the first embodiment, the metal layer 13 which covers the gate electrode 5 and extends over a part of the region on the sidewall insulating film 6 can be formed. Therefore, a gate having low resistance can be obtained even if the gate length is reduced.

【0025】なお、上記実施の形態においては金属層1
3の材料として金を用いたが、低抵抗であるが鍍金が適
用できず、かつエッチングが困難な金属でもリフトオフ
法で形成可能ならば用いることができる。
The metal layer 1 is used in the above embodiment.
Although gold was used as the material of No. 3, it is possible to use even a metal that has a low resistance but cannot be plated and is difficult to etch if it can be formed by the lift-off method.

【0026】第1または第2の実施の形態においては、
積層される金属層7,12,13は一般に耐熱性が悪い
ため、活性化のためのアニールは上記金属層7,12,
13が積層される前に行った方が良い。
In the first or second embodiment,
Since the metal layers 7, 12, 13 to be laminated generally have poor heat resistance, the annealing for activation is performed by the metal layers 7, 12,
It is better to go before 13 is laminated.

【0027】[0027]

【発明の効果】以上述べたように本発明の半導体装置及
び半導体装置の製造方法によれば、あわせずれによる特
性異常がなく、微細化しても低抵抗なゲートを有する半
導体装置を得ることができる。
As described above, according to the semiconductor device and the method for manufacturing the semiconductor device of the present invention, it is possible to obtain a semiconductor device having a gate with a low resistance even if it is miniaturized without causing characteristic abnormality due to misalignment. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体装置の製造方法の第1の実
施の形態の製造工程断面図。
FIG. 1 is a manufacturing step sectional view of a first embodiment of a method of manufacturing a semiconductor device according to the present invention.

【図2】本発明による半導体装置の製造方法の第2の実
施の形態の製造工程断面図。
FIG. 2 is a sectional view of a manufacturing process of the second embodiment of the method of manufacturing a semiconductor device according to the present invention.

【図3】従来の半導体装置の製造工程断面図。FIG. 3 is a sectional view of a conventional semiconductor device manufacturing process.

【図4】従来の半導体装置の製造方法の問題点を説明す
る説明図。
FIG. 4 is an explanatory diagram illustrating a problem of a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 チャネル層 3a 低濃度の不純物領域 3b 高濃度の不純物領域 5 ゲート電極(茎部) 6 側壁絶縁膜 7 下地電極膜(金属膜) 10 レジストパターン 11 レジストパターン 12 金属層 13 金属層 13a 余分な金属層 14 金属膜(笠部) 21 半導体基板 22 チャネル層 23a 低濃度の不純物層 23b 高濃度の不純物層 25 ゲート電極 27 下地電極膜 30 レジストパターン 32 金属層 1 Semiconductor Substrate 2 Channel Layer 3a Low Concentration Impurity Region 3b High Concentration Impurity Region 5 Gate Electrode (Stem) 6 Sidewall Insulation Film 7 Base Electrode Film (Metal Film) 10 Resist Pattern 11 Resist Pattern 12 Metal Layer 13 Metal Layer 13a Excess metal layer 14 Metal film (capsule) 21 Semiconductor substrate 22 Channel layer 23a Low concentration impurity layer 23b High concentration impurity layer 25 Gate electrode 27 Base electrode film 30 Resist pattern 32 Metal layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/772 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 29/772

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、 この半導体基板の表面に形成された導電膜と、 この導電膜の側壁部に形成された側壁絶縁膜と、 前記導電膜を両側から挟むように前記半導体基板の表面
領域に形成された不純物領域と、 前記導電膜及び少なくとも前記側壁絶縁膜の部分領域上
に延在する貴金属材料からなる膜と、が備えられたこと
を特徴とする半導体装置。
1. A semiconductor substrate, a conductive film formed on a surface of the semiconductor substrate, a sidewall insulating film formed on a sidewall portion of the conductive film, and a semiconductor film of the semiconductor substrate sandwiching the conductive film from both sides. A semiconductor device comprising: an impurity region formed in a surface region; and a film made of a noble metal material extending over the conductive film and at least a partial region of the sidewall insulating film.
【請求項2】前記不純物領域は前記導電膜に自己整合的
に形成された第1の不純物領域と、前記側壁絶縁膜に自
己整合的に形成された第2の不純物領域を含むことを特
徴とする請求項1記載の半導体装置。
2. The impurity region includes a first impurity region formed in the conductive film in a self-aligned manner and a second impurity region formed in the sidewall insulating film in a self-aligned manner. The semiconductor device according to claim 1.
【請求項3】半導体基板の表面に、導電膜を形成する工
程と、 前記導電膜の側壁部に側壁絶縁膜を形成する工程と、 めっき法、あるいはリフトオフ法により前記導電膜上及
び前記側壁導電膜上に延在する貴金属材料からなる膜を
形成する工程と、 を備えることを特徴とする半導体装置の製造方法。
3. A step of forming a conductive film on a surface of a semiconductor substrate, a step of forming a sidewall insulating film on a sidewall portion of the conductive film, and a plating method or a lift-off method on the conductive film and the sidewall conductive film. And a step of forming a film made of a noble metal material that extends on the film.
JP5777496A 1996-03-14 1996-03-14 Semiconductor device and method for manufacturing semiconductor device Pending JPH09252009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5777496A JPH09252009A (en) 1996-03-14 1996-03-14 Semiconductor device and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5777496A JPH09252009A (en) 1996-03-14 1996-03-14 Semiconductor device and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH09252009A true JPH09252009A (en) 1997-09-22

Family

ID=13065226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5777496A Pending JPH09252009A (en) 1996-03-14 1996-03-14 Semiconductor device and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH09252009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660278B1 (en) * 2005-12-30 2006-12-20 동부일렉트로닉스 주식회사 Method for forming of gate electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660278B1 (en) * 2005-12-30 2006-12-20 동부일렉트로닉스 주식회사 Method for forming of gate electrode

Similar Documents

Publication Publication Date Title
US5753546A (en) Method for fabricating metal oxide field effect transistors
US4810666A (en) Method for manufacturing a mosic having self-aligned contact holes
KR930001559B1 (en) Manufacturing method of fet
JP2662325B2 (en) Structure of field effect semiconductor device and method of manufacturing the same
US6245625B1 (en) Fabrication method of a self-aligned contact window
EP0422824A1 (en) Field-effect transistor with polysilicon window pad
JPH0629317A (en) Semiconductor device and manufacture thereof
JPH11330262A (en) Manufacture of semiconductor device
JP2544937B2 (en) Semiconductor device and manufacturing method thereof
JPH09252009A (en) Semiconductor device and method for manufacturing semiconductor device
JP2685034B2 (en) Semiconductor device and manufacturing method thereof
JPH06204163A (en) Method for contact of semiconductor element
US5620911A (en) Method for fabricating a metal field effect transistor having a recessed gate
JP3325717B2 (en) Method for manufacturing semiconductor device
JP2971085B2 (en) Method for manufacturing semiconductor device
KR100209716B1 (en) Process for forming silicide in semiconductor device
KR100365409B1 (en) Method for forming a gate electrode in semiconductor device
JP3471884B2 (en) Method for manufacturing semiconductor device
KR100280528B1 (en) Internal wiring formation method of semiconductor device
JP2594121B2 (en) Method for manufacturing semiconductor device
KR960016236B1 (en) Self aligned type contact manufacturing method
JP2938028B1 (en) Semiconductor device and manufacturing method thereof
JP2828089B2 (en) Method for manufacturing semiconductor device
JPH09252050A (en) Semiconductor device and manufacture thereof
JPH0620080B2 (en) Method for manufacturing semiconductor device