JP3996226B2 - Nonaqueous battery separator and nonaqueous battery using the same - Google Patents

Nonaqueous battery separator and nonaqueous battery using the same Download PDF

Info

Publication number
JP3996226B2
JP3996226B2 JP22047896A JP22047896A JP3996226B2 JP 3996226 B2 JP3996226 B2 JP 3996226B2 JP 22047896 A JP22047896 A JP 22047896A JP 22047896 A JP22047896 A JP 22047896A JP 3996226 B2 JP3996226 B2 JP 3996226B2
Authority
JP
Japan
Prior art keywords
separator
battery
aqueous battery
microporous membrane
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22047896A
Other languages
Japanese (ja)
Other versions
JPH1050288A (en
Inventor
耕太郎 滝田
強充 開米
総一郎 山口
公一 河野
恭平 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP22047896A priority Critical patent/JP3996226B2/en
Publication of JPH1050288A publication Critical patent/JPH1050288A/en
Application granted granted Critical
Publication of JP3996226B2 publication Critical patent/JP3996226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池等の非水溶媒電池用セパレーターに関し、特に透過性能及び機械的強度に優れるとともに、かつ充放電特性の優れた非水電池用セパレーターに関するものである。
【0002】
【従来の技術】
ポリオレフィン微多孔膜は、各種の分離膜や、電池用セパレーター、電解コンデンサー用セパレーター等に使用されている。特にリチウム電池においては、リチウム金属、リチウムイオンが用いられているために非プロトン性極性有機溶媒が電解液溶媒として用いられ、また、電解質としては、リチウム塩を用いている。したがって正極と負極との間に設置するセパレーターには、有機溶媒に不溶でありかつ電解質や電極活物質に対して安定なポリエチレン、ポリプロピレンなどのポリオレフィン微多孔膜がセパレーターとして用いられている。
【0003】
リチウム二次電池は、起電力が2.5〜4Vと高く、活性質の主成分をなすリチウムの分子量が小さいために、最もエネルギー密度の高い二次電池の一つとして期待されている。コイン型や単3サイズの小容量リチウム二次電池は、メモリーバックアップ用電池や携帯電話などで用いられている。しかし、電気自動車や小規模負荷調整には数10kWh程度の容量が必要とされており、大容量化と高出力化が課題である。リチウム二次電池は、起電力が高いなどのため水溶液系の電解液が利用できず、有機溶媒の電解液または高分子の固体電解質を用いるために、それらの導電率が低いので電流密度が小さい。このため大容量高出力の大型電池では、電極面積の増大が必要である。
【0004】
これらの電池で用いられるセパレーターとしては、電極とセパレーターの接点によって電極の有効断面積を減少させない様にセパレーター表面が粗く孔径が大きいことが必要である。また、安全性を考えた場合、両極間の距離を適切に取るために適度に厚い膜厚が必要である。さらに、電池特性である放電特性及びサイクル特性を良好とするため電解液保持量の大きい膜が必要となってきている。
【0005】
ポリオレフィン微多孔膜だけでは、厚膜化が困難で、サイクル特性が良好ではない。不織布のみでは、孔径が大き過ぎて要求に応えられないという問題があった。
【0006】
【発明が解決しようとする課題】
したがって、本発明の課題は、大型電池に適した透過性能及び機械的強度に優れるとともに、充放電特性の優れた非水電池用セパレーターを提供することである。
【0007】
【課題を解決するための手段】
本発明は、上記課題を達成するため、電極に接する面の有効断面積を減少させないように表面が粗構造を有し、中心層に緻密構造を有するセパレーターとしての膜を鋭意検討した結果、特定の物性を有するポリエチレン微多孔膜と特定の物性を有するポリプロピレン製不織布を積層することにより、透過性能及び機械的強度に優れるとともに、充放電特性が優れた電池用セパレーターが得られることを見いだし、本発明に想到した。
【0008】
すなわち、本発明は、厚さが25〜30μm、空孔率が30〜50%、平均貫通孔径が0.001〜0.1μm、引張り破断強度が500kg/cm2 以上であるポリエチレン微多孔膜に、目付が20〜50g/m 、透気度が1秒/100cc以下のポリプロピレン製不織布を積層した膜厚が100〜200μmで透気度が500〜1500秒/100ccの非水電池用セパレーターに関するものである。さらに、本発明はそれを用いた非水電池を提供するものである。
【0009】
【発明の実施の形態】
本発明の非水電池用セパレーターは、特定の物性を有するポリエチレン微多孔膜と、特定の物性を有するポリプロピレン製不織布を積層することによって得られる。本発明の非水電池用セパレーターの厚さは、100〜200μm好ましくは130〜170μmであり、100μm未満ではサイクル特性が悪化し、200μmを超えると電池容積に占める膜の体積が多くなり、電気抵抗が高く、電池の性能が低下する。また、透気度は、500〜1500秒/100cc、好ましくは800〜1200秒/100ccで、1500秒/100ccを超える場合は膜抵抗が大きく、電流を流した場合に、電圧降下や電池が発熱するおそれがある。
【0010】
以下、非水電池用セパレーターの構成及びその製造法について説明する。
【0011】
(1)ポリエチレン微多孔膜
本発明のポリエチレン微多孔膜の厚さは、25〜30μmである。厚さが25μm未満では膜の機械的強度が小さく、また短絡時の安全性に欠ける。一方30μmを超える場合は、透気度値が高くなり透気抵抗が大きくなるので好ましくない。また、目付けは、積層するポリプロピレン製不織布の目付けより小さいことが必要である。
【0012】
微多孔膜の空孔率は、30〜50%、好ましくは35〜45%である。空孔率が30%未満では電解液の空孔内への充填量が少なくなり、好ましくない。一方、50%を超えると膜強度が低くなり好ましくない。
【0013】
微多孔膜の平均貫通孔径は、0.001〜0.1μm、好ましくは0.01〜0.05μmである。平均貫通孔径が0.001μm未満であると、電解液の空孔内への充填が物理的に困難となるとともに、イオンの通過に支障をきたす。一方、0.1μmを超える場合は、活物質や反応生成物の拡散を防止することが困難となる。
【0014】
引張り破断強度は、500kg/cm2 以上である。これにより高強度で裂けにくいセパレーターとすることができる。 本発明のポリエチレン微多孔膜を得る好ましい方法としては、ポリエチレン組成物にポリエチレンの良溶媒を供給しポリエチレン組成物の溶液を調製して、この溶液を押出機のダイよりシート状に押し出した後、冷却してゲル状成形物を形成して、このゲル状成形物を加熱延伸し、しかる後残存する溶媒を除去する方法がある。
【0015】
(2)ポリプロピレン製不織布
積層体に用いるポリプロピレン製不織布は、目付けが20〜50g/m2 、好ましくは25〜45g/m2 であり、透気度が1秒/100cc以下である。繊維径0.1〜5μm及び厚さ50〜150μmのものが好ましい。また、不織布の目付けは、ポリエチレン微多孔膜の目付けに相当する値より大きくすることが必要である。
【0016】
(3)積層体
本発明の非水電池用セパレーターは、上記ポリオレフィン微多孔膜と、上記ポリプロピレン製不織布を積層処理して複合膜とすることにより得られる。積層処理は通常のカレンダー加工により行う。カレンダー加工の加熱圧縮ロールの温度は50〜140℃、好ましくは50〜120℃、ロール圧力は5〜50kg/cm2 、好ましくは5〜30kg/cm2 で行うのが好ましい。しかし、微多孔膜の透過性が損なわれない様に注意する必要がある。
【0017】
積層は、微多孔膜/不織布の2層、不織布/微多孔膜/不織布の3層のように微多孔膜の片側または両側に不織布を積層してもよい。
【0018】
積層体の膜厚は、電池用セパレーターとして用いることのできる範囲の100〜200μmになるように加熱圧縮ロールをコントロールするのが好ましい。
【0019】
本発明の電池用セパレーターは、非水系の電池、特に非水系二次電池に用いられる。非水系二次電池の正極活物質としては、V25 、Cr25 、MnO2 、TiS2 、LiCoO2 、LiMn24 、LiNiO2 等が用いられる。一方負極物質としては、金属リチウムやリチウムイオンをドープしかつ脱ドープし得るものであれば特に制限はなく、炭素材料等も用いることができる。さらに、非水電解質液としては、LiClO4 、LiAsF6 、LiPF6 、LiBF4 等のリチウム塩を単独または組み合わせて使用し、電解質溶液の溶媒としては、プロピレンカーボネイト、エチレンカーボネイト、1,2−ジメトキシメタン、1,2−ジメトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、アセトニトリル、ギ酸ビニル等の1種または2種以上が使用できる。電池缶の形状は、特に制限されず、長円型、円筒型や角型などの形状の缶が一般的である。また、外装缶の材質は、特に制限されないが、綱、ステンレススチール等が用いられている。
【0020】
【実施例】
以下に本発明について実施例を挙げてさらに詳細に説明するが、本発明は実施例に特に限定されるものではない。
【0021】
実施例1
厚さ30μm、孔径0.03μm、空孔率40%、縦方向の引張り破断強度1088kg/cm2 、横方向の引張り破断強度806kg/cm2 のポリエチレン微多孔膜を用い、メルトブローポリプロピレン製不織布(目付け:40g/m2 、透気度:0秒/100cc、繊維径:4μm、厚さ:440μm)を110℃、ロール圧力30kg/cm2 、3m/分の予熱圧縮ロールで処理して120μmにした後、上記ポリエチレン微多孔膜とを70℃、ロール圧力30kg/cm2 、3m/分でカレンダー積層処理して膜厚153μm、透気度960秒/100ccのセパレーター用複合膜を得た。
【0022】
実施例2
負極活物質として金属リチウム、正極としてマンガンを主成分とする活物質を用い、電解質としてLiPF6 を電解液のエチレンカーボネイトの1リットル中に1モル含有されるように溶解したものを用い、電極間にセパレーターとして実施例1のセパレーターを配置して、これを渦巻状に巻いて金属ケース内に収納して電池を作成した。
【0023】
本電池を電圧範囲が4Vから2Vの間で定電流充放電することにより、各サイクル毎の充放電効率を測定した。その結果を図1のグラフ1に示す。図1は、横軸に充放電サイクルの回数をとり、縦軸に各サイクルの充電時の容量を100%とした時の放電・充電時の容量との比である充放電効率(%)をプロットしたものである。
【0024】
比較例1
比較のために、実施例1において用いたポリエチレン微多孔膜のみをセパレーターとして用いた電池を実施例2と同様にして作成し、充放電サイクル試験を行った。その結果を図1のグラフ2に示す。
【0025】
図1から明らかなように、本発明のセパレーターを用いた電池は充放電を繰り返してもその効率は低下しないが、比較例1の不織布を積層しない微多孔膜では、膜厚、表面有効断面積等が十分でなく、短いサイクル回数でその効率が大幅に低下することがわかる。
【0026】
【発明の効果】
本発明のポリエチレン微多孔膜とポリプロピレン不織布の積層複合膜を、非水電池用セパレーターとして用いた場合は、充放電サイクル性も良く、高容量化に十分対応出来るものである。
【図面の簡単な説明】
【図1】本発明のセパレーターを用いた非水電池(実施例2)と、ポリエチレン微多孔膜のみをセパレーターとして用いた非水電池(比較例1)の充放電サイクルの回数と、充放電効率(%)との関係を示すグラフである。
【符号の説明】
1.実施例2
2.比較例1
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator for a non-aqueous solvent battery such as a lithium battery, and more particularly to a separator for a non-aqueous battery having excellent permeability and mechanical strength and excellent charge / discharge characteristics.
[0002]
[Prior art]
Polyolefin microporous membranes are used in various separation membranes, battery separators, electrolytic capacitor separators, and the like. Particularly in lithium batteries, since a lithium metal and lithium ions are used, an aprotic polar organic solvent is used as an electrolyte solvent, and a lithium salt is used as an electrolyte. Therefore, for the separator installed between the positive electrode and the negative electrode, a polyolefin microporous film such as polyethylene or polypropylene that is insoluble in an organic solvent and stable to an electrolyte or an electrode active material is used as the separator.
[0003]
A lithium secondary battery is expected to be one of the secondary batteries with the highest energy density because the electromotive force is as high as 2.5 to 4 V and the molecular weight of lithium, which is the main component of the active material, is small. Coin-type and AA-size small-capacity lithium secondary batteries are used in memory backup batteries and mobile phones. However, the capacity of several tens of kWh is required for electric vehicles and small-scale load adjustment, and increasing capacity and increasing output are issues. Lithium secondary batteries cannot use aqueous electrolytes due to high electromotive force, etc., and use organic solvent electrolytes or polymer solid electrolytes, so their electrical conductivity is low, so the current density is low. . For this reason, it is necessary to increase the electrode area in a large-capacity high-power battery.
[0004]
The separator used in these batteries needs to have a rough separator surface and a large pore size so as not to reduce the effective sectional area of the electrode by the contact between the electrode and the separator. In consideration of safety, a moderately thick film thickness is necessary in order to appropriately take the distance between the two electrodes. Furthermore, in order to improve the discharge characteristics and the cycle characteristics, which are battery characteristics, a film having a large electrolyte solution holding amount is required.
[0005]
With a polyolefin microporous film alone, it is difficult to increase the film thickness and the cycle characteristics are not good. The nonwoven fabric alone has a problem that the pore diameter is too large to meet the demand.
[0006]
[Problems to be solved by the invention]
Therefore, the subject of this invention is providing the separator for non-aqueous batteries which was excellent in the permeation | transmission performance and mechanical strength suitable for a large sized battery, and excellent in charging / discharging characteristics.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention has been conducted as a result of intensive investigations on a membrane as a separator having a rough structure on the surface and a dense structure in the center layer so as not to reduce the effective cross-sectional area of the surface in contact with the electrode. It has been found that by laminating a polyethylene microporous membrane having physical properties and a polypropylene non-woven fabric having specific properties, a battery separator having excellent permeability and mechanical strength and excellent charge / discharge characteristics can be obtained. I came up with the invention.
[0008]
That is, the present invention provides a polyethylene microporous membrane having a thickness of 25 to 30 μm, a porosity of 30 to 50%, an average through-hole diameter of 0.001 to 0.1 μm, and a tensile breaking strength of 500 kg / cm 2 or more. The present invention relates to a separator for non-aqueous batteries having a basis weight of 20 to 50 g / m 2 , a film thickness of 100 to 200 μm laminated with a polypropylene nonwoven fabric having an air permeability of 1 second / 100 cc or less and an air permeability of 500 to 1500 seconds / 100 cc. Is . Furthermore, the present invention provides a non-aqueous battery using the same.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The separator for non-aqueous batteries of the present invention can be obtained by laminating a polyethylene microporous film having specific physical properties and a polypropylene nonwoven fabric having specific physical properties. The thickness of the separator for a non-aqueous battery of the present invention is 100 to 200 μm, preferably 130 to 170 μm. If the thickness is less than 100 μm, the cycle characteristics deteriorate, and if it exceeds 200 μm, the volume of the film occupies the battery volume increases. Is high, and the battery performance decreases. The air permeability is 500 to 1500 seconds / 100 cc, preferably 800 to 1200 seconds / 100 cc. When the air permeability exceeds 1500 seconds / 100 cc, the film resistance is large, and when current is passed, the voltage drop or the battery generates heat. There is a risk.
[0010]
Hereinafter, the structure of the separator for nonaqueous batteries and the manufacturing method thereof will be described.
[0011]
(1) Polyethylene microporous membrane The polyethylene microporous membrane of the present invention has a thickness of 25 to 30 µm. If the thickness is less than 25 μm, the mechanical strength of the film is small, and the safety at the time of short circuit is lacking. On the other hand, if it exceeds 30 μm, the air permeability value becomes high and the air resistance becomes large, which is not preferable. The basis weight is required to be smaller than the basis weight of the laminated polypropylene nonwoven fabric.
[0012]
The porosity of the microporous membrane is 30 to 50%, preferably 35 to 45%. If the porosity is less than 30%, the amount of electrolyte filled in the pores decreases, which is not preferable. On the other hand, if it exceeds 50%, the film strength is undesirably lowered.
[0013]
The average through-hole diameter of the microporous membrane is 0.001 to 0.1 μm, preferably 0.01 to 0.05 μm. When the average through-hole diameter is less than 0.001 μm, it becomes physically difficult to fill the pores of the electrolytic solution, and the passage of ions is hindered. On the other hand, when it exceeds 0.1 μm, it becomes difficult to prevent the diffusion of the active material and the reaction product.
[0014]
The tensile breaking strength is 500 kg / cm 2 or more. Thereby, it can be set as the separator which is high intensity | strength and is hard to tear. As a preferred method for obtaining the polyethylene microporous membrane of the present invention, a polyethylene solvent is supplied to the polyethylene composition to prepare a solution of the polyethylene composition, and this solution is extruded into a sheet form from a die of an extruder. There is a method in which a gel-like molded product is formed by cooling, the gel-like molded product is heated and stretched, and then the remaining solvent is removed.
[0015]
(2) The polypropylene nonwoven fabric used for the polypropylene nonwoven fabric laminate has a basis weight of 20 to 50 g / m 2 , preferably 25 to 45 g / m 2 and an air permeability of 1 second / 100 cc or less. Those having a fiber diameter of 0.1 to 5 μm and a thickness of 50 to 150 μm are preferred. The basis weight of the nonwoven fabric needs to be larger than the value corresponding to the basis weight of the polyethylene microporous membrane.
[0016]
(3) Laminate The separator for nonaqueous batteries of the present invention can be obtained by laminating the polyolefin microporous membrane and the polypropylene nonwoven fabric into a composite membrane. The lamination process is performed by a normal calendar process. The calendering heat compression roll temperature is 50 to 140 ° C., preferably 50 to 120 ° C., and the roll pressure is 5 to 50 kg / cm 2 , preferably 5 to 30 kg / cm 2 . However, care must be taken so that the permeability of the microporous membrane is not impaired.
[0017]
Lamination may be performed by laminating the nonwoven fabric on one side or both sides of the microporous membrane, such as two layers of microporous membrane / nonwoven fabric and three layers of nonwoven fabric / microporous membrane / nonwoven fabric.
[0018]
It is preferable to control the heat compression roll so that the thickness of the laminate is 100 to 200 μm, which is a range that can be used as a battery separator.
[0019]
The battery separator of the present invention is used for non-aqueous batteries, particularly non-aqueous secondary batteries. As the positive electrode active material of the nonaqueous secondary battery, V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , LiCoO 2 , LiMn 2 O 4 , LiNiO 2 or the like is used. On the other hand, the negative electrode material is not particularly limited as long as it can be doped and dedoped with metallic lithium or lithium ions, and a carbon material or the like can also be used. Further, as the non-aqueous electrolyte solution, lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 are used alone or in combination, and as the solvent of the electrolyte solution, propylene carbonate, ethylene carbonate, 1,2-dimethoxy is used. One or more of methane, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, acetonitrile, vinyl formate and the like can be used. The shape of the battery can is not particularly limited, and cans such as an oval shape, a cylindrical shape, and a square shape are common. The material of the outer can is not particularly limited, but a rope, stainless steel or the like is used.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not particularly limited to the examples.
[0021]
Example 1
Using a polyethylene microporous membrane having a thickness of 30 μm, a pore diameter of 0.03 μm, a porosity of 40%, a longitudinal tensile breaking strength of 1088 kg / cm 2 , and a transverse tensile breaking strength of 806 kg / cm 2 , a melt blown polypropylene nonwoven fabric (mesh weight) : 40 g / m 2 , air permeability: 0 sec / 100 cc, fiber diameter: 4 μm, thickness: 440 μm) treated at 110 ° C., roll pressure 30 kg / cm 2 , 3 m / min preheated compression roll to 120 μm Thereafter, the polyethylene microporous membrane was calender laminated at 70 ° C. and a roll pressure of 30 kg / cm 2 , 3 m / min to obtain a composite membrane for a separator having a film thickness of 153 μm and an air permeability of 960 seconds / 100 cc.
[0022]
Example 2
An active material mainly composed of lithium metal as a negative electrode active material and manganese as a positive electrode, and LiPF 6 dissolved as 1 mol in one liter of ethylene carbonate as an electrolyte is used as an electrolyte. The separator of Example 1 was placed as a separator, and this was spirally wound and housed in a metal case to prepare a battery.
[0023]
The battery was charged and discharged at a constant current in a voltage range between 4V and 2V, thereby measuring the charge / discharge efficiency for each cycle. The result is shown in graph 1 of FIG. In FIG. 1, the horizontal axis represents the number of charge / discharge cycles, and the vertical axis represents the charge / discharge efficiency (%), which is the ratio of the capacity at the time of charging / discharging when the capacity at the time of charging of each cycle is 100%. It is a plot.
[0024]
Comparative Example 1
For comparison, a battery using only the polyethylene microporous membrane used in Example 1 as a separator was prepared in the same manner as in Example 2, and a charge / discharge cycle test was performed. The result is shown in the graph 2 of FIG.
[0025]
As is apparent from FIG. 1, the efficiency of the battery using the separator of the present invention does not decrease even when charging and discharging are repeated. It can be seen that the efficiency is significantly reduced after a short cycle.
[0026]
【The invention's effect】
When the laminated composite film of the polyethylene microporous membrane and the polypropylene nonwoven fabric of the present invention is used as a separator for a non-aqueous battery, the charge / discharge cycle property is good and it can sufficiently cope with a high capacity.
[Brief description of the drawings]
FIG. 1 shows the number of charge / discharge cycles and the charge / discharge efficiency of a non-aqueous battery using a separator of the present invention (Example 2) and a non-aqueous battery using only a polyethylene microporous membrane as a separator (Comparative Example 1). It is a graph which shows the relationship with (%).
[Explanation of symbols]
1. Example 2
2. Comparative Example 1

Claims (2)

厚さが25〜30μm、空孔率が30〜50%、平均貫通孔径が0.001〜0.1μm、引張り破断強度が500kg/cm2 以上であるポリエチレン微多孔膜と、目付が20〜50g/m2 、透気度が1秒/100cc以下のポリプロピレン製不織布とを積層してなる非水電池用セパレーターであって、該セパレーターの膜厚が100〜200μmで透気度が500〜1500秒/100ccに制御されたものであり、該セパレーターが配置された非水電池について、電圧範囲が4Vから2Vの間で定電流充放電することにより、各サイクル毎の充放電効率を測定する充放電サイクル試験において、充放電サイクル回数を少なくとも23回繰り返しても実質的に低下のない充放電効率を有することを特徴とする非水電池用セパレーターを用いた非水電池。A polyethylene microporous membrane having a thickness of 25 to 30 μm, a porosity of 30 to 50%, an average through hole diameter of 0.001 to 0.1 μm, and a tensile breaking strength of 500 kg / cm 2 or more, and a basis weight of 20 to 50 g / M 2 , a separator for a non-aqueous battery formed by laminating a polypropylene nonwoven fabric having an air permeability of 1 second / 100 cc or less, wherein the separator has a film thickness of 100 to 200 μm and an air permeability of 500 to 1500 seconds. Charging / discharging which measures charging / discharging efficiency for each cycle by charging / discharging at a constant current between 4V and 2V in a non-aqueous battery in which the separator is arranged. In a cycle test, a non-aqueous battery separator characterized by having a charge / discharge efficiency that does not substantially decrease even when the number of charge / discharge cycles is repeated at least 23 times is used. Non-aqueous battery. 前記ポリプロピレン製不織布が、予熱圧縮ロール処理されたポリプロピレン製不織布である請求項1記載の非水電池用セパレーターを用いた非水電池。The non-aqueous battery using a separator for a non-aqueous battery according to claim 1, wherein the polypropylene non-woven fabric is a polypropylene non-woven fabric that has been subjected to a preheating compression roll treatment.
JP22047896A 1996-08-02 1996-08-02 Nonaqueous battery separator and nonaqueous battery using the same Expired - Lifetime JP3996226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22047896A JP3996226B2 (en) 1996-08-02 1996-08-02 Nonaqueous battery separator and nonaqueous battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22047896A JP3996226B2 (en) 1996-08-02 1996-08-02 Nonaqueous battery separator and nonaqueous battery using the same

Publications (2)

Publication Number Publication Date
JPH1050288A JPH1050288A (en) 1998-02-20
JP3996226B2 true JP3996226B2 (en) 2007-10-24

Family

ID=16751732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22047896A Expired - Lifetime JP3996226B2 (en) 1996-08-02 1996-08-02 Nonaqueous battery separator and nonaqueous battery using the same

Country Status (1)

Country Link
JP (1) JP3996226B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065561A1 (en) * 2001-02-14 2002-08-22 Sony Corporation Non-aqueous electrolytic battery
JP2002279956A (en) * 2001-03-16 2002-09-27 Sony Corp Nonaqueous electrolyte battery
JP2006264029A (en) * 2005-03-23 2006-10-05 Teijin Solfill Kk Composite sheet, its manufacturing method and electric/electronic component using composite sheet
KR102205116B1 (en) * 2016-09-13 2021-01-20 허베이 겔렉 뉴 에너지 머티리얼 사이언스앤테크놀러지 컴퍼니 리미티드 Heat-resistant multi-layer composite lithium-ion battery separator, and coating device and manufacturing method for same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258358A (en) * 1988-04-06 1989-10-16 Japan Vilene Co Ltd Separator for lithium battery
JP2884570B2 (en) * 1988-04-12 1999-04-19 日本電池株式会社 Sealed alkaline secondary battery
JP2657434B2 (en) * 1991-07-19 1997-09-24 東燃株式会社 Polyethylene microporous membrane, method for producing the same, and battery separator using the same
JPH05335005A (en) * 1992-06-02 1993-12-17 Asahi Chem Ind Co Ltd Separator
JPH07130347A (en) * 1993-10-28 1995-05-19 Ube Nitto Kasei Co Ltd Battery separator
JP3521523B2 (en) * 1994-02-14 2004-04-19 三菱化学株式会社 Battery separator and battery using the same

Also Published As

Publication number Publication date
JPH1050288A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
US10193117B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US9269938B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US9065119B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5795475B2 (en) Electrochemical element and manufacturing method thereof
JP6773044B2 (en) Porous membrane and power storage device
KR101577383B1 (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
US9431641B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5670811B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR101639923B1 (en) Separator having heat resistant insulation layers
US9882189B2 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US9692028B2 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US20010004504A1 (en) Nonaqueous secondary battery and method of manufacturing thereof
KR20180077190A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2014002648A1 (en) Lithium-ion secondary battery separator
JP2012502426A (en) Separator provided with porous coating layer and electrochemical device provided with the same
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
US9450222B2 (en) Electric storage device, and vehicle mounted electric storage system
JP3589778B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery
JP3996226B2 (en) Nonaqueous battery separator and nonaqueous battery using the same
US20230402710A1 (en) Polyolefin separator for an electrochemical device and electrochemical device including same
JPH117935A (en) Separator for nonaqueous electrolyte battery
JP2013211158A (en) Multilayer separator and lithium ion secondary battery using the same
JP2002313429A (en) Non-aqueous electrolyte secondary battery and method of manufacturing the secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term