JPH09249929A - Aluminum alloy sheet excellent in bendability - Google Patents

Aluminum alloy sheet excellent in bendability

Info

Publication number
JPH09249929A
JPH09249929A JP8335096A JP8335096A JPH09249929A JP H09249929 A JPH09249929 A JP H09249929A JP 8335096 A JP8335096 A JP 8335096A JP 8335096 A JP8335096 A JP 8335096A JP H09249929 A JPH09249929 A JP H09249929A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
plate
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8335096A
Other languages
Japanese (ja)
Inventor
Kenzo Okada
岡田健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP8335096A priority Critical patent/JPH09249929A/en
Publication of JPH09249929A publication Critical patent/JPH09249929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet excellent in bendability, in which the cracks occurring in a hard film on the surface are restricted to fine and insignificant ones at the time of bending an aluminum alloy sheet having a hard film such as anodic oxidation coating. SOLUTION: This sheet is an aluminum alloy sheet having a film of <=5μm on the surface and has a composition consisting of, by weight, 1.0-2.0% Mn, 0.005-0.2% Ti, Si and Fe limited to <=0.10% and <=0.15%, respectively, and the balance Al with inevitable impurities, or further, 0.3-1.5% Mg is added to this composition. Moreover, crystalline grains are composed of equiaxed crystals and crystalline grain size at the sheet surface and elongation at the tensile test are regulated to <=50μm and >=20%, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は陽極酸化処理のよ
うな厚さ50μm以下の硬質皮膜を表面に有するアルミ
ニウム合金板の曲げ加工において、表面の硬質皮膜に発
生した割れの拡大を抑え、割れを皆無ないしは微細かつ
軽微にとどめるアルミニウム合金板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention suppresses the expansion of cracks generated in the hard coating on the surface during bending of an aluminum alloy plate having a hard coating having a thickness of 50 μm or less on the surface, such as anodizing treatment, and suppresses cracking. The present invention relates to an aluminum alloy plate that has no or very small and minute size.

【0002】[0002]

【従来の技術】Al−Mn系合金板は特開平4−110
493号公報に開示されているように(Mn含有アルミ
ニウム合金でMn−Al系化合物を析出させ、アルマイ
ト層を設けることで遠赤外線放射特性に優れたアルミニ
ウム板を提供できる)、アルマイト処理により良好な遠
赤外線放射特性を付与できるため、ヒーターの放射面、
加熱炉の内壁等への利用が検討されている。その際、効
率の点から表面処理した後に板金加工等により成形する
よう製造工程が計画される。
2. Description of the Related Art An Al--Mn alloy plate is disclosed in Japanese Patent Laid-Open No. 4-110.
As disclosed in Japanese Patent No. 493 (Mn-Al-based compound is precipitated in Mn-containing aluminum alloy and an alumite layer is provided, an aluminum plate having excellent far-infrared radiation characteristics can be provided). Since the far infrared radiation characteristics can be given, the radiation surface of the heater,
Utilization for the inner wall of a heating furnace is under consideration. At that time, from the viewpoint of efficiency, the manufacturing process is planned such that the surface treatment is performed and then the sheet is formed by sheet metal working or the like.

【0003】[0003]

【発明が解決しようとする課題】しかし、アルマイト処
理により設けた皮膜は硬いために、成形加工した時に曲
げ部に割れが生成する。このような割れが生成する部位
は局部的であるので、前述の遠赤外線放射特性へのマイ
ナス効果はそれほど大きくなく放射特性が極端に低下す
るということはないものの、外観上問題となり、また耐
食性が劣化するなど製品としての特性が問題視される。
特に皮膜が暗色状のものでは、割れの集中で曲げ部表面
が白っぽく変色するためたいへんに目立ち、外観欠陥と
して問題となる。このため、後処理として塗装等による
補修作業が必要とされる。
However, since the coating film formed by the alumite treatment is hard, cracks are formed in the bent portion during the molding process. Since the part where such a crack is generated is local, the above-mentioned negative effect on the far-infrared radiation characteristic is not so great and the radiation characteristic is not extremely deteriorated, but it becomes a problem in appearance and corrosion resistance is also deteriorated. The characteristics of the product, such as deterioration, are regarded as problems.
In particular, if the film is dark-colored, the surface of the bent portion is discolored whitish due to the concentration of cracks, which is very conspicuous and causes a problem in appearance. For this reason, repair work such as painting is required as post-treatment.

【0004】この発明は、上記の硬質皮膜を有するアル
ミニウム合金板の曲げ加工において、曲げ部の皮膜に割
れが発生して外観および耐食性を損なう欠点を解消する
ために、まず第一に、表面の硬質皮膜の曲げ加工におけ
る割れ発生を無くすか軽微にするためのアルミニウム材
料の望ましい特性を明確にするとともに、第二に遠赤外
放射特性の優れるAl−Mn系合金において、上記特性
を実現できる化学成分を検討したものである。
In the present invention, in order to eliminate the defect that the appearance of coating and the corrosion resistance are deteriorated by cracking in the coating of the bent portion in the bending process of the aluminum alloy plate having the above-mentioned hard coating, first of all, A chemistry that can clarify the desirable characteristics of the aluminum material for eliminating or minimizing the occurrence of cracks in the bending process of the hard coating, and secondly, in the Al-Mn alloy having excellent far-infrared radiation characteristics, that can realize the above characteristics. This is a study of the ingredients.

【0005】[0005]

【課題を解決するための手段】発明者は上記問題を解決
するため合金成分、組織、機械的性質等について種々検
討した結果、本発明の考案に至った。すなわち、本第一
発明は表面に厚さ50μm以下の皮膜を設けたアルミニ
ウム合金板材において、結晶粒が等軸粒で、板表面の結
晶粒径が50μm以下であり、かつ引張試験での伸び率
が20%以上であることを特徴とする曲げ加工性に優れ
たアルミニウム合金板である。また本第二発明は表面に
厚さ50μm以下の皮膜を設けたアルミニウム合金板材
において、成分組成がMn1.0〜2.0wt%、Ti
0.005〜0.2wt%を含有し、かつSi0.10
wt%以下、Fe0.15wt%以下に規制し、残部が
Al及び不可避不純物からなり、かつ結晶粒が等軸粒
で、板表面の結晶粒径が50μm以下であり、かつ引張
試験での伸び率が20%以上であることを特徴とする曲
げ加工性に優れたアルミニウム合金板である。また本第
三発明は表面に厚さ50μm以下の皮膜を設けたアルミ
ニウム合金板材において、成分組成がMn1.0〜2.
0wt%、Mg0.3〜1.5wt%、Ti0.005
〜0.2wt%を含有し、かつSi0.10wt%以
下、Fe0.15wt%以下に規制し、残部がAl及び
不可避不純物からなり、かつ結晶粒が等軸粒で、板表面
の結晶粒径が50μm以下であり、かつ引張試験での伸
び率が20%以上であることを特徴とする曲げ加工性に
優れたアルミニウム合金板である。
As a result of various studies on alloy components, microstructures, mechanical properties, etc., in order to solve the above problems, the inventor has arrived at the invention of the present invention. That is, the first aspect of the present invention is an aluminum alloy plate material having a film with a thickness of 50 μm or less on the surface, the crystal grains are equiaxed grains, the crystal grain size of the plate surface is 50 μm or less, and the elongation percentage in a tensile test. Is 20% or more, and the aluminum alloy plate is excellent in bending workability. The second aspect of the present invention is an aluminum alloy plate material having a coating film with a thickness of 50 μm or less on the surface, in which the component composition is Mn 1.0 to 2.0 wt%, Ti
Contains 0.005 to 0.2 wt% and Si 0.10
wt% or less, Fe 0.15 wt% or less, the balance consisting of Al and unavoidable impurities, the crystal grains are equiaxed grains, the crystal grain size of the plate surface is 50 μm or less, and the elongation rate in a tensile test. Is 20% or more, and the aluminum alloy plate is excellent in bending workability. The third aspect of the present invention is an aluminum alloy sheet material having a surface coated with a film having a thickness of 50 μm or less, and having a composition of Mn of 1.0 to 2.
0 wt%, Mg 0.3 to 1.5 wt%, Ti 0.005
.About.0.2 wt%, and regulated to Si 0.10 wt% or less and Fe 0.15 wt% or less, the balance consisting of Al and inevitable impurities, and the crystal grains are equiaxed grains, and the crystal grain size on the plate surface is It is an aluminum alloy plate excellent in bending workability, characterized in that it has an elongation of 50% or less and an elongation rate of 20% or more in a tensile test.

【0006】[0006]

【発明の実施の形態】以下、本発明の各構成要件の実施
の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of each constituent element of the present invention will be described below.

【0007】まず組織の限定理由について説明する。表
面の硬質皮膜の曲げ加工において発生した割れの拡大を
抑えるか、軽微にするためには、下地のアルミニウム材
料は硬質皮膜の割れの切欠き効果による歪の集中を緩和
できる性能が必要とされる。即ち、変形の歪分布を局部
的に集中させないで均一に分散させることができるこ
と、かつ、材料自体の延性が高いことが要求される。発
明者は組織に着目したところ、結晶粒組織が粗大だとア
ルミニウム材料自体、曲げ加工の変形が局部的に集中し
やすく肌荒れの凹凸や微細割れが発生しやすく、このた
め硬質皮膜の割れの拡大を緩和することができない。そ
こで、結晶粒組織を微細な等軸粒組織にすることによ
り、曲げ加工における歪の分布を均一に分散させ、一点
への集中局在化を避けることができ、割れの拡大を避け
ることができることを見いだした。具体的には、曲げ加
工において表面の硬質皮膜に発生した割れの拡大を緩和
でき、軽微にするためには、アルミニウム板の表面の結
晶粒径は50μm以下であるとともに、アルミニウム材
料自体の延性が引張試験での伸び率で20%以上であれ
ばよいことがわかった。結晶粒径が50μmを超えてい
ると、成形の際に肌荒れが発生し、これを起点として割
れが発生する。従って結晶粒径は50μm以下とする。
また、伸び率が20%未満では板が割れてしまい、曲げ
加工ができない。従って伸び率は20%以上とする。
First, the reasons for limiting the organization will be described. In order to suppress or minimize the expansion of cracks that occur during bending of the hard coating on the surface, the underlying aluminum material must be capable of relaxing the concentration of strain due to the notch effect of cracks in the hard coating. . That is, it is required that the strain distribution of deformation can be uniformly dispersed without locally concentrating, and the ductility of the material itself is high. When the inventor paid attention to the structure, if the crystal grain structure is coarse, the aluminum material itself, the deformation of the bending process is likely to be locally concentrated, and unevenness of skin roughness and fine cracks are likely to occur. Cannot be relaxed. Therefore, by making the crystal grain structure a fine equiaxed grain structure, it is possible to evenly disperse the strain distribution during bending, avoiding localized localization at one point, and avoiding the expansion of cracks. I found it. Specifically, in order to alleviate the cracks generated in the hard coating on the surface during bending and to reduce the cracks, the crystal grain size on the surface of the aluminum plate is 50 μm or less and the ductility of the aluminum material itself is small. It was found that the elongation percentage in the tensile test should be 20% or more. If the crystal grain size exceeds 50 μm, roughening occurs during molding, and cracks occur starting from this. Therefore, the crystal grain size is 50 μm or less.
If the elongation is less than 20%, the plate will be cracked and bending cannot be performed. Therefore, the elongation rate is 20% or more.

【0008】なお、表面に設けた皮膜の厚さは50μm
以下であるならば陽極酸化処理皮膜、溶射皮膜、塗装皮
膜等いずれの皮膜でも本発明によって割れを防止するこ
とができるが、50μmを越えると本発明のみでは完全
には割れを防止することができないこともあるため皮膜
厚さの制限を設けた。
The thickness of the film provided on the surface is 50 μm.
If it is below, cracks can be prevented by the present invention in any coating such as anodized coating, thermal spray coating and coating coating, but if it exceeds 50 μm, cracking cannot be completely prevented only by the present invention. In some cases, the film thickness is limited.

【0009】次に、合金成分の効果について説明する。Next, the effect of the alloy components will be described.

【0010】[Mn]:MnはAl−Mn系の金属間化
合物を生成し、アルマイト処理後の色調を黒色化し遠赤
外放射特性の向上に必須の成分であると共に結晶粒の微
細化に寄与する。Mnが2.0%を超えると通常のDC
鋳造では粗大な初晶の生成範囲となり、材料の均一性が
損なわれると共に曲げ性も低下する。また、最終板製品
の結晶粒形状の等軸粒化が難しくなり、好ましくない。
一方Mn1%未満ではアルマイト処理後の色調の黒色化
及び遠赤外放射特性が不十分である。
[Mn]: Mn forms an Al-Mn-based intermetallic compound, is a component essential for improving the far-infrared radiation characteristics by blackening the color tone after alumite treatment, and contributes to the refinement of crystal grains. To do. Normal Mn when Mn exceeds 2.0%
In casting, the range of formation of coarse primary crystals falls, which impairs the uniformity of the material and also reduces the bendability. Further, it becomes difficult to make the crystal grain shape of the final plate product into an equiaxed grain, which is not preferable.
On the other hand, if the Mn is less than 1%, the blackening of the color tone after the alumite treatment and the far infrared radiation characteristics are insufficient.

【0011】[Mg]:MgはAl材料の強度向上に寄
与する添加成分であり、特に強度の要求される放射板等
の素材への添加に好ましい元素である。またMgはAl
材料の積層欠陥エネルギーを低下させる傾向があり、M
g添加材の加熱工程での再結晶を起こり易くするため最
終板製品の組織の等軸化が可能となる。Mg0.3%未
満ではAl−Mn系ではこの効果は不十分であり、また
1.5%を超えると強度が高くなりすぎて曲げ成形加工
が難しくなる。
[Mg]: Mg is an additive component that contributes to the improvement of the strength of the Al material, and is a preferable element for addition to a material such as a radiation plate that requires particularly high strength. Also, Mg is Al
M tends to lower the stacking fault energy of the material, and M
Since the recrystallization of the g-added material is likely to occur in the heating step, the structure of the final plate product can be made equiaxed. If the Mg content is less than 0.3%, this effect is insufficient in the Al-Mn system. If the Mg content exceeds 1.5%, the strength becomes too high and the bending process becomes difficult.

【0012】[Fe]:Feの存在は、高Mn含有合金
では粗大なAl−Fe−Mn系晶出化合物を生成しやす
くして曲げ加工性を低下させるため0.15%以下に制
限する。
[Fe]: The presence of Fe is limited to 0.15% or less in a high Mn-containing alloy because it tends to generate coarse Al-Fe-Mn crystallization compounds and deteriorates bendability.

【0013】[Si]:SiはAl−Mn系金属間化合
物の析出に影響を与え、Mnの結晶粒微細化作用を弱め
る。また、αAlMn(Fe)Si化合物が生成され、
アルマイト処理後の色調の黒色化を阻害するので0.1
0%以下とした。
[Si]: Si affects the precipitation of Al-Mn-based intermetallic compounds and weakens the grain refining action of Mn. Also, αAlMn (Fe) Si compound is generated,
Since it inhibits the blackening of the color tone after anodizing, it is 0.1
0% or less.

【0014】[Ti]:Tiは鋳塊の結晶粒を微細化
し、0.005%未満ではその効果が得られず、0.2
0%を超えると粗大化合物を生成するので0.005〜
0.2%の範囲とした。なおTiはBと複合添加すると
その微細化効果がいっそう促進されるため、Bを添加す
る際には0.001〜0.005%が好ましい。
[Ti]: Ti refines the crystal grains of the ingot, and if it is less than 0.005%, the effect cannot be obtained.
If it exceeds 0%, a coarse compound is formed.
The range was 0.2%. When Ti is added in combination with B, the effect of refining is further promoted. Therefore, when B is added, 0.001 to 0.005% is preferable.

【0015】その他の合金元素は不純物としてCu≦
0.5%、Zn≦0.5%、Cr≦0.5%、Na・K
≦5ppmであるならこの発明の特性に悪影響はない。
The other alloy elements are Cu ≦≦ as impurities.
0.5%, Zn ≦ 0.5%, Cr ≦ 0.5%, Na · K
If ≦ 5 ppm, the characteristics of the present invention are not adversely affected.

【0016】[0016]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0017】表1に示される各種組成の合金材から金属
組織及び機械的性質の異なる板厚1.0mmの素材を製
造した。発明例No1,2,3は実機規模のDC鋳塊
(厚さ500mm、幅1400mm)を560℃×10
時間程度の均熱処理後460℃に加熱し、板厚3.5m
mまで熱間圧延し、板厚1.0mmまで冷間圧延後、5
00℃の連続焼鈍を施した。発明例No4は均熱無し5
00℃加熱後、板厚3.5mmまで熱間圧延し、板厚
1.0mmまで冷間圧延後390℃×2時間のボックス
焼鈍を行なった。比較例No5,6は板厚7mmの連続
鋳造圧延材を450℃×2時間の加熱処理後、板厚1.
0mmまで冷間圧延し、405℃×2時間のボックス焼
鈍を施した。比較例の7,8はNo1〜4と同様なDC
鋳塊に560℃均熱処理後、460℃加熱で板厚3.5
mmまで熱間圧延し、比較例No7は板厚1.0mmま
で冷間圧延後、390℃×2時間のボックス焼鈍を行な
った。比較例No8は板厚1.5mmまで冷間圧延し、
その後500℃で連続焼鈍し、更に板厚1.0mmまで
冷間圧延した。この板材に50℃、5%NaOH水溶液
にて10μmの苛性エッチング後、15Vol%硫酸浴
にて20℃、1.5A/dm2 の条件で皮膜厚20μm
の陽極酸化皮膜をつけた。
From alloy materials having various compositions shown in Table 1, materials with a plate thickness of 1.0 mm having different metallographic structures and mechanical properties were manufactured. Inventive Examples Nos. 1, 2, and 3 are DC ingots (thickness 500 mm, width 1400 mm) of a real machine scale, 560 ° C. × 10
After soaking for about an hour, heat to 460 ° C and plate thickness 3.5m
After hot rolling to m, cold rolling to 1.0 mm thickness, 5
Continuous annealing at 00 ° C was performed. Invention Example No. 4 has no soaking 5
After heating at 00 ° C., hot rolling was performed to a plate thickness of 3.5 mm, cold rolling was performed to a plate thickness of 1.0 mm, and then box annealing was performed at 390 ° C. for 2 hours. In Comparative Examples Nos. 5 and 6, the continuously cast rolled material having a plate thickness of 7 mm was heat-treated at 450 ° C. for 2 hours, and then the plate thickness was 1.
It was cold-rolled to 0 mm and subjected to box annealing at 405 ° C. for 2 hours. Comparative examples 7 and 8 are DCs similar to Nos. 1 to 4.
After soaking at 560 ℃, the thickness of the ingot is 3.5 after heating at 460 ℃.
After hot-rolling to mm, Comparative Example No. 7 was cold-rolled to a plate thickness of 1.0 mm and then box-annealed at 390 ° C. for 2 hours. Comparative Example No. 8 was cold-rolled to a plate thickness of 1.5 mm,
After that, continuous annealing was performed at 500 ° C., and further cold rolling was performed to a plate thickness of 1.0 mm. After caustic etching of this plate material at 50 ° C. in a 5% NaOH aqueous solution for 10 μm, a film thickness of 20 μm was obtained in a 15 Vol% sulfuric acid bath at 20 ° C. under the conditions of 1.5 A / dm 2.
Of the anodic oxide film.

【0018】[0018]

【表1】 [Table 1]

【0019】この材料から圧延方向に平行及び直角方向
の短冊状試験片を採取して90゜曲げ(押し込みポンチ
先端半径0.5R)を実施し、曲げ部外面の皮膜の割れ
発生状況を目視で判定した。その結果を表2に示す。こ
こで、○は割れの発生が無い・あるいは軽微な割れで無
視できるもの、△は無視できない微細な割れが観察され
たもの、×は顕著な割れが観察されたものである。ま
た、引張試験を行って、引張強さ、耐力、伸びを測定
し、顕微鏡観察によって結晶粒が等軸粒か否か、また結
晶粒の大きさを観察・測定した。
Strip-shaped test pieces parallel to and perpendicular to the rolling direction were sampled from this material and bent at 90 ° (pushing punch tip radius 0.5R), and the appearance of cracks on the outer surface of the bent portion was visually observed. It was judged. Table 2 shows the results. Here, ∘ indicates that no cracks are generated or is a minor crack that can be ignored, Δ indicates that a microscopic crack that cannot be ignored is observed, and x indicates that a remarkable crack is observed. In addition, a tensile test was performed to measure tensile strength, proof stress, and elongation, and whether or not the crystal grains were equiaxed grains and the size of the crystal grains were observed and measured by microscopic observation.

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示すように伸びが20%以上で結晶
粒が等軸でかつ結晶粒径が50μm以下の発明例では曲
げ部の表面皮膜の割れの発生状況が無視できるほど軽微
であった。No1〜4は発明例であり、いずれも曲げ部
の皮膜割れの発生が認められず、良好な曲げ加工性を有
している。No5はMn量が多すぎ結晶粒組織が層状で
あるため、曲げ部に顕著な割れが生じてしまっている。
No.6,7は焼鈍し処理においてMg添加がないた
め、再結晶が起こり難く結晶粒の等軸粒化が遅れ組織が
等軸粒と層状の混合となっており、または軟化が遅れる
ため曲げ表面に割れが発生している。No.8は等軸粒
組織のものであるが、伸びが20%より低く、そのため
成形性が劣り、割れの発生に至っている。
As shown in Table 2, in the invention examples in which the elongation was 20% or more, the crystal grains were equiaxed, and the crystal grain size was 50 μm or less, the occurrence of cracks in the surface coating at the bend was negligible. . Nos. 1 to 4 are inventive examples, and in all of them, the occurrence of film cracking at the bent portion was not recognized, and they had good bendability. In No. 5, since the amount of Mn was too large and the crystal grain structure was layered, remarkable cracking occurred in the bent portion.
No. In Nos. 6 and 7, since Mg is not added in the annealing treatment, recrystallization is hard to occur and the equiaxed grain formation is delayed, and the structure is a mixture of equiaxed grains and layers, or softening is delayed, and There are cracks. No. No. 8 has an equiaxed grain structure, but the elongation is lower than 20%, so that the formability is inferior and cracking occurs.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば曲
げ加工を施す表面に皮膜厚50μm以下の硬質皮膜を有
するアルミニウム板材において、組織・伸びを特定の値
とすることでアルミニウム合金板の曲げ部の変形による
歪分布を微細かつ均一にし、その結果、良好な曲げ加工
が行えるとともに、曲げ部表面に発生する割れはほとん
ど無く、したがって良好な外観品質を有するとともに耐
食性を劣化させることもないアルミニウム合金板を提供
することができる。また、成分組成範囲を特定すること
により、上記特性を有する遠赤外放射特性に優れるAl
−Mn系合金板及びAl−Mn−Mg系合金板を提供す
ることができる。
As described above, according to the present invention, in an aluminum plate material having a hard coating with a coating thickness of 50 μm or less on the surface to be bent, the texture and elongation of the aluminum alloy sheet can be adjusted to specific values. The strain distribution due to the deformation of the bent part is made fine and uniform. As a result, good bending can be performed, and there are almost no cracks on the surface of the bent part. Therefore, it has a good appearance quality and does not deteriorate the corrosion resistance. An aluminum alloy plate can be provided. Further, by specifying the component composition range, Al having excellent far infrared radiation characteristics having the above characteristics
An -Mn-based alloy plate and an Al-Mn-Mg-based alloy plate can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面に厚さ50μm以下の皮膜を設けた
アルミニウム合金板材において、結晶粒が等軸粒で、板
表面の結晶粒径が50μm以下であり、かつ引張試験で
の伸び率が20%以上であることを特徴とする曲げ加工
性に優れたアルミニウム合金板。
1. An aluminum alloy plate material having a film having a thickness of 50 μm or less on the surface, wherein the crystal grains are equiaxed grains, the crystal grain size of the plate surface is 50 μm or less, and the elongation percentage in a tensile test is 20. % Or more, an aluminum alloy plate having excellent bending workability.
【請求項2】 表面に厚さ50μm以下の皮膜を設けた
アルミニウム合金板材において、成分組成がMn1.0
〜2.0wt%、Ti0.005〜0.2wt%を含有
し、かつSi0.10wt%以下、Fe0.15wt%
以下に規制し、残部がAl及び不可避不純物からなり、
かつ結晶粒が等軸粒で、板表面の結晶粒径が50μm以
下であり、かつ引張試験での伸び率が20%以上である
ことを特徴とする曲げ加工性に優れたアルミニウム合金
板。
2. An aluminum alloy sheet material having a surface coated with a film having a thickness of 50 μm or less, wherein the component composition is Mn1.0.
~ 2.0 wt%, Ti 0.005-0.2 wt%, Si 0.10 wt% or less, Fe 0.15 wt%
Restricted below, the balance consists of Al and unavoidable impurities,
An aluminum alloy plate excellent in bending workability, characterized in that the crystal grains are equiaxed grains, the crystal grain size on the plate surface is 50 μm or less, and the elongation percentage in a tensile test is 20% or more.
【請求項3】 表面に厚さ50μm以下の皮膜を設けた
アルミニウム合金板材において、成分組成がMn1.0
〜2.0wt%、Mg0.3〜1.5wt%、Ti0.
005〜0.2wt%を含有し、かつSi0.10wt
%以下、Fe0.15wt%以下に規制し、残部がAl
及び不可避不純物からなり、かつ結晶粒が等軸粒で、板
表面の結晶粒径が50μm以下であり、かつ引張試験で
の伸び率が20%以上であることを特徴とする曲げ加工
性に優れたアルミニウム合金板。
3. An aluminum alloy plate material having a surface coated with a film having a thickness of 50 μm or less, wherein the component composition is Mn1.0.
.About.2.0 wt%, Mg 0.3 to 1.5 wt%, Ti0.
005 to 0.2 wt% and Si 0.10 wt
% Or less and Fe 0.15 wt% or less, with the balance being Al
And bending resistance, which is characterized by being inevitable impurities, having equiaxed crystal grains, having a crystal grain size of 50 μm or less on the plate surface, and having an elongation percentage of 20% or more in a tensile test. Aluminum alloy plate.
JP8335096A 1996-03-12 1996-03-12 Aluminum alloy sheet excellent in bendability Pending JPH09249929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8335096A JPH09249929A (en) 1996-03-12 1996-03-12 Aluminum alloy sheet excellent in bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8335096A JPH09249929A (en) 1996-03-12 1996-03-12 Aluminum alloy sheet excellent in bendability

Publications (1)

Publication Number Publication Date
JPH09249929A true JPH09249929A (en) 1997-09-22

Family

ID=13799996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8335096A Pending JPH09249929A (en) 1996-03-12 1996-03-12 Aluminum alloy sheet excellent in bendability

Country Status (1)

Country Link
JP (1) JPH09249929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487585B2 (en) 2000-09-04 2009-02-10 Dowa Metaltech Co., Ltd. Method of manufacturing a metal-ceramic circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487585B2 (en) 2000-09-04 2009-02-10 Dowa Metaltech Co., Ltd. Method of manufacturing a metal-ceramic circuit board

Similar Documents

Publication Publication Date Title
JPS58224141A (en) Cold roller aluminum alloy plate for forming and its manufacture
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JP4708555B2 (en) Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness
JP4040787B2 (en) Aluminum alloy rolled plate with stable gray color after anodization and method for producing the same
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP2002206152A (en) Method for producing aluminum alloy material excellent in suppression of room temperature aging and low temperature age hardenability and the aluminum alloy material
JPH09249929A (en) Aluminum alloy sheet excellent in bendability
JP3226259B2 (en) Aluminum alloy plate excellent in formability, bake hardenability and corrosion resistance and method for producing the same
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JP3201033B2 (en) Manufacturing method of aluminum alloy sheet with excellent corrosion resistance and paint base treatment
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JP3523687B2 (en) Aluminum alloy sheet for stainless steel tub excellent in bending workability and method for producing the same
JP3523692B2 (en) Can lid material excellent in bending workability and its manufacturing method
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JP3557953B2 (en) Aluminum alloy sheet for precision machining and method of manufacturing the same
JPH066768B2 (en) High formability aluminum alloy
JP3993154B2 (en) Manufacturing method of aluminum alloy hot-rolled sheet for resin-coated building materials with excellent strength and bending workability
JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JP3274808B2 (en) Method of manufacturing rolled aluminum alloy plate for resin coating building material with excellent strength and bending workability
JP2698888B2 (en) Manufacturing method of aluminum alloy sheet with excellent stress corrosion cracking resistance
JP2001294963A (en) Aluminum alloy sheet excellent in corrosion resistance and coating substrate treatability
JPH0432532A (en) Aluminum alloy sheet for zinc phosphate treatment and its manufacture
JPH10102179A (en) Aluminum alloy sheet excellent in press formability and baking finish hardenability, and its production