JPH09241411A - Porous membrane, its production, and lithium ion secondary cell - Google Patents

Porous membrane, its production, and lithium ion secondary cell

Info

Publication number
JPH09241411A
JPH09241411A JP8056392A JP5639296A JPH09241411A JP H09241411 A JPH09241411 A JP H09241411A JP 8056392 A JP8056392 A JP 8056392A JP 5639296 A JP5639296 A JP 5639296A JP H09241411 A JPH09241411 A JP H09241411A
Authority
JP
Japan
Prior art keywords
porous membrane
polyethylene
porous
film
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8056392A
Other languages
Japanese (ja)
Other versions
JP3589778B2 (en
Inventor
Hajime Saen
元 佐圓
Reiji Hirata
麗司 平太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP05639296A priority Critical patent/JP3589778B2/en
Publication of JPH09241411A publication Critical patent/JPH09241411A/en
Application granted granted Critical
Publication of JP3589778B2 publication Critical patent/JP3589778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a porous membrane which contains polyethylene and polypropylene, and is useful in the production of lithium ion secondary cells because it has specific temperature characteristics, shows excellent current-breaking properties as a battery separator, when used as a cell separator and stably works without ignition of fire by the external short-circuit. SOLUTION: This membrane is porous membrane containing (A) polyethylene and (B) polypropylene (for example, a simple porous membrane of a mixture of A and B or a porous membrane formed by alternately laminating a porous membrane of an A and B mixture and a porous membrane of B). When the porous membrane is impregnated with an electrolyte solution, electrodes are arranged onto both main faces of the porous membrane and an alternating voltage is applied to the electrodes to raise the temperature of the membrane at a rate of 10-50 deg.C/second by the resistance heat of the electrolyte solution, the maximum temperature to be reached is adjusted to be equal to or less then (the melting point of the component A +20 deg.C). This porous membrane is prepared, for example, by mixing component A of >=60% crystallinity with component B of <=70% crystallinity so that the proportion of component A becomes >=12wt.% and by monoaxially orienting the membrane of the mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は多孔質膜及びその製
造方法、並びにリチウムイオン2次電池(以下、略して
リチウム2次電池とも称する。)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous membrane, a method for producing the same, and a lithium ion secondary battery (hereinafter also abbreviated as a lithium secondary battery).

【0002】[0002]

【従来の技術】種々のタイプの電池が実用に供されてお
り、これら電池には正負両極間の短絡防止のために両極
間にセパレータが介在させられる。
2. Description of the Related Art Various types of batteries have been put to practical use, and a separator is interposed between the two electrodes in order to prevent a short circuit between the positive and negative electrodes.

【0003】近年、電子機器のコードレス化等に対応す
るための電池として、高エネルギー密度、高起電力、及
び自己放電の少なさ等からリチウム2次電池が注目を浴
びている。
In recent years, lithium secondary batteries have been attracting attention as batteries for dealing with cordless electronic devices and the like because of their high energy density, high electromotive force, and low self-discharge.

【0004】リチウム2次電池としては、例えば、負極
材を金属リチウム、リチウムとアルミニウム等の金属と
の合金、カーボンやグラファイト等のリチウムイオンを
吸着又は吸蔵する材料、またはリチウムイオンをドーピ
ングした導電性高分子等で形成したものが知られてい
る。また、正極材は、例えば一般に(CFで示さ
れるフッ化黒鉛、CoLiO2 、MnO2 、V2 5
CuO、Ag2 CrO4等の金属酸化物、またはTiO
2 、CuS等の硫化物等で形成されている。
As a lithium secondary battery, for example, a negative electrode material is metallic lithium, an alloy of lithium and a metal such as aluminum, a material such as carbon or graphite that adsorbs or stores lithium ions, or a lithium ion-doped conductive material. Those formed of a polymer or the like are known. The positive electrode material is, for example, fluorinated graphite generally represented by (CF x ) n , CoLiO 2 , MnO 2 , V 2 O 5 ,
CuO, Ag 2 CrO 4 and other metal oxides, or TiO
2 , formed of sulfides such as CuS.

【0005】このリチウム2次電池は、負極材としての
リチウムが強い反応性を有し、また、エチレンカーボネ
ート、プロピレンカーボネート、アセトニトリル、γ−
ブチルラクトン、1、2−ジメトキシエタン、テトラヒ
ドロフラン等の有機溶媒にLiPF6 、LiCF3 SO
3 、LiClO4 、LiBF4 等を電解質とした非水系
の電解液を使用しているため、電池の誤使用によって外
部短絡が生じると正極−負極間に電流が流れて、電解液
の抵抗による発熱を生じて電池内部が著しく上昇し、遂
には火災や破裂といった重大事故を引き起こす危険性が
ある。従って、この様な事故を防ぐためにリチウム2次
電池では安全対策のために種々の機構が施されている。
例えば、電流遮断装置は、外部短絡により電池の温度が
上昇した場合に電解液の蒸発などによって電池内部の気
圧が上がるのを利用して、強制的に回路の一部を切断す
るよう構成されたものである。また、電池用セパレータ
が有するシャットダウン機構も安全機構の一つであり、
これについては種々の提案がなされている。例えば、シ
ャットダウン開始設計温度に融点があるポリエチレンと
ポリエチレンより30℃程度融点が高いポリプロピレン
の混合物(アロイ)の多孔質膜からなるもの(特開平4
−206257)や、融点が異なる熱可塑性高分子の多
孔質膜(具体的にはポリエチレンの多孔質膜とポリプロ
ピレンの多孔質膜)を積層した積層多孔質膜からなるも
の(特開平4−181651、特開昭62−1085
7)等がある。これらはいずれも多孔質膜の孔が溶融し
た樹脂によって塞がれて膜の電気抵抗(以下、単に抵抗
と称する。)が増大することにより電流を遮断するもの
であり、低融点のポリエチレンが溶融することによりシ
ャットダウンが低温で開始し、かつ、高融点のポリプロ
ピレンがポリエチレンの溶融時に溶融せず、セパレータ
の膜形状を保持するよう働くことにより、充分な耐熱温
度が得られるようになっている。なお、かかる多孔質膜
からなるセパレータにおけるシャットダウン特性は、通
常、電解液を含浸させたセパレータの両主面を電極で挟
んでセルを形成し、このセルを乾燥機に投入した後、
0.01〜0.1℃/秒程度のなめらかな勾配でセルの
温度を上昇させながら電極温度と電極間の抵抗値を測定
し、この電極温度と抵抗値の関係から評価している。
In this lithium secondary battery, lithium as a negative electrode material has a strong reactivity, and ethylene carbonate, propylene carbonate, acetonitrile, γ-
Butyl lactone, 1,2-dimethoxyethane, LiPF 6, LiCF 3 SO in an organic solvent such as tetrahydrofuran
Since a non-aqueous electrolyte solution containing 3 , LiClO 4 , LiBF 4, etc. as an electrolyte is used, if an external short circuit occurs due to incorrect use of the battery, a current will flow between the positive electrode and negative electrode, and heat will be generated due to the resistance of the electrolytic solution. There is a risk that the inside of the battery will rise significantly and eventually cause a serious accident such as fire or explosion. Therefore, in order to prevent such accidents, various mechanisms are provided for safety measures in lithium secondary batteries.
For example, the current interrupting device is configured to forcibly cut off a part of the circuit by utilizing an increase in the internal pressure of the battery due to evaporation of the electrolyte when the temperature of the battery increases due to an external short circuit. Things. Also, the shutdown mechanism that the battery separator has is one of the safety mechanisms,
Various proposals have been made regarding this. For example, it is composed of a porous film of a mixture (alloy) of polyethylene having a melting point at the shutdown start design temperature and polypropylene having a melting point higher than polyethylene by about 30 ° C.
-206257) or a laminated porous membrane in which porous membranes of thermoplastic polymers having different melting points (specifically, a polyethylene porous membrane and a polypropylene porous membrane) are laminated (JP-A-4-181651, JP 62-1085
7) etc. In all of these, the pores of the porous membrane are blocked by the molten resin to increase the electrical resistance of the membrane (hereinafter simply referred to as resistance), thereby cutting off the electric current. By doing so, the shutdown starts at a low temperature, and the polypropylene having a high melting point does not melt at the time of melting of polyethylene, and acts to maintain the film shape of the separator, whereby a sufficient heat resistant temperature can be obtained. Incidentally, the shutdown characteristics in the separator made of such a porous film is usually formed by sandwiching both main surfaces of the separator impregnated with the electrolytic solution with electrodes, and after charging the cell into a dryer,
The electrode temperature and the resistance value between the electrodes are measured while the temperature of the cell is raised with a smooth gradient of about 0.01 to 0.1 ° C./sec, and evaluation is performed based on the relationship between the electrode temperature and the resistance value.

【0006】[0006]

【発明が解決しようとする課題】昨今、リチウム2次電
池の電池材料の改良が進み、電池の出力容量が大きくな
っており、また、将来的にはなお一層の大容量化が進む
ことが予想される。例えば、正極材料であるCoをNi
に変更することで電池の出力容量は2〜3割向上する。
また、負極にコークス材を用いた場合、2倍近い出力容
量を得ることも可能である(但し、負極材料以外の電池
の構成要素の改良が必要)。しかしながら、電池の出力
容量が大きくなると、外部短絡した時に正極と負極間に
流れる電流値も大きくなり、外部短絡時の抵抗発熱(電
解液の抵抗による発熱)による温度上昇も速くなる。従
って、セパレータとしては、外部短絡した際に瞬時に電
流を遮断できる程度に高抵抗化する優れた電流遮断特性
(シャットダウン特性)を示すものが要求されるように
なってきている。
Recently, the battery materials of lithium secondary batteries have been improved and the output capacity of the batteries has been increased, and it is expected that the capacity will be further increased in the future. To be done. For example, the positive electrode material Co is Ni
By changing to, the output capacity of the battery is improved by 20 to 30%.
Further, when a coke material is used for the negative electrode, it is possible to obtain nearly double the output capacity (provided that the constituent elements of the battery other than the negative electrode material need to be improved). However, when the output capacity of the battery increases, the current value flowing between the positive electrode and the negative electrode also increases when an external short circuit occurs, and the temperature rise due to resistance heat generation (heat generation due to the resistance of the electrolytic solution) during an external short circuit also increases. Therefore, as the separator, a separator having an excellent current cutoff characteristic (shutdown characteristic) that increases the resistance so that the current can be instantaneously cut off when an external short circuit occurs is required.

【0007】本発明は前記のような課題に鑑みてなされ
たものであり、ポリエチレンとポリプロピレンとを含む
多孔質膜であって、電池用セパレータとして使用した際
にポリエチレンの溶融が起こると直ちに電流を遮断でき
る程度に高抵抗化する多孔質膜及びその製造方法を提供
することを目的とする。
The present invention has been made in view of the above problems, and is a porous film containing polyethylene and polypropylene, and when polyethylene is melted when used as a battery separator, an electric current is immediately generated. An object of the present invention is to provide a porous film having a high resistance to the degree of blocking and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明者らはポリエチレンとポリプロピレンからな
る多孔質膜について鋭意検討し、以下の温度特性の得ら
れる多孔質膜が優れた電流遮断特性を奏するものである
ことが判った。すなわち、本発明の多孔質膜は、ポリエ
チレンとポリプロピレンとを含んでなる多孔質膜であっ
て、電解液を含浸させた多孔質膜の両主面に電極を配置
し、この電極に交流電圧を印加して、多孔質膜を前記電
解液の抵抗発熱によって10〜50℃/秒の割合で昇温
させた時の最高到達温度が(ポリエチレンの融点+20
℃)以下であることを特徴としている。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventors of the present invention have made diligent studies on a porous membrane made of polyethylene and polypropylene, and a porous membrane having the following temperature characteristics has an excellent current blocking property. It turned out to be a characteristic. That is, the porous membrane of the present invention is a porous membrane containing polyethylene and polypropylene, the electrodes are arranged on both main surfaces of the porous membrane impregnated with the electrolytic solution, and an AC voltage is applied to this electrode. The maximum temperature reached when the porous film was heated by resistance heating of the electrolytic solution at a rate of 10 to 50 ° C./sec was (the melting point of polyethylene + 20
C)) or less.

【0009】このような本発明の多孔質膜の温度特性は
図1に示す評価試験機によって測定された。図1におい
て、10は電解液が含浸されたポリエチレンとポリプロ
ピレンからなる多孔質膜である。この電解液は一般のリ
チウム2次電池で使用されている電解液で、前記従来技
術で説明した非水系のものである。1は電極、2は多孔
質膜10の載置台を兼ねた電極であり、これらの電極は
白金やステンレス綱等のさびないもので形成されてい
る。3は多孔質膜10を電極2の上面に固定するための
クリップ、4aは温度センサ、4は温度センサ4aで検
知された温度を出力する温度計、5は交流電源である。
電極1,2間に交流電源5により交流電圧を印加する
と、電解液が含浸された多孔質膜10に電流が流れ、電
解液の抵抗により発熱が生じて、多孔質膜10が温度上
昇する。ここで、電源周波数は1kHz〜10MHz、
電圧実効値は5〜200Vの範囲で、電気抵抗による温
度上昇率が10〜50℃/秒(通電開始後2〜5秒の平
均)になるように調整されている。
The temperature characteristics of the porous membrane of the present invention as described above were measured by the evaluation tester shown in FIG. In FIG. 1, reference numeral 10 is a porous film made of polyethylene and polypropylene impregnated with an electrolytic solution. This electrolytic solution is an electrolytic solution used in a general lithium secondary battery, and is the non-aqueous type electrolytic solution described in the prior art. Reference numeral 1 is an electrode, and 2 is an electrode that also serves as a mounting base for the porous film 10, and these electrodes are formed of rust-proof material such as platinum or stainless steel. 3 is a clip for fixing the porous film 10 to the upper surface of the electrode 2, 4a is a temperature sensor, 4 is a thermometer for outputting the temperature detected by the temperature sensor 4a, and 5 is an AC power supply.
When an AC voltage is applied between the electrodes 1 and 2 by the AC power supply 5, a current flows through the porous membrane 10 impregnated with the electrolytic solution, heat is generated due to the resistance of the electrolytic solution, and the temperature of the porous membrane 10 rises. Here, the power supply frequency is 1 kHz to 10 MHz,
The effective voltage value is in the range of 5 to 200 V, and is adjusted so that the rate of temperature increase due to electric resistance is 10 to 50 ° C./second (average of 2 to 5 seconds after the start of energization).

【0010】かかる通電状態を続けると多孔質膜10は
温度上昇のためにポリエチレンが溶融する。多くの場
合、このポリエチレンの溶融によって膜の抵抗が増大
し、電流が流れなくなって温度上昇率が低下し、最高温
度に到達した後、温度が徐々に低下する。ここで、最高
到達温度が(ポリエチレンの融点+20℃)以下である
ものは、ポリエチレンの溶融が始まると直ちに多孔質膜
の電気抵抗が大きく増加して電流を有効に遮断したもの
であると解釈できる。このような温度特性を示す多孔質
膜を電池にセパレータとして組み込だ場合、外部短絡が
生じると瞬時にシャットダウンが開始し、その後も膜形
状が安定に維持されて優れたシャットダウン効果が得ら
れた。一方、最高到達温度が(ポリエチレンの融点+2
0℃)より大きいものは、ポリエチレンの溶融が始まっ
てから多孔質膜の抵抗が大きく増加するまでに時間がか
かり、この間に流れる電流によって膜の温度が(ポリエ
チレンの融点+20℃)より大きくなったものであると
解釈できる。このような多孔質膜を電池にセパレータと
して組み込んだ場合、外部短絡が生じた時のシャットダ
ウンの開始は前記最高到達温度が(ポリエチレンの融点
+20℃)以下である膜を用いた場合のそれに比して大
きく遅れ、また、膜形状を安定に維持することができ
ず、優れたシャットダウン効果が得られなかった。ま
た、前記とは異なり、通電開始後、多孔質膜の温度が上
昇し続け、最高到達温度を示す前に、ポリプロピレンが
溶融してピンホールを発生してしまうものもあった。な
お、従来の乾燥機に投入する方法では、単に温度とイン
ピーダンスの関係を見ていた。これに対し、以上記載の
本発明の方法では、インピーダンスを測定するような微
小電流を流しただけでは予測できない、膜に孔が開くと
いう現象も確認でき、これがまさに電池の安全性に重要
となる。
When the energized state is continued, polyethylene is melted in the porous film 10 due to the temperature rise. In many cases, the melting of the polyethylene increases the resistance of the film, the current does not flow, the temperature rising rate decreases, and after reaching the maximum temperature, the temperature gradually decreases. Here, if the maximum temperature reached is (the melting point of polyethylene + 20 ° C.) or less, it can be interpreted that the electric resistance of the porous membrane is greatly increased immediately after the melting of polyethylene is started and the current is effectively cut off. . When a porous membrane having such temperature characteristics was incorporated into a battery as a separator, the shutdown was instantaneously initiated when an external short circuit occurred, and thereafter, the membrane shape was stably maintained and an excellent shutdown effect was obtained. . On the other hand, the highest temperature reached is (melting point of polyethylene +2
If the temperature is higher than 0 ° C), it takes time for the resistance of the porous film to increase significantly after the start of melting of polyethylene, and the temperature of the film becomes higher than (melting point of polyethylene + 20 ° C) due to the current flowing during this time. Can be interpreted as a thing. When such a porous membrane is incorporated into a battery as a separator, the start of shutdown when an external short circuit occurs is higher than that when a membrane whose maximum temperature is (melting point of polyethylene + 20 ° C.) or less is used. However, the film shape could not be stably maintained, and an excellent shutdown effect could not be obtained. In addition, unlike the above, in some cases, the temperature of the porous film continued to rise after the start of energization, and the polypropylene melted to form pinholes before the maximum temperature was reached. In addition, in the conventional method of charging in a dryer, the relationship between temperature and impedance was simply observed. On the other hand, in the method of the present invention described above, it is possible to confirm a phenomenon in which a hole is formed in the membrane, which cannot be predicted simply by passing a minute current such as measuring impedance, which is very important for the safety of the battery. .

【0011】また、本発明の第1の多孔質膜の製造方法
は、結晶化度が60%より大きいポリエチレンと結晶化
度が70%より大きいポリプロピレンとを前記ポリエチ
レンの配合率が12重量%以上となるよう混合してなる
膜状物を1軸延伸することにより多孔質化せしめる。か
かる製造方法によれば、前記温度特性を有する本発明の
多孔質膜、すなわち、ポリエチレンの溶融が始まると直
ちに電流を遮断できる程度までその電気抵抗が増大する
多孔質膜を合理的に製造することができる。
Further, in the first method for producing a porous membrane of the present invention, polyethylene having a crystallinity of more than 60% and polypropylene having a crystallinity of more than 70% are contained in the polyethylene in an amount of 12% by weight or more. The film-like material obtained by mixing so as to be uniaxially stretched is made porous. According to such a manufacturing method, it is possible to rationally manufacture the porous film of the present invention having the temperature characteristics, that is, the porous film whose electric resistance increases to such an extent that the electric current can be cut off immediately after the melting of polyethylene begins. You can

【0012】また、本発明の第2の多孔質膜の製造方法
は、結晶化度が60%より大きいポリエチレンと結晶化
度が70%より大きいポリプロピレンとを混合してなる
第1の膜状物と、ポリプロピレンからなる第2の膜状物
とが交互に積層され、全体当たりのポリエチレンの配合
率が12重量%以上にされた積層構造の膜状物を1軸延
伸することにより多孔質化せしめる。かかる製造方法に
よれば、前記第1の製造方法と同様に前記温度特性を有
する本発明の多孔質膜を合理的に製造することができる
とともに、得られる多孔質膜はポリプロピレンの多孔質
膜を含む積層構造になり、ポリエチレン溶融時に膜形状
がより安定に維持される多孔質膜を得ることができる。
Further, the second method for producing a porous membrane of the present invention is the first membrane-like product obtained by mixing polyethylene having a crystallinity of more than 60% and polypropylene having a crystallinity of more than 70%. And a second film-like material made of polypropylene are alternately laminated, and the film-like material having a laminated structure in which the total content of polyethylene is 12% by weight or more is uniaxially stretched to be made porous. . According to such a manufacturing method, the porous film of the present invention having the temperature characteristics can be rationally manufactured as in the first manufacturing method, and the obtained porous film is a polypropylene porous film. It is possible to obtain a porous film having a laminated structure including the film and maintaining the film shape more stable when polyethylene is melted.

【0013】また、本発明のリチウムイオン2次電池
は、前記温度特性を有する本発明の多孔質膜に電解液を
含浸させたものを一対の電極間に挟んで構成したもので
ある。。このような構成にしたことにより、外部短絡し
ても発火やショートが起こらず、安定動作するリチウム
イオン2次電池にできる。
The lithium ion secondary battery of the present invention is constructed by sandwiching a porous membrane of the present invention having the above-mentioned temperature characteristics impregnated with an electrolytic solution between a pair of electrodes. . With such a configuration, even if an external short circuit occurs, ignition or short circuit does not occur, and a lithium ion secondary battery that operates stably can be obtained.

【0014】[0014]

【発明の実施の形態】本発明の多孔質膜は前記した温度
特性を有するものであって、その製造方法は特に限定さ
れないが、以下に環境汚染の心配がなく、工程(作業)
が簡単な製造方法の一例を説明する。これは、この種の
分野で従来から行われている多孔質膜の製法、すなわ
ち、ポリエチレンとポリプロピレンの混合物(アロイ)
の膜状物を得、この膜状物を延伸することによって多孔
質化せしめる方法において、ポリエチレンとして結晶化
度が60%より大きいもの(好ましくは70%以上のも
の)を、ポリプロピレンとして結晶化度が70%より大
きいもの(好ましくは80%以上のもの)を用いる方法
である。なお、従来は一般に結晶化度が40〜60%の
ポリエチレンと結晶化度が50〜70%のポリプロピレ
ンが用いられている。前記結晶化度は示差走査熱量計
(DSC)により測定した値である。
BEST MODE FOR CARRYING OUT THE INVENTION The porous membrane of the present invention has the above-mentioned temperature characteristics, and the production method thereof is not particularly limited, but the following steps (work) are not concerned with environmental pollution.
An example of a simple manufacturing method will be described. This is a conventional method for producing porous membranes in this field, that is, a mixture of polyethylene and polypropylene (alloy).
In the method of obtaining a membranous substance of (1) and making the membranous substance porous by stretching, the polyethylene having a crystallinity of more than 60% (preferably 70% or more) and the polypropylene having a crystallinity of Is more than 70% (preferably 80% or more). Conventionally, polyethylene having a crystallinity of 40 to 60% and polypropylene having a crystallinity of 50 to 70% are generally used. The crystallinity is a value measured by a differential scanning calorimeter (DSC).

【0015】かかる製法によって得られる多孔質膜が前
記した温度特性を有するものとなる理由は明らかではな
いが、本発明者は次のように推察している。すなわち、
同じ条件で延伸したとしても、結晶化度の高い材料は延
伸されやすく、結晶化度が60%より大きいポリエチレ
ンと結晶化度が70%より大きいポリプロピレンの膜状
物を延伸した場合、従来の結晶化度が40〜60%のポ
リエチレンと結晶化度が50〜70%のポリプロピレン
の膜状物を延伸した場合よりも、ポリエチレン及びポリ
プロピレンの双方とも大きく引き延ばされることとなる
(特に、ポリエチレンが大きく引き延ばされる。)。従
って、本発明の結晶化度が60%より大きいポリエチレ
ンと結晶化度が70%より大きいポリプロピレンの膜状
物を延伸して得られる多孔質膜は、図2(a)に示すよ
うに、平たく引き延ばされた形状のポリエチレン部10
aがポリプロピレン部10bで囲まれた状態になる。一
方、従来の結晶化度が40〜60%のポリエチレンと結
晶化度が50〜70%のポリプロピレンの膜状物を延伸
して得られる多孔質膜は、図2(b)に示すように、実
質的に球形のポリエチレン部10aがポリプロピレン部
10bで囲まれた状態になる。なお、図では孔を省略し
ているが、ポリエチレン部10a及びポリプロピレン1
0bの双方に孔が形成されている。これら双方の多孔質
膜のいずれにおいても、温度上昇によりポリエチレンが
溶融してポリエチレン部10aの孔が塞がると、ポリエ
チレン部10aには電流は流れず、ポリプロピレン部1
0bを縫うように電流が流れることになるが、図2
(a)の本発明の多孔質膜ではポリプロピレン部10b
を流れる電流11の電流経路が長く、図2(b)の従来
の多孔質膜ではポリプロピレン部10bを流れる電流1
2の電流経路が短くなる。従って、図2(a)の本発明
の多孔質膜では、ポリエチレンが溶融してポリエチレン
部10aの孔が塞がった時点で膜全体の抵抗が大きく増
加し、電流遮断効果(シャットダウン効果)が得られ、
膜の温度が一旦上昇し、最高温度が(ポリエチレンの融
点+20℃)を越えない範囲で低下することとなる。一
方、図2(b)の従来の多孔質膜では、ポリエチレンが
溶融してポリエチレン部10aの孔が塞がれても、ポリ
エチレン部10aの孔が塞がれる前(ポリエチレン部1
0aとポリプロピレン部10bの両方にある孔を介して
電流が流れる状態)と電流経路の長さは殆ど変わらない
ため、この時点での膜全体の抵抗の増加は小さく、この
後溶融したポリエチレンがポリプロピレン10bの孔を
塞いだ時点で、膜全体の抵抗が大きく増加し、電流遮断
効果(シャットダウン効果)が得られ、その結果、膜の
温度が(ポリエチレンの融点+20℃)を越える温度ま
で上昇した後低下することとなる。
The reason why the porous film obtained by such a manufacturing method has the above-mentioned temperature characteristics is not clear, but the present inventor speculates as follows. That is,
Even if stretched under the same conditions, a material with high crystallinity is likely to be stretched, and when a film of polyethylene with crystallinity greater than 60% and polypropylene with crystallinity greater than 70% is stretched, conventional crystal Both polyethylene and polypropylene are stretched to a greater extent than when a film of polyethylene having a degree of crystallinity of 40 to 60% and polypropylene having a degree of crystallinity of 50 to 70% is stretched (especially polyethylene Be stretched.) Therefore, a porous film obtained by stretching a film of polyethylene having a crystallinity of more than 60% and polypropylene having a crystallinity of more than 70% of the present invention is flat as shown in FIG. 2 (a). Stretched polyethylene part 10
a is surrounded by the polypropylene portion 10b. On the other hand, a conventional porous membrane obtained by stretching a film of polyethylene having a crystallinity of 40 to 60% and polypropylene having a crystallinity of 50 to 70% is as shown in FIG. The substantially spherical polyethylene portion 10a is surrounded by the polypropylene portion 10b. Although the holes are omitted in the figure, the polyethylene portion 10a and the polypropylene 1
Holes are formed in both 0b. In both of these porous membranes, when polyethylene melts due to temperature rise and the pores of the polyethylene part 10a are closed, no current flows through the polyethylene part 10a and the polypropylene part 1
The electric current will flow as if sewing 0b.
In the porous membrane of the present invention (a), the polypropylene portion 10b
2 has a long current path, and in the conventional porous membrane of FIG. 2B, the current 1 flowing through the polypropylene portion 10b is 1
The current path of 2 becomes short. Therefore, in the porous membrane of the present invention of FIG. 2 (a), when the polyethylene is melted and the pores of the polyethylene portion 10a are closed, the resistance of the entire membrane is greatly increased, and the current interruption effect (shutdown effect) is obtained. ,
The temperature of the film once rises, and falls within the range where the maximum temperature does not exceed (melting point of polyethylene + 20 ° C.). On the other hand, in the conventional porous membrane of FIG. 2B, even if polyethylene melts and the pores of the polyethylene portion 10a are blocked, before the pores of the polyethylene portion 10a are blocked (polyethylene portion 1).
0a and the polypropylene part 10b) and the length of the current path is almost unchanged, and the increase in the resistance of the entire membrane at this point is small. At the time when the hole of 10b was closed, the resistance of the whole film was greatly increased, and the current cutoff effect (shutdown effect) was obtained. As a result, the temperature of the film was raised to a temperature exceeding (the melting point of polyethylene + 20 ° C). Will be reduced.

【0016】前記において、ポリエチレンとポリプロピ
レンの混合物(アロイ)の膜状化(フィルム化)は、例
えばTダイ押出法、インフレーション法等の公知の方法
で行われる。また、ポリエチレンとポリプロピレンのア
ロイの膜状物を延伸する方法としては、ロール延伸、テ
ンター延伸等の方法で1軸方向に延伸する方法(第1方
法)、低温度領域で1軸延伸した後、この延伸の延伸方
向と同一の延伸方向に高温度領域で再度延伸する方法
(第2方法)、低温度領域で1軸延伸した後、この延伸
の延伸方向とは延伸方向を変えて高温度領域にて再度延
伸する方法(第3方法)、低温度領域で1軸延伸した
後、この延伸の延伸方向と同一の延伸方向に高温度領域
にて再度延伸し、更にこの延伸と延伸方向を換えて再々
度延伸を行う方法(第4方法)等が採用される。1回の
延伸を行う第1の方法ではポリエチレンの融点をTmb
とすると、−20℃〜(Tmb−2)℃の温度領域で行う
のが好ましい。また、2回以上の延伸を行う第2〜第4
方法での低温度領域及び高温度領域は、ポリエチレンの
融点をTmb℃とすると、低温度領域が−20℃〜(Tmb
−30)℃の温度領域であり、高温度領域が(Tmb−3
0)℃〜(Tmb−2)℃の温度領域であるのが好まし
い。これは、これらの温度領域でそれぞれの延伸を行う
こと、膜状物を効率良く延伸され、しかも孔径の拡大化
が充分になされて、後述する好ましい孔径(0.005
〜1μm)、空孔率(20〜80%)を有する多孔質膜
を再現性よく得ることができるためである。また、第4
方法で延伸した場合、第1〜第3方法よりも、孔径の拡
大化及び膜内に孔を一様に存在させる点においてより好
ましい結果をもたらす。これらの延伸方法による延伸を
行った際の膜状物の延伸倍率は、すなわち、下記式(数
1)で表される延伸倍率は一般に5〜600%、好まし
くは20〜300%である。式(数1)中、L0 は延伸
前の膜状物の長さ、L1 は延伸後の最終的な膜状物の長
さである。
In the above, the mixture (alloy) of polyethylene and polypropylene is formed into a film (formed into a film) by a known method such as a T-die extrusion method or an inflation method. In addition, as a method for stretching a film of an alloy of polyethylene and polypropylene, a method such as roll stretching or tenter stretching in a uniaxial direction (first method), or uniaxial stretching in a low temperature region, A method of stretching again in the high temperature region in the same stretching direction as this stretching direction (second method), after uniaxially stretching in the low temperature region, the stretching direction is changed from the stretching direction of this stretching process to the high temperature region. (3rd method), after uniaxially stretching in the low temperature region, stretch in the high temperature region again in the same stretching direction as this stretching direction, and then change the stretching direction. Then, a method (fourth method) of performing re-stretching again is adopted. In the first method, in which stretching is performed once, the melting point of polyethylene is T mb ℃.
Then, it is preferable to carry out in the temperature range of −20 ° C. to (T mb −2) ° C. In addition, second to fourth stretching is performed twice or more.
In the low temperature region and the high temperature region in the method, when the melting point of polyethylene is T mb ° C, the low temperature region is -20 ° C to (T mb ° C.
−30) ° C., and the high temperature region is (T mb −3)
It is preferably in the temperature range of 0) ° C to (T mb -2) ° C. The reason for this is that by performing the respective stretching in these temperature regions, the film-like material can be efficiently stretched, and the pore size can be sufficiently enlarged, so that the preferable pore size (0.005
This is because a porous film having a porosity (20 to 80%) can be obtained with good reproducibility. Also, the fourth
When stretched by the method, more preferable results are obtained than in the first to third methods in that the pore diameter is enlarged and the pores are uniformly present in the film. The stretch ratio of the film-like material when stretched by these stretching methods, that is, the stretch ratio represented by the following formula (Formula 1) is generally 5 to 600%, preferably 20 to 300%. In the formula (Formula 1), L 0 is the length of the film material before stretching, and L 1 is the final length of the film material after stretching.

【0017】[0017]

【数1】 [Equation 1]

【0018】また、1回の延伸工程からなる第1方法に
おいても、複数回の延伸工程からなる第2〜第4方法に
おいても、各工程での延伸速度は、一般に10〜500
0%/min、好ましくは100〜1000%/min
である。
Further, in both the first method consisting of one stretching step and the second to fourth methods consisting of a plurality of stretching steps, the stretching speed in each step is generally 10 to 500.
0% / min, preferably 100-1000% / min
It is.

【0019】前記ではポリエチレンとポリプロピレンの
アロイの多孔質膜一層からなる多孔質膜について説明し
たが、従来から提案されているポリエチレンとポリプロ
ピレンのアロイの多孔質膜(アロイ層)とポリプロピレ
ンの多孔質膜(ポリプロピレン層)とを積層したタイプ
の多孔質膜においても、ポリエチレンとポリプロピレン
のアロイ層を得る際に、結晶化度が60%より大きいポ
リエチレンと、結晶化度が70%より大きいポリプロピ
レンを用いることにより、本発明の被加熱温度特性を有
する多孔質膜にできる。すなわち、結晶化度が60%よ
り大きいポリエチレンと結晶化度が70%より大きいポ
リプロピレンのアロイの膜状物と、ポリプロピレンの膜
状物を積層し、これを前記と同様の延伸方法で延伸して
多孔質化する。ここでの積層構造はアロイ層とポリプロ
ピレン層の2層構造、アロイ層の両主面にポリプロピレ
ン層を重ねた三層構造、ポリプロピレン層の両主面にア
ロイ層を重ねた三層構造、アロイ層とポリプロピレン層
の交互にトータルの層数が4層以上となるよう積層した
多層構造のいずれであってもよい。
Although the porous film composed of a single layer of a porous film of an alloy of polyethylene and polypropylene has been described above, a porous film of an alloy of polyethylene and polypropylene (alloy layer) and a porous film of polypropylene which have been proposed hitherto. Also in a porous membrane of a type in which (polypropylene layer) is laminated, polyethylene having a crystallinity of more than 60% and polypropylene having a crystallinity of more than 70% should be used when obtaining an alloy layer of polyethylene and polypropylene. Thus, the porous film having the temperature characteristics to be heated of the present invention can be obtained. That is, a polyethylene alloy film having a crystallinity of more than 60% and a polypropylene alloy having a crystallinity of more than 70% and a polypropylene film are laminated and stretched by the same stretching method as described above. It becomes porous. The laminated structure here is a two-layer structure of an alloy layer and a polypropylene layer, a three-layer structure in which polypropylene layers are stacked on both main surfaces of the alloy layer, a three-layer structure in which an alloy layer is stacked on both main surfaces of the polypropylene layer, and an alloy layer. And a polypropylene layer may be alternately laminated to have a total number of layers of 4 or more.

【0020】また、ポリエチレンとポリプロピレンのア
ロイの多孔質膜一層からなる多孔質膜を得る場合であっ
ても、ポリエチレンとポリプロピレンのアロイの多孔質
膜(アロイ層)とポリプロピレンの多孔質膜(ポリプロ
ピレン層)とを積層したタイプの多孔質膜を得る場合で
あっても、膜状物を延伸する前に膜状物にアニーリング
を施すことができる。このアニーリングは多孔質化時に
空孔率を高める働きをする。このアニーリングは(Tmb
−30)℃〜(Tmb−2)℃の温度領域で行うのが好ま
しく、数秒〜数時間程度行われる。
Even in the case of obtaining a porous film composed of a single layer of a porous film of an alloy of polyethylene and polypropylene, a porous film of an alloy of polyethylene and polypropylene (alloy layer) and a porous film of polypropylene (polypropylene layer). Even in the case of obtaining a porous film of the type in which (1) and (2) are laminated, the film can be annealed before stretching the film. This annealing serves to increase the porosity during porosification. This annealing is (T mb
It is preferably carried out in the temperature range of −30) ° C. to (T mb −2) ° C., and is carried out for several seconds to several hours.

【0021】以上の製造方法によって本発明の多孔質膜
を製造する場合、膜全体に対するポリエチレンの配合率
を12重量%以上にしなければならないことを実験によ
り確認している。これは、恐らく、ポリエチレンの配合
率が12重量%に満たない場合は、膜中に平たく引き延
ばされた形状で存在するポリエチレン部の存在量が少な
くなり過ぎ、電流経路を長大化が充分になされなくなる
ためであると考えられる。また、膜全体に対するポリエ
チレンの配合率が90重量%を越える場合は、ポリエチ
レンが溶融した時に膜形状を維持できなくなる場合があ
り、膜全体に対するポリエチレンの配合率の上限は90
重量%にするのが好ましい。
It has been confirmed by experiments that when the porous membrane of the present invention is produced by the above production method, the content of polyethylene in the entire membrane must be 12% by weight or more. This is probably because when the content of polyethylene is less than 12% by weight, the amount of the polyethylene portion existing in a flat and stretched shape in the film becomes too small and the current path is sufficiently lengthened. It is thought to be because it will not be done. Further, if the blending ratio of polyethylene with respect to the entire membrane exceeds 90% by weight, the shape of the membrane may not be maintained when polyethylene is melted, and the upper limit of the blending ratio of polyethylene with respect to the entire membrane is 90%.
It is preferred that the content be% by weight.

【0022】本発明の多孔質膜の孔径は一般に0.00
5〜1μm、好ましくは0.01〜0.5μmである。
空孔率は一般に20〜80%、好ましくは30〜70%
である。また、本発明の多孔質膜を構成するポリエチレ
ンの種類は特に限定されるものではなく、低密度、中密
度、または高密度のポリエチレンや、直鎖状のポリエチ
レン等の各種ポリエチレンを用いることができる。ま
た、ポリプロピレンの種類も特に限定されるわけではな
いが、高い空孔率を得るためにはアイソタクチックイン
デックスが90%以上、好ましくは95%以上のアイソ
タクチックポリプロピレンを用いるのが好ましい。
The pore size of the porous membrane of the present invention is generally 0.00
It is 5 to 1 μm, preferably 0.01 to 0.5 μm.
Porosity is generally 20-80%, preferably 30-70%
It is. Further, the kind of polyethylene constituting the porous membrane of the present invention is not particularly limited, and low density, medium density or high density polyethylene, and various polyethylene such as linear polyethylene can be used. . The type of polypropylene is also not particularly limited, but in order to obtain a high porosity, it is preferable to use isotactic polypropylene having an isotactic index of 90% or more, preferably 95% or more.

【0023】本発明の多孔質膜はリチウム2次電池のセ
パレータだけでなく、もちろん、リチウム(イオン)1
次電池や他のタイプ電池のセパレータとしても使用でき
る。
The porous film of the present invention is not limited to the separator of the lithium secondary battery, but of course, lithium (ion) 1
It can also be used as a separator for secondary batteries and other types of batteries.

【0024】[0024]

【実施例】【Example】

(実施例1)結晶化度70%のポリエチレンと、結晶化
度80%のポリプロピレンを用意し、これらを混合比
(ポリエチレン:ポリプロピレン)6:4の割合で混合
した後フィルム化し、熱を加え(115℃で)延伸倍率
160%の1軸延伸を行って、厚みが25μm、平均孔
径が0.04μm、空孔率が45%の多孔質膜を作製し
た。そして、この多孔質膜に電解液(LiBF4 溶融プ
ロピレンカーボネートとDME(ジメトキシエタン)の
混合溶液)を含浸し、両主面をステンレス製の電極で挟
んだ。そして、この両主面が電極で挟まれた多孔質膜を
前記図1に示した評価試験機に搭載し、周波数100k
Hzの正弦波交流電圧を実効値35Vで印加した。この
時の温度上昇率(通電開始後2〜5秒の平均)は20℃
/秒であった。図3は正弦波交流電圧印加開始後の多孔
質膜の温度変化特性を示した図であり、電圧印加開始後
約2分で最高到達温度に達し、約5.5分を経過した後
温度が低下した。最高到達温度は125℃で、これは
(ポリエチレンの融点(125℃)+20℃)である1
45℃以下であった。そして、この多孔質膜をリチウム
イオン2次電池に組み込み、過充電状態(満充電後1C
で1時間充電して200%の充電状態)にして、外部短
絡試験を行った。ここでのリチウムイオン2次電池は、
アルミ箔に活物質としてのLiCoO2 と導電助材とし
てのカーボンとN−メチルピロリドン(NMP)の混合
物を塗布し乾燥して得られた正極材と電解銅箔に活物質
としての黒鉛とNMPの混合物を塗布し乾燥して得られ
た負極材との間に前記多孔質膜にエチレンカーボネート
(EC)とDMC(ジメチルカーボネート)を等量(体
積比1:1)混合した溶液1リットルにLiPF6 を1
モル溶解した電解液を含浸させたものを挟んでなる積層
体をセンタピンの周りに複数重ねて巻き付け、この巻回
物を負極缶に収容し、正極蓋で封止してなる単三電池で
ある(負極缶には安全弁が設けられている。)。外部短
絡試験の結果、電池はショートや発火は全く起こらず安
定に動作し、電池管壁温度も100℃以下であった。な
お、前記1Cの〔C〕は、電池の充放電電流の大きさを
表す単位であり、1Cは電池を1時間で完全放電状態か
ら満充電状態(満充電状態から完全放電状態)にする電
流値を示す(例えば、750mAhの電池では1Cは7
50mA、2Cは750×2=1500mA、0.5C
は750/2=350mAとなる)。
(Example 1) A polyethylene having a crystallinity of 70% and a polypropylene having a crystallinity of 80% were prepared, and these were mixed at a mixing ratio (polyethylene: polypropylene) of 6: 4 to form a film, and heat was applied ( Uniaxial stretching with a stretching ratio of 160% (at 115 ° C.) was performed to prepare a porous membrane having a thickness of 25 μm, an average pore diameter of 0.04 μm and a porosity of 45%. Then, this porous membrane was impregnated with an electrolytic solution (a mixed solution of LiBF 4 molten propylene carbonate and DME (dimethoxyethane)), and both main surfaces were sandwiched by stainless electrodes. Then, the porous membrane having both main surfaces sandwiched by electrodes was mounted on the evaluation tester shown in FIG.
A sinusoidal AC voltage of Hz was applied with an effective value of 35V. Temperature rise rate at this time (average of 2 to 5 seconds after the start of energization) is 20 ° C
/ Sec. FIG. 3 is a diagram showing the temperature change characteristics of the porous film after the start of the application of the sinusoidal AC voltage. The maximum temperature was reached about 2 minutes after the start of the voltage application, and the temperature reached after about 5.5 minutes. Fell. The highest temperature reached is 125 ℃, which is (the melting point of polyethylene (125 ℃) + 20 ℃) 1
It was 45 ° C or lower. Then, this porous film was incorporated into a lithium ion secondary battery, and was overcharged (1C after fully charged).
After that, the battery was charged for 1 hour to 200% charge state), and an external short circuit test was performed. The lithium ion secondary battery here is
A positive electrode material obtained by applying a mixture of LiCoO 2 as an active material, carbon as a conductive auxiliary agent, and N-methylpyrrolidone (NMP) to an aluminum foil and drying it, and graphite and NMP as an active material were obtained. LiPF 6 was added to 1 liter of a solution prepared by mixing an equal amount (volume ratio 1: 1) of ethylene carbonate (EC) and DMC (dimethyl carbonate) in the porous film between the negative electrode material obtained by applying the mixture and drying. 1
It is an AA battery in which a plurality of laminated bodies sandwiching a material impregnated with a molly dissolved electrolytic solution are stacked and wound around a center pin, the wound product is housed in a negative electrode can, and sealed with a positive electrode lid. (The negative electrode can has a safety valve.) As a result of the external short-circuit test, the battery operated stably without any short circuit or ignition, and the battery tube wall temperature was 100 ° C. or lower. In addition, 1C [C] is a unit showing the magnitude of the charging / discharging current of the battery, and 1C is a current that changes the battery from a fully discharged state to a fully charged state (from a fully charged state to a completely discharged state) in 1 hour. Indicates the value (eg 1C is 7 for a 750mAh battery)
50mA, 2C is 750 × 2 = 1500mA, 0.5C
Is 750/2 = 350 mA).

【0025】(比較例1)結晶化度50%のポリエチレ
ンと、結晶化度60%のポリプロピレンを用いた以外
は、前記実施例1と同様にして多孔質膜を得た。そし
て、この多孔質膜について前記実施例1と同様の試験を
行った。図4はこの時の正弦波交流電圧印加開始後の多
孔質膜の温度変化特性を示した図であり、電圧印加開始
後約20秒で150℃まで達した。最高到達温度は更に
高いと予想できるが、電圧印加を続けて行くと多孔質膜
が溶融して正極−負極間がショートしたため、電源の安
全装置が働いて通電が停止し、これ以上の測定が不可能
となった。そして、この多孔質膜を前記実施例1と同様
にして電池に組み込み、過充電後の外部短絡試験を行っ
たところ、電池10個のうち2個が電池管壁温度が12
0℃以上に上昇した。
Comparative Example 1 A porous membrane was obtained in the same manner as in Example 1 except that polyethylene having a crystallinity of 50% and polypropylene having a crystallinity of 60% were used. Then, the same test as in Example 1 was performed on this porous membrane. FIG. 4 is a diagram showing the temperature change characteristics of the porous film after the start of the application of the sinusoidal alternating voltage at this time, and the temperature reached 150 ° C. about 20 seconds after the start of the voltage application. The highest temperature can be expected to be higher, but when the voltage was continuously applied, the porous film melted and short-circuited between the positive and negative electrodes, so the safety device of the power supply actuated and the energization stopped, and further measurement was not possible. It became impossible. Then, this porous film was incorporated into a battery in the same manner as in Example 1 and an external short circuit test after overcharging was performed. As a result, 2 out of 10 batteries had a battery tube wall temperature of 12
The temperature rose to 0 ° C or higher.

【0026】(実施例2)結晶化度70%のポリエチレ
ンと結晶化度80%のポリプロピレンを用意し、これら
を混合比(ポリエチレン:ポリプロピレン)5:5の割
合で混合した後膜状化(フィルム化)して第1の膜状物
(フィルム)を得た。また、ポリプロピレン単体からな
る第2の膜状物(フィルム)を別に作製した。そして、
第1の膜状物(フィルム)の両主面にそれぞれ第2の膜
状物を重ね、この積層物を熱を加え(115℃で)延伸
倍率160%の1軸延伸を行って、厚みが25μmの積
層多孔質膜を作製した。3層の厚さの比率は1:1:1
であり、膜全体当たりのポリエチレンの配合率は16.
7重量%であった。そして、この積層多孔質膜について
前記実施例1と同様の試験を行った。図5はこの時の正
弦波交流電圧印加開始後の多孔質膜の温度変化特性を示
した図であり、電圧印加開始後約11分で最高到達温度
に達した。最高到達温度は127℃で、これは(ポリエ
チレンの融点(125℃)+20℃)である145℃以
下であった。続いて、前記実施例1と同様にこの多孔質
膜をリチウムイオン2次電池に組み込み、外部短絡試験
を行ったところ、ショートや発火は全く起こらず安定に
動作し、電池管壁温度も100℃以下であった。
(Example 2) Polyethylene having a crystallinity of 70% and polypropylene having a crystallinity of 80% were prepared, and these were mixed at a mixing ratio (polyethylene: polypropylene) of 5: 5 to form a film (film). To obtain a first film-like material (film). Further, a second film-shaped material (film) made of polypropylene alone was separately prepared. And
The second membranous material was superposed on both main surfaces of the first membranous material (film), and the laminate was heated (at 115 ° C.) and uniaxially stretched at a stretching ratio of 160% to obtain a thickness of A 25 μm laminated porous membrane was prepared. The thickness ratio of the three layers is 1: 1: 1
And the blending ratio of polyethylene per membrane is 16.
7% by weight. Then, the same test as in Example 1 was performed on this laminated porous membrane. FIG. 5 is a diagram showing the temperature change characteristics of the porous film after the start of the application of the sinusoidal alternating voltage at this time, and the maximum temperature was reached about 11 minutes after the start of the voltage application. The highest temperature reached was 127 ° C., which was below (the melting point of polyethylene (125 ° C.) + 20 ° C.), which was 145 ° C. Subsequently, as in Example 1, the porous film was incorporated into a lithium ion secondary battery and subjected to an external short circuit test. As a result, no short circuit or ignition occurred, the battery operated stably, and the battery tube wall temperature was 100 ° C. It was below.

【0027】(比較例2)第1の膜状物(フィルム)の
原料として結晶化度が50%のポリエチレンと、結晶化
度が60%のポリプロピレンを用いた以外は、前記実施
例2と同様にして三層構造の積層構造の積層多孔質膜を
得た。そして、この多孔質膜について前記実施例1と同
様の試験を行った。図6はこの時の正弦波交流電圧印加
開始後の多孔質膜の温度変化特性を示した図であり、最
高到達温度は157℃で、これは(ポリエチレンの融点
(125℃)+20℃)である145℃より高くなっ
た。前記実施例1と同様に、この多孔質膜をリチウムイ
オン2次電池に組み込み、外部短絡試験を行ったとこ
ろ、電池10個のうち2個が電池管壁温度が120℃以
上に上昇した。
(Comparative Example 2) The same as Example 2 except that polyethylene having a crystallinity of 50% and polypropylene having a crystallinity of 60% were used as raw materials for the first film-like material (film). Thus, a laminated porous film having a three-layer structure was obtained. Then, the same test as in Example 1 was performed on this porous membrane. FIG. 6 is a diagram showing the temperature change characteristics of the porous film after the start of the application of the sinusoidal AC voltage at this time, and the maximum attainable temperature is 157 ° C. It was higher than 145 ° C. When the porous membrane was incorporated into a lithium-ion secondary battery and an external short-circuit test was conducted in the same manner as in Example 1, two out of ten batteries had a battery tube wall temperature of 120 ° C. or higher.

【0028】(比較例3)3層の厚さの比率を2:1:
2(真ん中の第1の膜状物が多孔質化されて得られた層
の厚みを小さく、両外の第2の膜状物が多孔質化されて
得られた層の厚みを大きく)にし、膜全体当たりのポリ
エチレンの含有率を10重量%にした以外は前記実施例
2と同様にして三層構造の積層構造の積層多孔質膜を得
た。図7はこの時の正弦波交流電圧印加開始後の多孔質
膜の温度変化特性を示した図であり、最高到達温度は1
60℃で、(ポリエチレンの融点(125℃)+20
℃)である145℃より高かった。続いて、前記実施例
1と同様に、この多孔質膜をリチウムイオン2次電池に
組み込み、外部短絡試験を行ったところ、電池10個の
うち2個が電池管壁温度が120℃以上に上昇した。
(Comparative Example 3) The thickness ratio of the three layers was set to 2: 1 :.
2 (the thickness of the layer obtained by making the first membrane-like material in the middle porous is small, and the thickness of the layer obtained by making the second membrane-like material outside both sides large) A laminated porous membrane having a laminated structure of a three-layer structure was obtained in the same manner as in Example 2 except that the content of polyethylene was 10% by weight based on the whole membrane. FIG. 7 is a diagram showing the temperature change characteristics of the porous film after the start of the application of the sinusoidal alternating voltage at this time, and the maximum attainable temperature is 1
At 60 ° C, (melting point of polyethylene (125 ° C) + 20
C.) of 145 ° C. Subsequently, as in Example 1, the porous membrane was incorporated into a lithium ion secondary battery and subjected to an external short-circuit test. Two out of ten batteries had a battery tube wall temperature of 120 ° C. or higher. did.

【0029】[0029]

【発明の効果】以上のように、本発明によれば、ポリエ
チレンとポリプロピレンからなる多孔質膜であって、電
池用セパレータとして使用した場合に優れた電流遮断効
果(シャットダウン効果)、すなわち、ポリエチレンの
溶融後、瞬時に電流を遮断できる程度まで高抵抗化して
シャットダウンする多孔質膜を提供することができる。
また、かかる本発明の多孔質膜を簡単かつ合理的に製造
できる多孔質膜の製造方法を提供することができる。ま
た、外部短絡しても発火やショートが起こらず、安定動
作するリチウムイオン2次電池を提供することができ
る。
As described above, according to the present invention, a porous membrane composed of polyethylene and polypropylene, which has an excellent current interruption effect (shutdown effect) when used as a battery separator, that is, polyethylene It is possible to provide a porous film that shuts down after melting so that the resistance can be instantaneously interrupted after melting.
Further, it is possible to provide a method for producing a porous membrane which can easily and rationally produce the porous membrane of the present invention. Further, it is possible to provide a lithium-ion secondary battery that operates stably without causing ignition or short even if an external short circuit occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】 多孔質膜の温度特性は評価する評価試験機の
概略構成を示した側面図である。
FIG. 1 is a side view showing a schematic configuration of an evaluation tester for evaluating temperature characteristics of a porous film.

【図2】 本発明と従来のポリエチレンとポリプロピレ
ンのアロイの多孔質膜の膜構造を模式的に示した断面斜
視図である。
FIG. 2 is a cross-sectional perspective view schematically showing the film structure of a porous film of an alloy of polyethylene and polypropylene according to the present invention.

【図3】 実施例1による多孔質膜の正弦波交流電圧印
加開始後の多孔質膜の温度変化を示した図である。
FIG. 3 is a diagram showing changes in temperature of the porous film after the start of applying a sinusoidal AC voltage to the porous film according to Example 1.

【図4】 比較例1による多孔質膜の正弦波交流電圧印
加開始後の多孔質膜の温度変化を示した図である。
FIG. 4 is a diagram showing a temperature change of a porous film according to a comparative example 1 after a sinusoidal AC voltage is applied to the porous film.

【図5】 実施例2による多孔質膜の正弦波交流電圧印
加開始後の多孔質膜の温度変化を示した図である。
FIG. 5 is a diagram showing changes in temperature of the porous film after the start of applying a sinusoidal AC voltage to the porous film according to Example 2.

【図6】 比較例2による多孔質膜の正弦波交流電圧印
加開始後の多孔質膜の温度変化を示した図である。
FIG. 6 is a diagram showing changes in temperature of the porous film according to Comparative Example 2 after the start of application of a sinusoidal alternating voltage to the porous film.

【図7】 比較例3による多孔質膜の正弦波交流電圧印
加開始後の多孔質膜の温度変化を示した図である。
FIG. 7 is a diagram showing a temperature change of the porous film according to Comparative Example 3 after the start of application of a sinusoidal AC voltage to the porous film.

【符号の説明】[Explanation of symbols]

1 電極 2 多孔質膜の載置台を兼ねた電極 3 多孔質膜を電極の上面に固定するためのクリップ 4a 温度センサ 4 温度センサで検知された温度を出力する温度計 5 交流電源 10 電解液が含浸された多孔質膜 10a ポリエチレン部 10b ポリプロピレン部 11,12 電流 1 Electrode 2 Electrode that also serves as a mounting base for the porous membrane 3 Clip for fixing the porous membrane to the upper surface of the electrode 4a Temperature sensor 4 Thermometer that outputs the temperature detected by the temperature sensor 5 AC power supply 10 Electrolyte Impregnated porous membrane 10a Polyethylene part 10b Polypropylene part 11,12 Current

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレンとポリプロピレンを含んで
なる多孔質膜であって、電解液を含浸させた多孔質膜の
両主面に電極を配置し、この電極に交流電圧を印加し
て、多孔質膜を前記電解液の抵抗発熱によって10〜5
0℃/秒の割合で昇温させた時の最高到達温度が(ポリ
エチレンの融点+20℃)以下であることを特徴とする
多孔質膜。
1. A porous membrane comprising polyethylene and polypropylene, wherein electrodes are arranged on both main surfaces of a porous membrane impregnated with an electrolytic solution, and an alternating voltage is applied to the electrodes to form a porous membrane. The membrane is heated to 10 to 5 by resistance heating of the electrolyte.
A porous membrane having a maximum ultimate temperature (melting point of polyethylene + 20 ° C.) or less when heated at a rate of 0 ° C./sec.
【請求項2】 多孔質膜がポリエチレンとポリプロピレ
ンの混合物の多孔質膜単体である請求項1に記載の多孔
質膜。
2. The porous membrane according to claim 1, wherein the porous membrane is a single body of a mixture of polyethylene and polypropylene.
【請求項3】 多孔質膜がポリエチレンとポリプロピレ
ンの混合物からなる第1の多孔質膜とポリプロピレンか
らなる第2の多孔質膜を交互に積層した積層構造の多孔
質膜である請求項1に記載の多孔質膜。
3. The porous membrane having a laminated structure in which a first porous membrane made of a mixture of polyethylene and polypropylene and a second porous membrane made of polypropylene are alternately laminated to each other. Porous membrane.
【請求項4】 請求項1に記載の多孔質膜を製造する方
法であって、結晶化度が60%より大きいポリエチレン
と結晶化度が70%より大きいポリプロピレンとを前記
ポリエチレンの配合率が12重量%以上となるよう混合
してなる膜状物を1軸延伸することにより多孔質化せし
める多孔質膜の製造方法。
4. The method for producing a porous membrane according to claim 1, wherein the polyethylene having a crystallinity of more than 60% and the polypropylene having a crystallinity of more than 70% have a blending ratio of 12 of polyethylene. A method for producing a porous film, which comprises uniaxially stretching a film-like material obtained by mixing so as to be at least wt% to make it porous.
【請求項5】 ポリエチレンの融点をTmb℃とすると、
膜状物を−20℃〜(Tmb−30)℃の低温度領域にて
1軸延伸した後、(Tmb−30)℃〜(Tmb−2)℃の
高温度領域にて前記低温度領域での延伸方向と同一また
は異なる方向に延伸して多孔質化せしめる請求項4に記
載の多孔質膜の製造方法。
5. When the melting point of polyethylene is T mb ° C,
The film-like material is uniaxially stretched in a low temperature region of -20 ° C to (T mb -30) ° C, and then stretched in the high temperature region of (T mb -30) ° C to (T mb -2) ° C. The method for producing a porous film according to claim 4, wherein the porous film is stretched in the same or different direction as the stretching direction in the temperature region to make it porous.
【請求項6】 低温度領域での延伸方向と高温度領域で
の延伸方向とが同一方向であり、前記高温度領域での延
伸後に膜状物を前記低温度領域での延伸方向と異なる方
向に再度延伸する請求項5に記載の多孔質膜の製造方
法。
6. The stretching direction in the low temperature region and the stretching direction in the high temperature region are the same direction, and the stretching direction of the film after stretching in the high temperature region is different from the stretching direction in the low temperature region. The method for producing a porous film according to claim 5, wherein the porous film is stretched again.
【請求項7】 膜状物全体当たりのポリエチレンの配合
率の上限が90重量%である請求項4に記載の多孔質膜
の製造方法。
7. The method for producing a porous membrane according to claim 4, wherein the upper limit of the blending ratio of polyethylene based on the entire membrane is 90% by weight.
【請求項8】 請求項1に記載の多孔質膜を製造する方
法であって、結晶化度が60%より大きいポリエチレン
と結晶化度が70%より大きいポリプロピレンとを混合
してなる第1の膜状物と、ポリプロピレンからなる第2
の膜状物とが交互に積層され、全体当たりのポリエチレ
ンの配合率が12重量%以上にされた積層構造の膜状物
を1軸延伸することにより多孔質化せしめる多孔質膜の
製造方法。
8. The method for producing a porous film according to claim 1, wherein the polyethylene having a crystallinity of more than 60% and the polypropylene having a crystallinity of more than 70% are mixed. Membrane and polypropylene second
The method for producing a porous membrane in which the film-like material having a laminated structure in which the total content of polyethylene is 12% by weight or more is uniaxially stretched.
【請求項9】 ポリエチレンの融点をTmb℃とすると、
積層構造の膜状物を−20℃〜(Tmb−30)℃の低温
度領域で1軸延伸した後、(Tmb−30)℃〜(Tmb
2)℃の高温度領域にて前記低温度領域での延伸の延伸
方向と同一または異なる方向に延伸して多孔質化せしめ
る請求項8に記載の多孔質膜の製造方法。
9. When the melting point of polyethylene is T mb ° C,
The film having a laminated structure is uniaxially stretched in the low temperature region of −20 ° C. to (T mb −30) ° C., and then (T mb −30) ° C. to (T mb −).
2. The method for producing a porous membrane according to claim 8, wherein the porous film is stretched in the high temperature region of 2 ° C. in the same direction as or different from the stretching direction in the low temperature region.
【請求項10】 低温度領域での延伸方向と高温度領域
での延伸方向とが同一方向であり、前記高温度領域での
延伸後に積層構造の膜状物を前記低温度領域での延伸方
向と異なる方向に再度延伸する請求項9に記載の多孔質
膜の製造方法。
10. The stretching direction in the low temperature region and the stretching direction in the high temperature region are the same direction, and after stretching in the high temperature region, the film having a laminated structure is stretched in the low temperature region. 10. The method for producing a porous film according to claim 9, wherein the porous film is stretched again in a direction different from the above.
【請求項11】 積層構造の膜状物全体当たりのポリエ
チレンの配合率の上限が90重量%である請求項8に記
載の多孔質膜の製造方法。
11. The method for producing a porous membrane according to claim 8, wherein the upper limit of the blending ratio of polyethylene is 90% by weight based on the entire laminated structure.
【請求項12】 請求項1に記載の多孔質膜に電解液を
含浸させたものを一対の電極間に挟んでなるリチウムイ
オン2次電池。
12. A lithium ion secondary battery in which the porous membrane according to claim 1 impregnated with an electrolytic solution is sandwiched between a pair of electrodes.
JP05639296A 1996-03-13 1996-03-13 Porous membrane, method for producing the same, and lithium ion secondary battery Expired - Lifetime JP3589778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05639296A JP3589778B2 (en) 1996-03-13 1996-03-13 Porous membrane, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05639296A JP3589778B2 (en) 1996-03-13 1996-03-13 Porous membrane, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH09241411A true JPH09241411A (en) 1997-09-16
JP3589778B2 JP3589778B2 (en) 2004-11-17

Family

ID=13025958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05639296A Expired - Lifetime JP3589778B2 (en) 1996-03-13 1996-03-13 Porous membrane, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3589778B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011984A (en) * 1998-06-23 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2002200670A (en) * 2000-10-30 2002-07-16 Sumitomo Chem Co Ltd Method for producing porous film
KR100380857B1 (en) * 1998-07-04 2003-07-18 주식회사 엘지화학 Microporous Membrane Using Polyolefin
JP2007087958A (en) * 1999-05-26 2007-04-05 Sony Corp Solid electrolyte battery
US7214450B2 (en) 1999-05-26 2007-05-08 Sony Corporation Solid electrolyte battery
WO2011114664A1 (en) * 2010-03-15 2011-09-22 Toray Tonen Specialty Separator Godo Kaisha Microporous membranes, methods for making these membranes, and the use of these membranes as battery separator films
JP2011246539A (en) * 2010-05-25 2011-12-08 Asahi Kasei E-Materials Corp Method for producing biaxially stretched polyolefin-based porous film, and biaxially stretched polyolefin-based porous film
JP2012521914A (en) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 Microporous polymer membrane, battery separator, and production method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101223031B (en) 2005-07-15 2014-01-08 东丽电池隔膜株式会社 Polyolefin multilayer microporous membrane and battery separator
JP5202816B2 (en) 2006-04-07 2013-06-05 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011984A (en) * 1998-06-23 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
KR100380857B1 (en) * 1998-07-04 2003-07-18 주식회사 엘지화학 Microporous Membrane Using Polyolefin
JP2007087958A (en) * 1999-05-26 2007-04-05 Sony Corp Solid electrolyte battery
US7214450B2 (en) 1999-05-26 2007-05-08 Sony Corporation Solid electrolyte battery
US7432019B2 (en) 1999-05-26 2008-10-07 Sony Corporation Solid electrolyte battery
JP2002200670A (en) * 2000-10-30 2002-07-16 Sumitomo Chem Co Ltd Method for producing porous film
JP2012521914A (en) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 Microporous polymer membrane, battery separator, and production method thereof
WO2011114664A1 (en) * 2010-03-15 2011-09-22 Toray Tonen Specialty Separator Godo Kaisha Microporous membranes, methods for making these membranes, and the use of these membranes as battery separator films
JP2013522379A (en) * 2010-03-15 2013-06-13 東レバッテリーセパレータフィルム株式会社 Microporous membranes, methods for making these membranes, and use of these membranes as battery separator films
JP2011246539A (en) * 2010-05-25 2011-12-08 Asahi Kasei E-Materials Corp Method for producing biaxially stretched polyolefin-based porous film, and biaxially stretched polyolefin-based porous film

Also Published As

Publication number Publication date
JP3589778B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
US10622611B2 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US9178202B2 (en) Polyolefin microporous membrane and method of producing the same, separator for non-aqueous secondary battery and non-aqueous secondary battery
KR100687159B1 (en) Solid Electrolyte Battery
EP1251573B1 (en) Non-aqueous electrolyte secondary cell
KR101527549B1 (en) Method of preparing porous separator comprising elastic material, porous separator prepared by the method, and secondary battery comprising the separator
CN108137842B (en) Porous film and electricity storage device
JP6696518B2 (en) Polyolefin microporous membrane
EP2458660A1 (en) Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
EP2696392A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JPH09241411A (en) Porous membrane, its production, and lithium ion secondary cell
JP2000348703A (en) Separator for battery and lithium battery using same
JPH10261393A (en) Battery separator
JP5352075B2 (en) Lithium secondary battery
JPH11123799A (en) Laminated porous film
JP3974264B2 (en) Battery separator and non-aqueous electrolyte battery using the same
JP2004288586A (en) Separator for electrochemical element
JP4189961B2 (en) Porous film
JP4952193B2 (en) Lithium secondary battery
JPH10302747A (en) Production for separator of battery
Zhang et al. Lithium-ion battery separators1
JPH11158304A (en) Porous film, separator for battery by using the same, and battery
JP3536607B2 (en) Porous polymer film
JP4007641B2 (en) Porous film manufacturing method
JP3996226B2 (en) Nonaqueous battery separator and nonaqueous battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160827

Year of fee payment: 12

EXPY Cancellation because of completion of term