JP2001294963A - Aluminum alloy sheet excellent in corrosion resistance and coating substrate treatability - Google Patents

Aluminum alloy sheet excellent in corrosion resistance and coating substrate treatability

Info

Publication number
JP2001294963A
JP2001294963A JP2001073312A JP2001073312A JP2001294963A JP 2001294963 A JP2001294963 A JP 2001294963A JP 2001073312 A JP2001073312 A JP 2001073312A JP 2001073312 A JP2001073312 A JP 2001073312A JP 2001294963 A JP2001294963 A JP 2001294963A
Authority
JP
Japan
Prior art keywords
weight
aluminum alloy
less
corrosion resistance
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001073312A
Other languages
Japanese (ja)
Other versions
JP3531616B2 (en
Inventor
Takayuki Tsuchida
孝之 土田
Kaoru Shimada
薫 島田
Takeshi Moriyama
武 森山
Toshiaki Suzuki
利明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2001073312A priority Critical patent/JP3531616B2/en
Publication of JP2001294963A publication Critical patent/JP2001294963A/en
Application granted granted Critical
Publication of JP3531616B2 publication Critical patent/JP3531616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an aluminum alloy sheet excellent in chemical convertibility, corrosion resistance, adhesive strength of coating film or the like by adopting an alloy design in which the concentration of Mg in the surface layer part is controlled to <=20%. SOLUTION: This aluminum alloy has a composition containing, by weight 2.5 to 5.5% Mg, 0.05 to 0.4% Cu, 0.005 to 0.2% Mn, 0.005 to 0.1% Cr, 0.01 to 0.05% Ti, <=0.08% Si, <=0.1% Fe and 0.0001 to 0.01% Be and further containing, at need, one or more kinds selected from 0.001 to 0.1% Zr, 0.001 to 0.1% V and 0.0001 to 0.01% B, and the residue is substantially Al. A substrate high in affinity with a coating film can be formed by a chemical treatment using zinc phosphate, and the coated sheet is applied to such as an automotive outside sheet excellent in corrosion resistance and adhesion for a coating film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車外板等の塗装板
材として好適な板材となる、耐食性、塗装下地処理性等
に優れたアルミニウム合金板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet having excellent corrosion resistance and coating undercoating properties, which is suitable as a coated sheet material for an automobile outer panel or the like.

【0002】[0002]

【従来の技術】自動車外板用に用いられるアルミニウム
合金板には塗装を施してから用いられるものが一般的で
あり、そのため優れた塗装下地処理性を求められる。ま
た、塗装後の耐食性、特に耐糸錆性が要求される。塗装
下地処理性は、クロム酸を使用したクロメート処理で付
与していた。しかし、クロム酸使用による環境への影響
の問題および冷延鋼板とアルミニウム合金板の同時塗装
下地処理への要求から、現状では冷延鋼板の場合と同様
リン酸亜鉛処理が用いられることが多くなっている。冷
延鋼板との同時リン酸亜鉛処理の際、アルミニウム合金
板表面に十分な下地処理が行われるためには、アルミニ
ウム合金表面の性状が問題となる。
2. Description of the Related Art An aluminum alloy sheet used for an automobile outer panel is generally used after being applied with a coating. Therefore, an excellent coating base treatment property is required. In addition, corrosion resistance after coating, particularly yarn rust resistance, is required. The undercoating property was given by chromate treatment using chromic acid. However, due to the environmental impact of using chromic acid and the requirement for simultaneous undercoat treatment of cold-rolled steel sheets and aluminum alloy sheets, zinc phosphate treatment is often used at present as in the case of cold-rolled steel sheets. ing. In the case of simultaneous zinc phosphate treatment with a cold-rolled steel sheet, the properties of the aluminum alloy surface are problematic in order for the surface of the aluminum alloy plate to be sufficiently subjected to a base treatment.

【0003】自動車用外板に多用されているAl−Mg
系合金板は、通常の場合と同様にDC鋳造、均質化熱処
理、熱間圧延、冷間圧延、中間焼鈍、冷間圧延、最終焼
鈍により製造される。また、成形性、ストレッチャース
トレイン対策等を考慮して最終焼鈍が高温で行われるよ
うになってきている。しかし、最終焼鈍においてMgが
表面に集積してMgOとなり、それが下地処理性を阻害
し、ひいては耐食性、特に耐糸錆性に悪影響を及ぼす。
特に表面でのMg濃度が20%を超えると、耐食性が著
しく劣化する。
[0003] Al-Mg widely used for automobile outer panels
A system alloy plate is manufactured by DC casting, homogenizing heat treatment, hot rolling, cold rolling, intermediate annealing, cold rolling, and final annealing as in the usual case. Further, in consideration of formability, measures against stretcher strain, etc., final annealing has been performed at a high temperature. However, in the final annealing, Mg accumulates on the surface to form MgO, which hinders the undercoating property, and adversely affects the corrosion resistance, especially the rust resistance.
In particular, when the Mg concentration on the surface exceeds 20%, the corrosion resistance is significantly deteriorated.

【0004】[0004]

【発明が解決しようとする課題】表層部におけるMg濃
度の上昇を抑制するため、製造工程中に酸またはアルカ
リによる洗浄工程を取り入れる方法が特開平3−111
532号公報で開示されている。この場合でも、熱処理
によりアルミニウム合金板表面にMgが拡散し表面近傍
で酸化され表面近傍のMgOを低減することは難しい。
また、最終熱処理完了後に酸又はアルカリ等による洗浄
を行うと、製品板表面に擦り傷発生の問題を生じる。し
かも、洗浄工程を余分に必要とすることから、製造コス
トを上昇させる原因となる。したがって、できるならば
洗浄工程なしで、より安価で優れた下地処理性をもった
アルミニウム合金板が製造できることが望まれている。
このためには、アルミ板表面へのMgの偏析を効果的に
防止することが必要である。
In order to suppress an increase in the Mg concentration in the surface layer, a method of incorporating a washing step with an acid or an alkali in the manufacturing process is disclosed in Japanese Patent Laid-Open No. 3-111.
No. 532. Even in this case, it is difficult to reduce MgO near the surface by diffusing Mg on the surface of the aluminum alloy plate by heat treatment and oxidizing near the surface.
Further, if cleaning is performed with an acid or an alkali after completion of the final heat treatment, there is a problem that scratches occur on the product plate surface. In addition, an extra cleaning step is required, which causes an increase in manufacturing cost. Therefore, it is desired to be able to manufacture an aluminum alloy plate having excellent undercoating properties at a lower cost, if possible, without a cleaning step.
For this purpose, it is necessary to effectively prevent the segregation of Mg on the surface of the aluminum plate.

【0005】また、特開平3−287739号公報で
は、Al−Mg−Cu−Cr系において結晶組織を等軸
晶で微細化することにより下地処理性、耐食性等を改善
したアルミニウム合金が開示されている。しかし、この
アルミニウム合金においても、表層部にMgが濃縮する
傾向がみられ、良好な下地処理性が得られない場合があ
る。また、極端にMgが濃縮したものでは、耐食性の劣
化が著しい。本発明は、このような問題を解消すべく案
出されたものであり、含有成分を細かく調整することに
よって表面へのMgの濃縮を抑制し、表面層中のMg量
を制御して、冷延板を溶体化処理したままで耐食性、塗
装下地処理性に優れたアルミニウム合金板を提供するこ
とを目的とする。
Japanese Patent Application Laid-Open No. 3-287779 discloses an aluminum alloy in which the crystal structure of an Al-Mg-Cu-Cr system is refined to be equiaxed to improve the undercoating property and corrosion resistance. I have. However, even in this aluminum alloy, Mg tends to be concentrated in the surface layer portion, and good base treatment property may not be obtained in some cases. In the case where Mg is extremely concentrated, the corrosion resistance is significantly deteriorated. The present invention has been devised to solve such a problem, and the concentration of Mg on the surface is suppressed by finely adjusting the contained components, the amount of Mg in the surface layer is controlled, and cooling is performed. It is an object of the present invention to provide an aluminum alloy sheet having excellent corrosion resistance and coating undercoating property while a solution-treated strip is provided.

【0006】[0006]

【課題を解決するための手段】本発明の耐食性,塗装下
地処理性に優れたアルミニウム合金板は、その目的を達
成するため、Mg:2.5〜5.5重量%、Cu:0.
05〜0.4重量%、Mn:0.005〜0.2重量
%、Cr:0.005〜0.1重量%、Ti:0.01
〜0.05重量%、Si:0.08重量%以下、Fe:
0.1重量%以下およびBe:0.0001〜0.01
重量%を含み、残部が実質的にAlである表面に酸化物
層を有する冷延溶体化処理板であって、含有するMg、
CuおよびBeの間にA=Mg%−10×Cu%−10
00Be%[重量%]で定義されるA値が4以下の関係
があり、かつ板表面の深さ方向に関しMg濃度がピーク
となる位置でB=Mg%/(Al%+O%)[原子%]
で定義されるB値が0.3以下に規制されていることを
特徴とする。このアルミニウム合金板は、さらにZr:
0.001〜0.1重量%、V:0.001〜0.1重
量%およびB:0.0001〜0.01重量%の1種ま
たは2種以上を含むこともできる。
The aluminum alloy sheet of the present invention, which is excellent in corrosion resistance and coating undercoating property, has a content of 2.5 to 5.5% by weight of Mg and a content of 0.1% of Cu in order to achieve the object.
0.05 to 0.4% by weight, Mn: 0.005 to 0.2% by weight, Cr: 0.005 to 0.1% by weight, Ti: 0.01
-0.05% by weight, Si: 0.08% by weight or less, Fe:
0.1% by weight or less and Be: 0.0001 to 0.01
A cold-rolled solution-treated plate having an oxide layer on the surface, the balance being substantially Al, containing Mg,
A = Mg% -10 × Cu% -10 between Cu and Be
At the position where the A value defined by 00Be% [% by weight] is 4 or less, and where the Mg concentration peaks in the depth direction of the plate surface, B = Mg% / (Al% + O%) [atomic% ]
The B value defined by is regulated to 0.3 or less. This aluminum alloy plate further comprises Zr:
0.001 to 0.1% by weight, V: 0.001 to 0.1% by weight, and B: 0.0001 to 0.01% by weight.

【0007】このようなアルミニウム合金板は、鋳塊を
均質化処理し、熱間圧延および冷間圧延によって所定板
厚の冷延板に圧延される。この冷延板に対し、100℃
/秒以上の昇温速度で誘導加熱し、450〜520℃の
温度範囲に3秒以下保持し、次いで1℃/秒以上の冷却
速度で常温まで冷却する溶体化処理を施すとき、表層部
のMg濃度が確実に20重量%以下に抑制される。溶体
化処理に引き続いて、110〜160℃に1〜3時間加
熱する安定化処理を行うことが好ましい。アルミニウム
合金の冷延板は、たとえば430〜450℃に1〜24
時間加熱する第1段の均質化処理、480〜550℃に
1〜12時間加熱する第2段の均質化処理、熱延開始温
度500℃以下および熱延終了温度370〜420℃の
熱間圧延、加工率70〜90%の冷間圧延を経て製造さ
れる。冷間圧延の途中で、必要に応じて中間焼鈍を行っ
ても良い。
[0007] Such an aluminum alloy sheet is subjected to a homogenizing treatment of an ingot, and is rolled into a cold rolled sheet having a predetermined thickness by hot rolling and cold rolling. 100 ° C for this cold rolled sheet
/ Second or more, induction heating at a temperature rising rate of not less than 450 ° C./sec, holding for 3 seconds or less in a temperature range of 450 ° C./sec. The Mg concentration is reliably suppressed to 20% by weight or less. Subsequent to the solution treatment, it is preferable to perform a stabilization treatment of heating to 110 to 160 ° C for 1 to 3 hours. The cold-rolled aluminum alloy sheet is, for example, 430 to 450 ° C. and 1 to 24
First-stage homogenization treatment for heating for 1 hour, second-stage homogenization treatment for heating at 480 to 550 ° C for 1 to 12 hours, hot rolling at a hot rolling start temperature of 500 ° C or less and a hot rolling end temperature of 370 to 420 ° C It is manufactured through cold rolling at a working ratio of 70 to 90%. Intermediate annealing may be performed as needed during the cold rolling.

【0008】[0008]

【作用】本発明のアルミニウム合金板は、基本的にはM
gによる固溶強化を利用して強度を向上させた材料であ
り、Cuによる析出硬化やMn、Cr等による結晶粒微
細化を図っている。以下、合金元素およびその含有量に
ついて説明する。 Mg:2.5〜5.5重量% Mgは、強度及び成形加工性を付与する上で必要な合金
元素である。しかし、Mg含有量が2.5重量%未満で
は、強度の向上が不十分である。逆に、5.5重量%を
超えて多量のMgを含有すると、強度は増加するもの
の、成形加工性の改善に与える作用が小さくなる。その
結果、DC鋳造中の鋳造割れや熱間圧延時のエッジ割れ
が発生し易くなり、応力腐食割れに対しても敏感にな
る。このようなことから、本発明においては、Mgの含
有量を2.5〜5.5重量%の範囲に設定した。
The aluminum alloy plate according to the present invention basically has M
It is a material whose strength is improved by using solid solution strengthening by g, and achieves precipitation hardening by Cu and refinement of crystal grains by Mn, Cr and the like. Hereinafter, the alloy elements and their contents will be described. Mg: 2.5 to 5.5% by weight Mg is an alloy element necessary for imparting strength and formability. However, when the Mg content is less than 2.5% by weight, the strength is not sufficiently improved. Conversely, when a large amount of Mg is contained in excess of 5.5% by weight, the strength is increased, but the effect of improving the formability is reduced. As a result, casting cracks during DC casting and edge cracks during hot rolling are likely to occur, and are also sensitive to stress corrosion cracking. For this reason, in the present invention, the content of Mg is set in the range of 2.5 to 5.5% by weight.

【0009】Cu:0.05〜0.4重量% Cuは、Mgと同様に強度を付与する合金元素であり、
特に塗装焼き付け工程でAl−Cu系化合物の析出によ
って耐力を向上させる効果が大きい。また、耐応力腐食
割れ性の改善にも有効に作用すると共に、溶体化時に材
料表面へのMg拡散を抑制する作用を呈する。このよう
な作用は、Cu含有量が0.05重量%以上になるとき
顕著にみられる。しかし、0.4重量%を超える多量の
Cuが含有されると、耐糸錆性が劣化する傾向がみられ
る。そのため、本発明においては、Cu含有量を0.0
5〜0.4重量%の範囲に設定した。
Cu: 0.05 to 0.4% by weight Cu is an alloying element that imparts strength similarly to Mg.
In particular, the effect of improving the proof stress by the precipitation of the Al-Cu-based compound in the paint baking step is great. In addition, it has an effect of effectively improving the stress corrosion cracking resistance and also has an effect of suppressing the diffusion of Mg to the material surface during solution treatment. Such an effect is remarkably observed when the Cu content is 0.05% by weight or more. However, when a large amount of Cu exceeding 0.4% by weight is contained, there is a tendency that the rust resistance is deteriorated. Therefore, in the present invention, the Cu content is 0.0
It was set in the range of 5 to 0.4% by weight.

【0010】Mn:0.005〜0.2重量% Mnは、焼鈍後の結晶粒組織を微細にし、再結晶集合組
織を制御する作用を呈する。Mn含有量が0.01重量
%以下であると、通常この作用が顕著に現れない。しか
し、100℃/秒以上の急速冷却を行うとき、Mn含有
量0.005重量%以上でも、十分にMnの作用が発揮
される。他方、0.2重量%を超える多量のMnが含有
されると、粗大な金属間化合物が発生し易くなり、成形
性を低下させる。したがって、本発明においては、Mn
含有量を0.005〜0.2重量%の範囲に設定した。
Mn: 0.005 to 0.2% by weight Mn has an effect of refining the grain structure after annealing and controlling the recrystallization texture. When the Mn content is 0.01% by weight or less, this effect usually does not significantly appear. However, when performing rapid cooling at 100 ° C./sec or more, the effect of Mn is sufficiently exerted even when the Mn content is 0.005% by weight or more. On the other hand, when a large amount of Mn exceeding 0.2% by weight is contained, a coarse intermetallic compound is easily generated, and the moldability is reduced. Therefore, in the present invention, Mn
The content was set in the range of 0.005 to 0.2% by weight.

【0011】Cr:0.005〜0.1重量% Crも、Mnと同様に結晶粒組織の微細化に有効である
が、0.005重量%未満ではその効果が小さい。他
方、0.1重量%を超える多量のCrを含有すると、成
形加工性が低下する。そこで、本発明においては、Cr
含有量の範囲を0.005〜0.1重量%の範囲に設定
した。 Ti:0.01〜0.05重量% Tiは、Bと共に鋳塊の結晶粒径を微細にし、鋳造割れ
を防止する作用を呈する合金元素である。しかし、0.
01重量%未満のTi含有量では、その効果が小さい。
逆に0.05重量%を超えるTi含有量では、Al3
iの粗大な粒子を生成し、成形加工性を劣化させる傾向
を示す。したがって、本発明においては、0.01〜
0.05重量%の範囲にTi含有量を設定した。
Cr: 0.005 to 0.1% by weight Cr is effective in refining the grain structure similarly to Mn, but its effect is small when it is less than 0.005% by weight. On the other hand, when a large amount of Cr exceeding 0.1% by weight is contained, the formability decreases. Therefore, in the present invention, Cr
The range of the content was set in the range of 0.005 to 0.1% by weight. Ti: 0.01 to 0.05% by weight Ti is an alloying element that, together with B, reduces the crystal grain size of the ingot to prevent casting cracks. However, 0.
If the Ti content is less than 01% by weight, the effect is small.
Conversely, if the Ti content exceeds 0.05% by weight, Al 3 T
It tends to generate coarse particles of i and degrade the moldability. Therefore, in the present invention, 0.01 to
The Ti content was set in the range of 0.05% by weight.

【0012】Fe:0.1重量%以下 Feは、延性の低下を招き、曲げ性、張出し性等の成形
加工性を劣化させる有害な不純物である。そのため、自
動車外板等の特に高い成形性が要求される用途を考慮
し、本発明においてはFe含有量の上限を0.1重量%
に規定した。 Si:0.08重量%以下 Siも、その添加量如何によっては成形性を阻害する不
純物元素であり、Feと同様の理由によって上限を0.
08重量%に規定した。また、本発明では、塗装焼き付
け工程における硬化をMg2SiではなくAl−Cu系
化合物の析出に期待していることから、Siを0.08
重量%以下に低下しても必要な強度が確保される。
Fe: 0.1% by weight or less Fe is a harmful impurity which causes a decrease in ductility and deteriorates the formability such as bending property and overhang property. Therefore, in consideration of applications requiring particularly high formability, such as automobile outer panels, the upper limit of the Fe content is set to 0.1% by weight in the present invention.
Stipulated. Si: 0.08% by weight or less Si is also an impurity element that inhibits formability depending on the amount of Si added.
08% by weight. Further, in the present invention, since the hardening in the paint baking step is expected not to be due to the precipitation of Al—Cu-based compounds but to Mg 2 Si, the Si content is set to 0.08.
The required strength is ensured even if it is reduced to not more than weight%.

【0013】Be:0.0001〜0.01重量% Beは、アルミニウム合金の溶製時にMgが酸化して消
失することを防止すると共に、材料の内部から表面に拡
散してきたMgの酸化を防止する上で有効な合金元素で
ある。Mgの酸化消耗は、Be含有量0.0001重量
%以上で効果的に防止される。また、0.0001重量
%以上のBeを添加することによって、耐糸錆性の改善
もみられる。しかし、0.01重量%を超えるBe含有
は、張出し性等の成形加工性を劣化させる傾向を示す。
Be: 0.0001 to 0.01% by weight Be prevents Mg from oxidizing and disappearing during melting of the aluminum alloy, and prevents oxidation of Mg diffused from the inside of the material to the surface. It is an effective alloying element for The oxidative consumption of Mg is effectively prevented at a Be content of 0.0001% by weight or more. Further, by adding 0.0001% by weight or more of Be, improvement in the rust resistance is also observed. However, Be content exceeding 0.01% by weight tends to degrade molding workability such as overhanging property.

【0014】また、本発明のアルミニウム合金は、任意
成分としてB、VおよびZrを含有することもできる。
これら合金元素の作用は、次の通りである。 B:0.0001〜0.01重量% Bは、Tiと同様に鋳塊の結晶粒径を微細にし、鋳造割
れを防止する作用を呈する合金元素である。しかし、
0.0001重量%未満のB含有では、その効果が小さ
い。逆に、B含有量が0.01重量%を超えると、Al
2、TiB2等の粗大な粒子が生成して延性を低下さ
せ、成形加工性を阻害する。そこで、Bを含有させると
き、その含有量を0.0001〜0.01重量%の範囲
に設定する。
The aluminum alloy of the present invention may contain B, V and Zr as optional components.
The effects of these alloy elements are as follows. B: 0.0001 to 0.01% by weight B is an alloying element which, like Ti, reduces the crystal grain size of the ingot and prevents casting cracks. But,
If the content of B is less than 0.0001% by weight, the effect is small. Conversely, when the B content exceeds 0.01% by weight,
Coarse particles such as B 2 and TiB 2 are generated to reduce ductility and impair moldability. Therefore, when B is contained, its content is set in the range of 0.0001 to 0.01% by weight.

【0015】V:0.001〜0.1重量% Vは、MnおよびCrと同様に加工組織を制御し、最終
板の成形性を向上する作用を呈する。この効果はV含有
量が0.001重量%未満では小さく、0.1重量%を
超えると成形性を低下させる。したがって、Vを含有さ
せるとき、その含有量を0.001〜0.1重量%の範
囲に設定する。 Zr:0.001〜0.1重量% Zrは、熱間圧延中の加工組織を制御し、最終板の成形
性を向上する作用を呈する。この効果はZr含有量が
0.001重量%未満では小さく、0.1重量%を超え
ると粗大な粒子の発生によって伸びの低下を招く。した
がって、Zrを含有させるとき、その含有量を0.00
1〜0.1重量%の範囲に設定する。
V: 0.001 to 0.1% by weight V has the effect of controlling the processed structure similarly to Mn and Cr and improving the formability of the final sheet. This effect is small when the V content is less than 0.001% by weight, and decreases the moldability when the V content exceeds 0.1% by weight. Therefore, when V is contained, its content is set in the range of 0.001 to 0.1% by weight. Zr: 0.001 to 0.1% by weight Zr exerts an effect of controlling the work structure during hot rolling and improving the formability of the final sheet. This effect is small when the Zr content is less than 0.001% by weight, and when the Zr content is more than 0.1% by weight, coarse particles are generated to lower the elongation. Therefore, when Zr is contained, the content is 0.00
It is set in the range of 1 to 0.1% by weight.

【0016】以上の合金元素の間に、本発明においては
さらに次の関係を維持させる。この関係は、本発明者等
による多数の実験から経験的に求められたものであり、
表層部にMgが濃縮することを防止する上で効果的な指
標である。先ず、A=(Mg%)−10×(Cu%)−
1000×(Be%)で定義されるA値が4以下となる
ように、Mg、CuおよびBe間の成分調整を図る。な
お、ここで(Mg%)、(Cu%)および(Be%)
は、それぞれの含有量を重量%で示した数値である。C
uおよびBeは、材料中においてMgが表面に拡散する
ことを抑制する元素であり、A≦4の関係を維持すると
き本系の合金において溶体化時に材料表面へのMg拡散
が抑制され、MgOの成長が抑えられる。
In the present invention, the following relationship is further maintained between the above alloy elements. This relationship has been empirically determined from numerous experiments by the present inventors,
This is an effective index for preventing Mg from being concentrated on the surface layer. First, A = (Mg%) − 10 × (Cu%) −
The components among Mg, Cu and Be are adjusted so that the A value defined by 1000 × (Be%) becomes 4 or less. Here, (Mg%), (Cu%) and (Be%)
Is a numerical value indicating each content in% by weight. C
u and Be are elements that suppress the diffusion of Mg to the surface in the material. When the relationship of A ≦ 4 is maintained, the diffusion of Mg to the surface of the material during solution treatment is suppressed in the alloy of the present system, and MgO Growth is suppressed.

【0017】また、溶体化処理後の材料表面の深さ方向
に関しMg濃度がピークとなる位置で、B=[Mg%]
/([Al%]+[O%])で定義されるB値を0.3
以下に維持することが必要である。なお、[Mg%]、
[Al%]および[O%]は、それぞれの含有量を原子
%で表した数値である。B≦0.3が成立するようにM
g、AlおよびOの間でバランスを図ることにより、深
さ方向に関してMg濃度が最大の位置でMg量が20重
量%以下になり、塗装材の耐糸錆性および塗膜密着性が
改善される。たとえば、後述する実施例で使用した試験
番号1は、図1に示す濃度分布でAl、MgおよびOが
分布している。種々の組成をもつ合金について同様な濃
度分布曲線を調査した結果、A≦4およびB≦0.3が
満足されるとき、Mgの酸化防止が図られると共に、深
さ方向に関する最大Mg濃度が20重量%以下に抑えら
れることを解明した。
At the position where the Mg concentration peaks in the depth direction of the material surface after the solution treatment, B = [Mg%]
B value defined by / ([Al%] + [O%]) is 0.3
It is necessary to maintain: [Mg%],
[Al%] and [O%] are numerical values in which each content is represented by atomic%. M so that B ≦ 0.3 holds
By balancing g, Al and O, the Mg content becomes 20% by weight or less at the position where the Mg concentration is maximum in the depth direction, and the coating material has improved yarn rust resistance and coating film adhesion. You. For example, in Test No. 1 used in Examples described later, Al, Mg and O are distributed in the concentration distribution shown in FIG. As a result of examining similar concentration distribution curves for alloys having various compositions, when A ≦ 4 and B ≦ 0.3 are satisfied, oxidation of Mg is prevented, and the maximum Mg concentration in the depth direction is 20%. It was clarified that it could be suppressed to less than% by weight.

【0018】なお、本発明アルミニウム合金板は冷延後
溶体化処理したままのものであるから、表面に酸化物層
が形成されたままである。したがって、表面層は主とし
てAlとMgおよびOから成っている。表面層へのMg
の拡散を抑制し、Mg濃度を20重量%以下にしてはい
るが、酸化物の量は極力少なくしたい。仮に理想的な状
態として、酸化物がない場合を仮定すると、20重量%
以下のMg含有量は、〔20/(Mgの原子量)〕/
〔80(Alの原子量)〕=〔20/24.3〕/〔8
0/27.0〕=0.28=約0.3となる。実際は酸
化物が形成され、分母にO分が加わるから、上記B値が
0.3以下になれば耐食性を高められることになったも
のである。
Since the aluminum alloy sheet of the present invention has been subjected to the solution treatment after cold rolling, the oxide layer is still formed on the surface. Therefore, the surface layer is mainly composed of Al, Mg and O. Mg on surface layer
Although the diffusion of Cu is suppressed and the Mg concentration is set to 20% by weight or less, the amount of the oxide should be reduced as much as possible. Assuming that there is no oxide in an ideal state, 20% by weight
The following Mg content is [20 / (atomic weight of Mg)] /
[80 (atomic weight of Al)] = [20 / 24.3] / [8
0 / 27.0] = 0.28 = about 0.3. Actually, an oxide is formed and O is added to the denominator. Therefore, if the B value becomes 0.3 or less, the corrosion resistance can be improved.

【0019】本発明のアルミニウム合金板は、たとえば
通常のDC鋳造によって鋳塊にされる。鋳塊を均質化処
理した後、熱間圧延、冷間圧延、中間焼鈍、冷間圧延の
各工程を経て、連続焼鈍炉で最終熱処理される。均質化
処理は、鋳造中に偏析したMg等の元素分布を均質化
し、鋳造中に生成した晶出物の形状をコントロールする
ことにより、製品板の強度、成形加工性等を向上させ
る。この均質化処理には、低温側の第1段加熱および高
温側の第2段加熱を採用することが好ましい。第1段加
熱では、昇温時にβ相の局所融解(バーニング)が生じ
ない条件下で、鋳造時に形成されたMg2Al3を可能な
限りマトリックスに溶し込む。そのため、第1段では、
430〜450℃に1〜24時間加熱する条件が採用さ
れる。第2段加熱では、Mgを完全に溶体化し、Al6
Fe等の金属間化合物の形状をコントロールすることに
より、成形性を向上させる。この点で、第2段では、4
80〜550℃に1〜12時間加熱する条件が採用され
る。
The aluminum alloy sheet of the present invention is made into an ingot by, for example, ordinary DC casting. After the ingot is homogenized, it undergoes a final heat treatment in a continuous annealing furnace through the steps of hot rolling, cold rolling, intermediate annealing, and cold rolling. The homogenization treatment improves the strength of a product plate, formability, and the like by homogenizing the distribution of elements such as Mg segregated during casting and controlling the shape of a crystallized substance generated during casting. For this homogenization treatment, it is preferable to employ first-stage heating on the low-temperature side and second-stage heating on the high-temperature side. In the first-stage heating, Mg 2 Al 3 formed at the time of casting is dissolved in the matrix as much as possible under the condition that local melting (burning) of the β phase does not occur at the time of raising the temperature. Therefore, in the first stage,
The condition of heating to 430 to 450 ° C. for 1 to 24 hours is employed. In the second stage heating, Mg is completely dissolved and Al 6
Formability is improved by controlling the shape of the intermetallic compound such as Fe. In this regard, in the second stage, 4
The condition of heating to 80 to 550 ° C. for 1 to 12 hours is adopted.

【0020】均質化された鋳塊は、通常の方法で所望の
板厚まで熱間圧延される。熱間圧延は、熱間割れを防止
する上で、熱延開始温度を500℃以下、熱延終了温度
を370〜420℃とすることが好ましい。熱間圧延
後、通常の方法によって所望の板厚まで冷間圧延され
る。このとき、冷間加工率は、最終焼鈍時の再結晶粒に
影響を与える。再結晶粒を微細にするためには、冷間圧
延全工程の加工率を70〜90%に設定することが好ま
しい。加工率70%未満の冷間圧延では、再結晶粒が粗
大化する場合がある。他方、冷間圧延の加工率が90%
を超えると、再結晶粒が細かくなりすぎ、ストレッチャ
ーストレインマークが発生し易い。
The homogenized ingot is hot-rolled in a usual manner to a desired thickness. In the hot rolling, in order to prevent hot cracking, the hot rolling start temperature is preferably 500 ° C or lower, and the hot rolling end temperature is preferably 370 to 420 ° C. After hot rolling, cold rolling is performed by a usual method to a desired thickness. At this time, the rate of cold working affects the recrystallized grains during final annealing. In order to make the recrystallized grains fine, it is preferable to set the working ratio in all the steps of cold rolling to 70 to 90%. In cold rolling at a working ratio of less than 70%, recrystallized grains may become coarse. On the other hand, the working ratio of cold rolling is 90%
If it exceeds, the recrystallized grains become too fine, and stretcher strain marks are likely to occur.

【0021】また、冷間圧延により加工硬化したアルミ
ニウム合金板は、加工組織を再結晶軟化させると共に、
最終板の成形性を制御するため、必要に応じて中間焼鈍
される。中間焼鈍には、バッチ式焼鈍炉或いは連続式焼
鈍炉の何れも使用することができる。中間焼鈍は、必要
とする深絞り性が得られるように、r値と伸びとのバラ
ンスを考慮した焼鈍条件が採用される。バッチ式焼鈍炉
で中間焼鈍する場合、320〜350℃に1〜10時間
加熱する条件が採用される。この焼鈍温度が320℃未
満ではMgの偏析が助長される傾向がみられ、350℃
を超えると板表面の酸化が盛んになる。連続焼鈍炉で中
間焼鈍する場合、3秒以内の短時間で400〜520℃
に加熱する条件が採用される。連続焼鈍時の加熱温度が
520℃を超えるとMgの偏析が促進され、400℃未
満では十分な再結晶が行われない。中間焼鈍を行った場
合、さらに冷間圧延を施し、所定の板厚にする。
Further, the aluminum alloy sheet work-hardened by cold rolling causes the work structure to recrystallize and soften,
Intermediate annealing is performed as needed to control the formability of the final sheet. For the intermediate annealing, either a batch type annealing furnace or a continuous type annealing furnace can be used. For the intermediate annealing, annealing conditions in consideration of the balance between the r value and the elongation are adopted so that the required deep drawability is obtained. When performing intermediate annealing in a batch type annealing furnace, a condition of heating to 320 to 350 ° C. for 1 to 10 hours is adopted. If the annealing temperature is lower than 320 ° C., the segregation of Mg tends to be promoted.
If it exceeds, oxidation of the plate surface becomes active. When performing intermediate annealing in a continuous annealing furnace, 400 to 520 ° C in a short time within 3 seconds
Heating conditions are adopted. If the heating temperature during continuous annealing exceeds 520 ° C., segregation of Mg is promoted, and if it is less than 400 ° C., sufficient recrystallization is not performed. When the intermediate annealing is performed, cold rolling is further performed to obtain a predetermined thickness.

【0022】Al−Mg系合金の塗装下地処理性、耐食
性を上げるためには、アルミニウム合金冷延板の溶体化
処理で発生するMgの偏析を防ぐことが重要である。溶
体化処理は、冷間加工時に生成された加工組織を再結晶
させる作用も呈する。溶体化に際しMgが長距離の拡散
をするための時間を与えないように、加熱時間を十分短
くすることにより、表層部におけるMgの濃縮を抑制す
ることができる。表層部へのMgの濃縮は熱間圧延工程
でも生じるが、表面のMgO等を含むMg濃縮層は、熱
間圧延によって破壊されるため、製品特性に悪影響を与
えない。しかし、溶体化処理時に表層部に濃縮したMg
は、塗装下地処理性、耐食性等に悪影響を及ぼす。短時
間の加熱で十分な溶体化を行うには、インダクションヒ
ータを用いて内部から渦電流による加熱を行うことによ
り、短時間で高温まで加熱し、その後十分早く冷却する
ことが効果的である。伝熱、赤外線、熱風吹き付け等の
表面からの加熱等の他の加熱方法によるとき、溶体化の
ための加熱時間が長くなり、表面のMg濃度の上昇が避
けられず、また短時間では十分な溶体化の効果が得られ
ない場合が多い。
In order to improve the undercoating property and corrosion resistance of the Al-Mg alloy, it is important to prevent the segregation of Mg generated in the solution treatment of the cold-rolled aluminum alloy sheet. The solution treatment also has an effect of recrystallizing a worked structure generated during cold working. By sufficiently shortening the heating time so as not to allow time for Mg to diffuse over a long distance during the solution treatment, the concentration of Mg in the surface layer can be suppressed. Although the concentration of Mg in the surface layer portion also occurs in the hot rolling step, the Mg-enriched layer containing MgO or the like on the surface is destroyed by the hot rolling, and does not adversely affect the product characteristics. However, Mg concentrated in the surface layer during solution treatment
Has an adverse effect on the paint base treatment properties, corrosion resistance, and the like. In order to perform sufficient solution formation by heating for a short time, it is effective to heat to a high temperature in a short time by performing heating from the inside with an eddy current using an induction heater, and then cool sufficiently quickly. When using other heating methods such as heat transfer, infrared rays, heating from the surface such as blowing hot air, the heating time for solution becomes longer, Mg concentration on the surface is unavoidable, and short time is not enough. In many cases, the solution effect cannot be obtained.

【0023】板表面にMgが濃縮することなく再結晶お
よび溶体化を行わせるため、100℃/秒以上の昇温速
度で450〜520℃の温度範囲に急速加熱する。昇温
速度が100℃/秒より遅いと、拡散し易いMgがアル
ミニウム合金板の表層部に集積され、塗装下地処理性、
耐食性等を劣化させる。溶体化温度が450℃未満で
は、実用的な処理時間で十分な再結晶および溶体化が図
られない。逆に、3秒を超える長時間の溶体化処理や5
20℃を超える溶体化温度では、Mgの濃縮、表面酸化
等の欠陥が現れ易い。溶体化処理されたアルミニウム合
金板は、降温過程でもMgが拡散する現象がみられるた
め、1℃/秒以上の速度で冷却される。たとえば、アル
ミニウム合金板は、冷水、温水、冷風等の吹付けまたは
浸漬により急速冷却され、焼入れ状態になる。
In order to recrystallize and form a solution without concentrating Mg on the plate surface, the plate is rapidly heated to a temperature range of 450 to 520 ° C. at a rate of 100 ° C./sec or more. If the heating rate is slower than 100 ° C./sec, Mg that is easily diffused is accumulated on the surface layer of the aluminum alloy plate, so
Deterioration of corrosion resistance. If the solution temperature is lower than 450 ° C., sufficient recrystallization and solution cannot be achieved in a practical processing time. Conversely, long-term solution treatment exceeding 3 seconds or 5
At a solution temperature exceeding 20 ° C., defects such as Mg concentration and surface oxidation are likely to appear. The solution-treated aluminum alloy plate is cooled at a rate of 1 ° C./sec or more because Mg diffuses even in the process of cooling. For example, an aluminum alloy plate is rapidly cooled by spraying or dipping cold water, hot water, cold air, or the like, and becomes a quenched state.

【0024】溶体化処理されたアルミニウム合金板は、
たとえばテンションレベラーを使用して0.2〜1%程
度の引張り変形を加えることにより、溶体化処理で発生
した熱歪みが除去される。しかし、矯正によってアルミ
ニウム合金板の延性が低下し、成形性が劣化する場合が
ある。そこで、矯正後のアルミニウム合金板に、110
〜160℃に1〜3時間加熱する安定化処理を施すこと
が好ましい。安定化処理により、歪みが除去され、本来
の伸びが回復する。このためには、安定化処理を110
℃以上の温度に1時間以上加熱することが必要である。
しかし、160℃を超える加熱温度や3時間を超える加
熱時間では、S´相、S相等の析出がみられ、強度が向
上するものの加工性が劣化する傾向がみられる。このよ
うにして調整されたアルミニウム合金板は、成形後16
0〜180℃に20〜30分加熱する塗装焼付けが行わ
れる。この加熱時にAl−Cu−Mg系の金属間化合物
等からなるS相やS´相が析出し、必要とする強度およ
び硬度をもった塗装板材が得られる。
The solution-treated aluminum alloy plate is:
For example, by applying a tensile deformation of about 0.2 to 1% using a tension leveler, thermal strain generated in the solution treatment is removed. However, the straightening may reduce the ductility of the aluminum alloy sheet and deteriorate the formability. Therefore, the corrected aluminum alloy plate is
It is preferable to perform a stabilization treatment of heating to ~ 160 ° C for 1 to 3 hours. By the stabilization process, the distortion is removed, and the original elongation is restored. To this end, the stabilization process must be performed at 110
It is necessary to heat to a temperature of not less than 1 ° C. for not less than 1 hour.
However, when the heating temperature exceeds 160 ° C. or the heating time exceeds 3 hours, precipitation of S ′ phase, S phase, etc. is observed, and although the strength is improved, the workability tends to be deteriorated. The aluminum alloy plate adjusted in this way is 16
Paint baking is performed by heating to 0 to 180 ° C for 20 to 30 minutes. During this heating, an S phase or an S ′ phase composed of an Al—Cu—Mg intermetallic compound or the like is precipitated, and a coated plate having the required strength and hardness is obtained.

【0025】[0025]

【実施例】実施例1:表1に示した組成をもつ各種アル
ミニウム合金を溶製し、厚さ400mmのスラブにDC
鋳造した。このスラブに440℃×10時間および52
5℃×1時間の2段階均熱処理を施した後、熱延開始温
度450℃で熱間圧延し、板厚7mmの熱延板を得た。
なお、熱延終了温度は、400℃に設定した。得られた
熱延板を板厚1.3mmまで冷間圧延した後、バッチ式
焼鈍炉で340℃に1時間加熱し、更に板厚1.0mm
まで冷間圧延した。
EXAMPLES Example 1: Various aluminum alloys having the compositions shown in Table 1 were melted, and DC was applied to a 400 mm thick slab.
Cast. This slab is subjected to 440 ° C. × 10 hours and 52
After performing a two-stage soaking process at 5 ° C. × 1 hour, hot rolling was performed at a hot rolling start temperature of 450 ° C. to obtain a hot-rolled sheet having a thickness of 7 mm.
The hot rolling end temperature was set to 400 ° C. After cold rolling the obtained hot rolled sheet to a sheet thickness of 1.3 mm, the sheet was heated to 340 ° C. for 1 hour in a batch annealing furnace, and further, a sheet thickness of 1.0 mm
Until cold-rolled.

【0026】 [0026]

【0027】大気雰囲気中で冷延板を昇温速度150℃
/秒で急速加熱し、480℃に3秒保持した後、冷却水
を冷延板表面に吹き付けることにより降温速度400℃
/秒で室温まで冷却した。溶体化処理された板材の表層
部におけるMg濃度をオージェ分析法で測定したとこ
ろ、表面層のMg濃度は、A値およびB値との間に表1
に示す関係を持っていた。また、試験番号1の板材にお
けるAl、MgおよびO濃度は、図1のオージェ分析結
果にみられるように、表面から内部に向かって変動して
いた。なお、図1の横軸は、スパッター時間(分)で示
し、1分≒170Åの比率で試料の深さに対応してい
る。他方、縦軸は、原子%で表した各元素の濃度を示
す。
The temperature of the cold rolled sheet is raised at 150 ° C. in the atmosphere.
/ Sec, and hold at 480 ° C for 3 seconds. Then, cooling water is sprayed on the surface of the cold rolled sheet to lower the temperature at 400 ° C.
Per second to room temperature. When the Mg concentration in the surface layer portion of the solution-treated plate material was measured by Auger analysis, the Mg concentration in the surface layer was found between Table A and Table B values.
Had the relationship shown in Further, the Al, Mg, and O concentrations in the plate material of Test No. 1 fluctuated from the surface toward the inside as seen from the Auger analysis results in FIG. The abscissa in FIG. 1 indicates a sputtering time (minute) and corresponds to the depth of the sample at a rate of {170} per minute. On the other hand, the vertical axis indicates the concentration of each element expressed in atomic%.

【0028】各板材から70mm×150mmの試験片
を切り出し、表2に示す条件で化成処理、電着塗装、中
塗りおよび上塗りを行った。塗装後の各試験片を40℃
の純水に24時間浸漬した後、2mmの升目が100個
形成された碁盤目を使用した試験で塗膜が残った目の数
をカウントすることにより、塗膜の密着性を判定した。
判定結果を表面層のMg濃度で整理したところ、表3に
示すように表面層のMg濃度20%を境として密着性が
大きく異なっていた。すなわち、Mg濃度を20%以下
に維持するとき塗膜が剥離した升目がみられなかったの
に対し、Mg濃度が20%を超える場合には最少でも5
個の塗膜が剥離した升目がカウントされた。本発明例で
優れた塗膜の密着性が得られたことは、化成処理によっ
て塗膜との親和性が高い下地が形成されたことに由来す
る。
A test piece of 70 mm × 150 mm was cut out from each plate and subjected to chemical conversion treatment, electrodeposition coating, intermediate coating and top coating under the conditions shown in Table 2. 40 ° C for each specimen after painting
Was immersed in pure water for 24 hours, and the adhesion of the coating film was determined by counting the number of the remaining coating films in a test using a grid in which 100 2 mm squares were formed.
When the judgment results were arranged by the Mg concentration of the surface layer, as shown in Table 3, the adhesion was largely different at the boundary of the Mg concentration of 20% of the surface layer. That is, when the Mg concentration was maintained at 20% or less, there was no square where the coating film was peeled off, whereas when the Mg concentration exceeded 20%, at least 5 squares were observed.
The squares from which the individual coating films were peeled were counted. The excellent adhesion of the coating film obtained in the examples of the present invention is due to the formation of a base having high affinity with the coating film by the chemical conversion treatment.

【0029】 [0029]

【0030】実施例2:表1に示した試験番号1のアル
ミニウム合金を、実施例1と同様に熱間圧延及び冷間圧
延して板厚1.0mmの冷延板にした後、表3に示す条
件下で溶体化処理した。なお、本発明例および比較例
6、7にあっては昇温速度150℃/秒で溶体化処理温
度まで昇温させ、溶体化処理後に降温速度400℃/秒
で室温まで冷却した。比較例8では、昇温速度10℃/
秒で溶体化処理温度まで昇温させ、溶体化処理後に降温
速度150℃/秒で室温まで冷却した。
Example 2 The aluminum alloy of Test No. 1 shown in Table 1 was hot-rolled and cold-rolled in the same manner as in Example 1 to form a 1.0 mm-thick cold-rolled sheet. The solution treatment was carried out under the conditions shown in (1). In Examples of the present invention and Comparative Examples 6 and 7, the temperature was raised to the solution treatment temperature at a rate of 150 ° C./sec, and after the solution treatment, the temperature was lowered to room temperature at a rate of 400 ° C./sec. In Comparative Example 8, the heating rate was 10 ° C. /
The temperature was raised to the solution heat treatment temperature in seconds, and after the solution heat treatment, the solution was cooled to room temperature at a temperature decreasing rate of 150 ° C./sec.

【0031】溶体化処理された各試験片に、実施例1と
同様な工程を経て塗装を施し、化成処理性、耐食性、塗
膜密着性等を調査した。化成処理性は、リン酸亜鉛処理
後の試験片表面を走査型電子顕微鏡で観察し、リン酸亜
鉛結晶の析出状態及び密度を調査し、リン酸亜鉛皮膜の
重量で評価し、重量が1.5g/m2以上のものを合格
とした。耐食性は、上塗りまで行った試験片にカッター
で傷を付けて素地に達するクロスカットを形成し、JI
S Z2371に規定して塩水噴霧試験で調査した。塩
水噴霧を24時間継続し、続いて温度40℃および相対
湿度80%に維持された恒温恒湿層に1500時間暴露
し、試験片に発生した糸状腐食のクロスカットからの長
さを測定することにより耐食性を判定した。
Each test piece subjected to the solution treatment was coated through the same steps as in Example 1, and the chemical conversion property, corrosion resistance, coating film adhesion, etc. were examined. The chemical conversion property was evaluated by observing the surface of the test piece after zinc phosphate treatment with a scanning electron microscope, examining the precipitation state and density of zinc phosphate crystals, and evaluating the weight of the zinc phosphate film. Those with 5 g / m 2 or more were judged to be acceptable. Corrosion resistance was determined by forming a cross cut that reached the substrate by scratching the specimen that had been coated to the top coat with a cutter.
The salt spray test was conducted as specified in SZ2371. To continue the salt spray for 24 hours, and then expose to a thermo-hygrostat maintained at a temperature of 40 ° C. and a relative humidity of 80% for 1500 hours, and measure the length from the cross-cut of the thread corrosion generated on the test piece. Was used to determine the corrosion resistance.

【0032】塗膜密着性は、実施例1と同様に碁盤目試
験で調査し、100個の碁盤目のうち塗膜が残った碁盤
目の数で表した。調査結果を示す表3から明らかなよう
に、450〜520℃に3秒以内の短時間加熱する溶体
化処理を行った本発明例では、表面層のMg濃度が20
%以下に抑えられており、化成処理性、耐食性および塗
膜密着性の何れにおいても優れた性質を呈していた。こ
れに対し、長時間加熱した比較例6、高温加熱した比較
例7および比較的小さな昇温速度で加熱した比較例8で
は、表面層に20%を超える多量のMgが濃縮されてお
り、化成処理性、耐食性および塗膜密着性の何れもが劣
っていた。
The adhesion of the coating film was examined by a grid test in the same manner as in Example 1, and was expressed as the number of grids on which the coating film remained out of 100 grids. As is clear from Table 3 showing the investigation results, in the example of the present invention in which the solution treatment in which the solution was heated to 450 to 520 ° C. for a short time within 3 seconds, the Mg concentration of the surface layer was 20
% Or less, and exhibited excellent properties in all of the chemical conversion treatment properties, corrosion resistance and coating film adhesion. On the other hand, in Comparative Example 6 heated for a long time, Comparative Example 7 heated at a high temperature, and Comparative Example 8 heated at a relatively low heating rate, a large amount of Mg exceeding 20% was concentrated in the surface layer. All of the processability, corrosion resistance and coating film adhesion were inferior.

【0033】 [0033]

【0034】[0034]

【発明の効果】以上に説明したように、本発明において
は、合金成分間のバランスを図ることによって冷延後溶
体化処理されたままのアルミニウム合金板表面に濃縮し
易いMgを濃度20%以下に抑制している。また、表面
層のMg濃度は、昇温速度、降温速度等を含めた溶体化
処理条件によっても、確実に20%以下に抑制される。
Mg濃縮が抑制されたアルミニウム合金板は、化成処理
性、耐食性、塗膜密着性等に優れた性質を示し、塗装焼
付け後に必要な強度および硬度をもち、自動車外板等と
して好適な板材になる。
As described above, in the present invention, Mg, which is easily concentrated on the surface of an aluminum alloy plate which has been subjected to a solution treatment after cold rolling, has a concentration of 20% or less by balancing alloy components. Is suppressed. Further, the Mg concentration of the surface layer is surely suppressed to 20% or less even by the solution treatment conditions including the rate of temperature rise and the rate of temperature decrease.
Aluminum alloy sheets with suppressed Mg concentration show excellent properties such as chemical conversion treatment, corrosion resistance and coating film adhesion, have the necessary strength and hardness after baking, and are suitable sheet materials for automobile outer panels and the like. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 溶体化処理された材料の表面から内部に向か
ったMg、AlおよびOの濃度分布
FIG. 1 shows the concentration distribution of Mg, Al and O from the surface to the inside of a solution-treated material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森山 武 愛知県稲沢市小池1丁目11番1号 日本軽 金属株式会社名古屋工場内 (72)発明者 鈴木 利明 愛知県稲沢市小池1丁目11番1号 日本軽 金属株式会社名古屋工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takeshi Moriyama 1-11-1 Koike, Inazawa-shi, Aichi Japan Nippon Light Metal Co., Ltd. Nagoya Plant (72) Inventor Toshiaki Suzuki 1-11-1 Koike, Inazawa-shi, Aichi No. Nippon Light Metal Co., Ltd. Nagoya Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mg:2.5〜5.5重量%、Cu:
0.05〜0.4重量%、Mn:0.005〜0.2重
量%、Cr:0.005〜0.1重量%、Ti:0.0
1〜0.05重量%、Si:0.08重量%以下、F
e:0.1重量%以下およびBe:0.0001〜0.
01重量%を含み、残部が実質的にAlである表面に酸
化物層を有する冷延溶体化処理板であって、含有するM
g、CuおよびBeの間にA=Mg%−10×Cu%−
1000Be%[重量%]で定義されるA値が4以下の
関係があり、かつ板表面の深さ方向に関しMg濃度がピ
ークとなる位置でB=Mg%/(Al%+O%)[原子
%]で定義されるB値が0.3以下に規制されているこ
とを特徴とする耐食性、塗装下地処理性に優れたアルミ
ニウム合金板。
1. Mg: 2.5-5.5% by weight, Cu:
0.05 to 0.4% by weight, Mn: 0.005 to 0.2% by weight, Cr: 0.005 to 0.1% by weight, Ti: 0.0
1 to 0.05% by weight, Si: 0.08% by weight or less, F
e: 0.1% by weight or less and Be: 0.0001-0.
A cold-rolled solution-treated plate having an oxide layer on the surface containing 0.01% by weight, with the balance being substantially Al, containing M
A = Mg% −10 × Cu% − between g, Cu and Be
At the position where the A value defined by 1000 Be% [wt%] is 4 or less, and where the Mg concentration peaks in the depth direction of the plate surface, B = Mg% / (Al% + O%) [atomic% An aluminum alloy sheet having excellent corrosion resistance and coating undercoating property, wherein the B value defined in [1] is regulated to 0.3 or less.
【請求項2】 Mg:2.5〜5.5重量%、Cu:
0.05〜0.4重量%、Mn:0.005〜0.2重
量%、Cr:0.005〜0.1重量%、Ti:0.0
1〜0.05重量%、Si:0.08重量%以下、F
e:0.1重量%以下およびBe:0.0001〜0.
01重量%を含み、さらにZr:0.001〜0.1重
量%、V:0.001〜0.1重量%およびB:0.0
001〜0.01重量%の1種または2種以上を含み、
残部が実質的にAlである表面に酸化物層を有する冷延
溶体化処理板であって、含有するMg、CuおよびBe
の間にA=Mg%−10×Cu%−1000Be%[重
量%]で定義されるA値が4以下の関係があり、かつ板
表面の深さ方向に関しMg濃度がピークとなる位置でB
=Mg%/(Al%+O%)[原子%]で定義されるB
値が0.3以下に規制されていることを特徴とする耐食
性、塗装下地処理性に優れたアルミニウム合金板。
2. Mg: 2.5-5.5% by weight, Cu:
0.05 to 0.4% by weight, Mn: 0.005 to 0.2% by weight, Cr: 0.005 to 0.1% by weight, Ti: 0.0
1 to 0.05% by weight, Si: 0.08% by weight or less, F
e: 0.1% by weight or less and Be: 0.0001-0.
01% by weight, Zr: 0.001 to 0.1% by weight, V: 0.001 to 0.1% by weight, and B: 0.01% by weight.
001 to 0.01% by weight of one or more kinds,
A cold-rolled solution-treated plate having an oxide layer on the surface where the balance is substantially Al, containing Mg, Cu and Be.
A = Mg% −10 × Cu% −1000Be% [wt%] has a relationship of not more than 4 and B is the position where the Mg concentration peaks in the depth direction of the plate surface.
= B defined as: Mg% / (Al% + O%) [atomic%]
An aluminum alloy sheet excellent in corrosion resistance and coating undercoating property, whose value is regulated to 0.3 or less.
JP2001073312A 2001-03-15 2001-03-15 Aluminum alloy plate with excellent corrosion resistance and coating surface treatment Expired - Fee Related JP3531616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073312A JP3531616B2 (en) 2001-03-15 2001-03-15 Aluminum alloy plate with excellent corrosion resistance and coating surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073312A JP3531616B2 (en) 2001-03-15 2001-03-15 Aluminum alloy plate with excellent corrosion resistance and coating surface treatment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP36135992A Division JP3201033B2 (en) 1992-12-28 1992-12-28 Manufacturing method of aluminum alloy sheet with excellent corrosion resistance and paint base treatment

Publications (2)

Publication Number Publication Date
JP2001294963A true JP2001294963A (en) 2001-10-26
JP3531616B2 JP3531616B2 (en) 2004-05-31

Family

ID=18930756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073312A Expired - Fee Related JP3531616B2 (en) 2001-03-15 2001-03-15 Aluminum alloy plate with excellent corrosion resistance and coating surface treatment

Country Status (1)

Country Link
JP (1) JP3531616B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309864C (en) * 2004-09-29 2007-04-11 广州擎天油漆化工实业有限公司 Environmental protective process for forming transforming film on aluminium and aluminium alloy surface
WO2018073658A1 (en) * 2016-08-05 2018-04-26 Acr Ii Aluminium Group Cooperatief U.A. Method for laminating aluminium for fine-grain applications
JP2020507009A (en) * 2017-01-11 2020-03-05 アーコニック インコーポレイテッドArconic Inc. Aluminum alloy product preparation method for joining

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484792B (en) * 2019-09-27 2021-02-26 福建省闽发铝业股份有限公司 Casting production process for improving compressive strength of aluminum profile

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309864C (en) * 2004-09-29 2007-04-11 广州擎天油漆化工实业有限公司 Environmental protective process for forming transforming film on aluminium and aluminium alloy surface
WO2018073658A1 (en) * 2016-08-05 2018-04-26 Acr Ii Aluminium Group Cooperatief U.A. Method for laminating aluminium for fine-grain applications
CN109890995A (en) * 2016-08-05 2019-06-14 Acr第二铝业集团合作公司 Aluminium laminating technology suitable for fine grain
US11174541B2 (en) 2016-08-05 2021-11-16 Acr Ii Aluminium Group Cooperatief U.A. Method for laminating aluminum for fine-grain applications
CN109890995B (en) * 2016-08-05 2022-02-18 Acr第二铝业集团合作公司 Aluminum material laminating process suitable for fine grains
JP2020507009A (en) * 2017-01-11 2020-03-05 アーコニック インコーポレイテッドArconic Inc. Aluminum alloy product preparation method for joining
JP2022023030A (en) * 2017-01-11 2022-02-07 アーコニック テクノロジーズ エルエルシー Methods of preparing aluminum alloy products for bonding

Also Published As

Publication number Publication date
JP3531616B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
JP5336240B2 (en) Aluminum alloy plate having excellent surface properties after forming and method for producing the same
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
CN101146922A (en) Aluminum alloy thin plate and its making method
JP2008214681A (en) Galvannealed steel sheet superior in image clarity of coating and press formability, and manufacturing method therefor
JP6224549B2 (en) Aluminum alloy plate with excellent rust resistance
WO2016031937A1 (en) Aluminum alloy sheet for forming
JP2009173972A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP4117243B2 (en) Aluminum alloy sheet with excellent bake hardenability
KR101159410B1 (en) Alluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
JP3201033B2 (en) Manufacturing method of aluminum alloy sheet with excellent corrosion resistance and paint base treatment
JP3531616B2 (en) Aluminum alloy plate with excellent corrosion resistance and coating surface treatment
JP3754624B2 (en) Method for producing automotive aluminum alloy panel material excellent in room temperature aging suppression and low temperature age hardening ability, and automotive aluminum alloy panel material
WO2016031941A1 (en) Aluminum alloy sheet
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JP4175818B2 (en) Aluminum alloy plate excellent in formability and paint bake hardenability and method for producing the same
JP3749627B2 (en) Al alloy plate with excellent press formability
JPH0547615B2 (en)
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH0432532A (en) Aluminum alloy sheet for zinc phosphate treatment and its manufacture
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees