JPH10302747A - Production for separator of battery - Google Patents

Production for separator of battery

Info

Publication number
JPH10302747A
JPH10302747A JP9106411A JP10641197A JPH10302747A JP H10302747 A JPH10302747 A JP H10302747A JP 9106411 A JP9106411 A JP 9106411A JP 10641197 A JP10641197 A JP 10641197A JP H10302747 A JPH10302747 A JP H10302747A
Authority
JP
Japan
Prior art keywords
melting point
temperature
resin component
separator
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9106411A
Other languages
Japanese (ja)
Inventor
Hajime Saen
元 佐圓
Shunichi Shimatani
俊一 島谷
Yoshinobu Watanabe
義宣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP9106411A priority Critical patent/JPH10302747A/en
Publication of JPH10302747A publication Critical patent/JPH10302747A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the response of a SD function of a separator to temperature rise by improving a method for elongating a separator. SOLUTION: A film containing a low melting point resin component of such as polyethylene and high melting point resin component of such as polypropylene is uniaxially elongated at least two times within a temperature range defined by the following expression (1) and then elongating in the same direction as that of the uniaxial elongation within a temperature range defined by the following expression (2): (1) from -20 deg.C to (Tmb-30) deg.C; (2) from (Tmb-30) deg.C to (Tmb-2) deg.C wherein Tmb stands for the melting point of the low melting point resin component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電池用セパレータの
製造方法に関するものであり、更に詳しくは、多孔構造
を有し、電池の安全性を向上させる電池用セパレータの
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a battery separator, and more particularly, to a method for manufacturing a battery separator having a porous structure and improving battery safety.

【0002】[0002]

【従来の技術】最近、電子機器のコードレス化に対応す
るための電池として、高エネルギー密度、高起電力、自
己放電の少なさからリチウム電池が注目を浴びている。
2. Description of the Related Art In recent years, lithium batteries have attracted attention as batteries for responding to cordless electronic devices because of their high energy density, high electromotive force, and low self-discharge.

【0003】リチウム電池の負極材料としては、金属リ
チウム、リチウムとアルミニウム等の金属との合金、カ
ーボンやグラファイト等のリチウムイオンを吸着または
吸蔵する材料、あるいはリチウムイオンをドーピングし
た導電性高分子で形成したもの等が知られている。ま
た、正極材料としては、一般に(CFXnで示されるフ
ッ化黒鉛、CoLiO2、MnO2、V25、CuO、A
2CrO4等の金属酸化物、TiO2、CuS等の硫化
物等が提案されている。
The negative electrode material of a lithium battery is formed of lithium metal, an alloy of lithium and a metal such as aluminum, a material that adsorbs or occludes lithium ions such as carbon or graphite, or a conductive polymer doped with lithium ions. Are known. As the positive electrode material, fluorinated graphite generally represented by (CF x ) n , CoLiO 2 , MnO 2 , V 2 O 5 , CuO, A
Metal oxides such as g 2 CrO 4 and sulfides such as TiO 2 and CuS have been proposed.

【0004】このようなリチウム電池においては、負極
構成材料としてのリチウムが強い反応性を有し、また、
エチレンカーボネート、プロピレンカーボネート、アセ
トニトリル、γ-ブチロラクトン、1,2-ジメトキシエ
タン、テトラヒドロフラン等の有機溶媒にLiPF6
LiCF3SO3、LiClO4、LiBF4等を電解質と
した非水系の電解液を使用するため、外部短絡や正極、
負極の誤接続等により異常電流が流れた場合に、電解液
の抵抗による発熱を生じるおそれがある。
In such a lithium battery, lithium as a constituent material of the negative electrode has strong reactivity,
LiPF 6 in an organic solvent such as ethylene carbonate, propylene carbonate, acetonitrile, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran,
Since a non-aqueous electrolyte using LiCF 3 SO 3 , LiClO 4 , LiBF 4 or the like as an electrolyte is used, an external short circuit or a positive electrode,
When an abnormal current flows due to incorrect connection of the negative electrode or the like, heat may be generated due to the resistance of the electrolyte.

【0005】このような異常発熱を防ぐため、セパレー
タとして用いられる膜は、外部短絡により温度の異常上
昇が生じた場合、電気抵抗の増大により電流を遮断して
温度上昇を抑制するシャットダウン(以下、「SD」と
いう。)機能を有することが必要とされる。また、安全
性の確保という点から、SD機能により増大した電気抵
抗はSD機能が開始する温度(以下、「SD開始温度」
という。)を超えた高温においても維持されることが望
ましい。
[0005] In order to prevent such abnormal heat generation, a film used as a separator, when an abnormal rise in temperature due to an external short circuit occurs, shuts off current by increasing electric resistance to suppress a rise in temperature (hereinafter, referred to as a "shutdown"). It is required to have a function. Further, from the viewpoint of ensuring safety, the electric resistance increased by the SD function is a temperature at which the SD function starts (hereinafter, referred to as “SD start temperature”).
That. It is desirable that the temperature be maintained even at a high temperature exceeding ()).

【0006】SD機能を有するセパレータとしてポリプ
ロピレンやポリエチレン等の合成樹脂の多孔質膜を用い
ることが提案されている(特開昭60−23954号公
報)。このような多孔質膜によれば、温度が異常上昇し
て樹脂の融点以上になると、樹脂が融解してこの溶融物
が膜中の孔を閉塞し、電流を遮断して更なる温度上昇を
抑制することができる。しかし、融点以上の温度ではセ
パレータ自体が融解によって収縮し、もとの形状を維持
できなくなる。そのため、電気抵抗が減少して更なる温
度上昇を招いたり、正負電極が接触して内部短絡を生じ
る。つまり、樹脂の単体の多孔質膜では、セパレータの
耐熱温度とSD開始温度との差が小さいという問題があ
る。
It has been proposed to use a porous film of a synthetic resin such as polypropylene or polyethylene as a separator having an SD function (Japanese Patent Application Laid-Open No. 60-23954). According to such a porous membrane, when the temperature rises abnormally and becomes equal to or higher than the melting point of the resin, the resin melts, and this melt blocks the pores in the membrane, shuts off the electric current, and further raises the temperature. Can be suppressed. However, at a temperature equal to or higher than the melting point, the separator itself shrinks due to melting, and the original shape cannot be maintained. As a result, the electric resistance is reduced to further increase the temperature, and the positive and negative electrodes are brought into contact with each other to cause an internal short circuit. In other words, there is a problem that the difference between the heat resistance temperature of the separator and the SD start temperature is small in the porous film made of a single resin.

【0007】そこで、融点の異なる樹脂(SD開始設計
温度に融点がある材料と、これより30℃程度融点が高
い材料)の混合物(特開平4−206257号公報)や
多層構造(特開平4−181651号公報、特開昭62
−10857号公報)を有する多孔質膜を用いることが
提案されている。これらは高温に至ると多孔質膜の内、
融点の低い樹脂が融解して孔を塞ぎ電流の流れを遮断す
る。この時、融点の高い樹脂は融解を起こさないため、
膜の形状は維持され、増大した電気抵抗を維持すること
ができる。
Therefore, a mixture of a resin having a different melting point (a material having a melting point at the SD starting design temperature and a material having a melting point higher by about 30 ° C.) (Japanese Patent Laid-Open No. 4-206257) or a multilayer structure (Japanese Patent Laid-Open No. 4-206257). No. 181651, JP-A-62
It has been proposed to use a porous membrane having the following. These become porous membranes at high temperatures.
The low melting point resin melts and closes the holes, blocking the flow of current. At this time, since the resin with a high melting point does not melt,
The shape of the film is maintained and the increased electrical resistance can be maintained.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、高融点
樹脂成分と低融点樹脂成分の混合物またはこれらの樹脂
を含む積層体であれば、確実に膜の形状を維持しながら
SD機能を発揮するとは限らない。特に通気度が600
(秒/100cc)以下の高通気度品においては孔径が
大きいため孔の閉塞に時間がかかり、この間に十分塞ぎ
切れていない孔を通して電流が流れ続け、電池の温度が
上昇してしまうという課題があった。
However, a mixture of a high-melting-point resin component and a low-melting-point resin component or a laminate containing these resins does not always exert the SD function while reliably maintaining the shape of the film. Absent. In particular, the air permeability is 600
In a high-permeability product of (sec / 100 cc) or less, it takes a long time to close the hole because the hole diameter is large, and during this time, the current continues to flow through the hole that is not completely closed, and the temperature of the battery rises. there were.

【0009】本発明は、温度上昇に対するSD機能の応
答性が高い電池用セパレータを提供することを目的とす
る。
It is an object of the present invention to provide a battery separator having a high response of the SD function to a temperature rise.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の電池用セパレータの製造方法は、低融点樹
脂成分とこの樹脂成分よりも融点が高い高融点樹脂成分
とを含むフィルムを下記式(1)の温度範囲で2回以上
1軸延伸した後、下記式(2)の温度範囲で前記1軸延
伸の方向と同一の方向に延伸を行うことを特徴とする。
Means for Solving the Problems To achieve the above object, a method for producing a battery separator according to the present invention comprises forming a film containing a low-melting resin component and a high-melting resin component having a higher melting point than the resin component. After uniaxially stretching at least twice in the temperature range of the following formula (1), stretching is performed in the same direction as the direction of the uniaxial stretching in the temperature range of the following formula (2).

【0011】 −20℃〜(Tmb−30)℃ (1) (Tmb−30)℃〜(Tmb−2)℃ (2)-20 ° C to (Tmb-30) ° C (1) (Tmb-30) ° C to (Tmb-2) ° C (2)

【0012】但し、Tmbは前記低融点樹脂成分の融点
である。
Here, Tmb is the melting point of the low melting point resin component.

【0013】このような構成にしたことにより、セパレ
ータ中の細孔の孔径を小さくでき、温度の異常上昇時に
強度は維持したまま、迅速に孔の閉塞が起こるセパレー
タを製造することができる。
[0013] With such a configuration, it is possible to reduce the pore diameter of the pores in the separator, and to produce a separator in which the pores are rapidly closed while maintaining the strength when the temperature is abnormally increased.

【0014】前記製造方法においては、フィルムは、低
融点樹脂成分の含有率の異なる二以上の層からなること
が好ましい。このような構成にしたことにより、SD開
始温度付近でも確実に形状を維持するセパレータを製造
することができる。
In the above method, the film is preferably composed of two or more layers having different contents of the low melting point resin component. With such a configuration, it is possible to manufacture a separator that reliably maintains its shape even near the SD start temperature.

【0015】また前記製造方法においては、低融点樹脂
成分としてポリエチレンを、高融点樹脂成分としてポリ
プロピレンを含むフィルムを用いることが好ましい。こ
のような構成にしたことにより、SD開始温度及び耐熱
温度をリチウム電池用セパレータとして好適な値にする
ことができる。
In the above-mentioned manufacturing method, it is preferable to use a film containing polyethylene as a low melting point resin component and polypropylene as a high melting point resin component. With this configuration, the SD start temperature and the heat resistance temperature can be set to values suitable for a lithium battery separator.

【0016】[0016]

【発明の実施の形態】本発明の実施にあたり、まず低融
点樹脂成分と、この樹脂成分よりも融点が高い高融点樹
脂成分とを含むフィルムを作製する。低融点樹脂成分と
高融点樹脂成分は、融点の差が5℃以上、好ましくは1
0℃以上のものであれば特に樹脂の種類を問わないが、
ポリエチレンやポリプロピレンといったポリオレフィン
を用いるのが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In practicing the present invention, first, a film containing a low melting point resin component and a high melting point resin component having a higher melting point than this resin component is prepared. The melting point difference between the low melting point resin component and the high melting point resin component is 5 ° C. or more, preferably 1 ° C.
The type of resin is not particularly limited as long as it is 0 ° C or higher,
It is preferable to use a polyolefin such as polyethylene or polypropylene.

【0017】このフィルムは、単層であっても積層構造
を有していてもよい。積層構造を有する場合は、個々の
層が低融点樹脂成分または高融点樹脂成分の単体からな
っていても、両樹脂成分の混合物であっても構わない
が、低融点樹脂成分の含有率の異なる二以上の層を有す
るのが好ましい。
This film may have a single layer or a laminated structure. In the case of having a laminated structure, each layer may be composed of a simple substance of the low melting point resin component or the high melting point resin component, or may be a mixture of both resin components, but the content of the low melting point resin component is different. It is preferred to have two or more layers.

【0018】以下、積層フィルムを用いる場合の本発明
の実施の形態について説明する。積層フィルムは公知の
押出成形法等により成形でき、押出成形法を採用する際
の押出温度(ダイス温度)は特に限定されるわけではな
いが、作業性の点から高融点樹脂成分の融点(Tmaと
する。)よりも10〜150℃高い温度で行うのが好ま
しい。そして、押し出し後にドラフト比(フィルムの巻
き取り速度を樹脂の押出速度で除した値)が10〜40
0、好ましくは20〜200の範囲で、巻き取り速度が
2〜400m/分、好ましくは10〜200m/分にな
るように芯体上に巻き取ることにより長尺の積層フィル
ムが得られる。
An embodiment of the present invention using a laminated film will be described below. The laminated film can be formed by a known extrusion molding method or the like. The extrusion temperature (die temperature) when employing the extrusion molding method is not particularly limited, but the melting point (Tma) of the high melting point resin component is considered from the viewpoint of workability. ) Is preferably performed at a temperature higher by 10 to 150 ° C. After the extrusion, the draft ratio (the value obtained by dividing the film winding speed by the resin extrusion speed) is 10 to 40.
A long laminated film can be obtained by winding on a core so that the winding speed is 0 to 200 m / min, preferably 10 to 200 m / min in a range of 0, preferably 20 to 200.

【0019】本発明の方法においては、この積層フィル
ムを低温延伸するが、これに先立ち、該フィルムを(T
mb−30)℃〜(Tma−2)℃の温度範囲で所定時
間(通常、数秒〜数時間)加熱するアニーリングを施す
ことができる。このアニーリングを施すことにより、後
に行われる2つの延伸を経て得られる多孔質フィルムの
空孔率を大きなものにすることができる場合がある。
In the method of the present invention, the laminated film is stretched at a low temperature.
Annealing can be performed by heating in a temperature range of (mb-30) ° C. to (Tma-2) ° C. for a predetermined time (typically, several seconds to several hours). By performing this annealing, the porosity of the porous film obtained through two stretching operations performed later can be increased.

【0020】上記積層フィルムあるいはアニーリングを
施した積層フィルムを、まず、−20℃〜(Tmb−3
0)℃の低温領域において、ロール延伸、テンター延伸
等の方法で1軸方向に延伸する。この際の温度が低すぎ
る場合はフィルムの破断が起こりやすくて延伸が困難で
あり、温度が高過ぎると次の工程の高温延伸を行っても
目的とする多孔質化されたセパレータを得ることができ
ない。この低温延伸は同一方向に2回以上に分けて行
う。
The laminated film or the annealed laminated film is first subjected to -20 ° C. to (Tmb-3
0) In a low temperature region of 0 ° C., the film is uniaxially stretched by a method such as roll stretching or tenter stretching. If the temperature at this time is too low, the film is likely to break and stretching is difficult, and if the temperature is too high, it is possible to obtain the desired porous separator even by performing high-temperature stretching in the next step. Can not. This low temperature stretching is performed in the same direction twice or more.

【0021】1回目の低温延伸時の延伸率は通常、1〜
100%、好ましくは2〜50%であり、延伸速度は通
常10〜1000%/分である。なおこの延伸率は、積
層フィルムの延伸前の長さL0と1回目の低温延伸後の
長さL1を用い、下記式(3)により算出した値であ
る。
The stretching ratio during the first low-temperature stretching is usually from 1 to
It is 100%, preferably 2 to 50%, and the stretching speed is usually 10 to 1000% / min. This stretching ratio is a value calculated by the following equation (3) using the length L 0 of the laminated film before stretching and the length L 1 after the first low-temperature stretching.

【0022】 延伸率(%)=(L1−L0)/L0×100 (3)Stretch ratio (%) = (L 1 −L 0 ) / L 0 × 100 (3)

【0023】1回目の低温延伸終了後、2回目以降の低
温延伸を行う。各低温延伸間のインターバルは特に規定
するものではないが、通常1秒〜10分で行う。数回で
行う低温延伸の総延伸率は通常、5〜150%、好まし
くは20〜100%であり、2回目以降の各段の延伸速
度は通常100〜1000%/分である。なおこの延伸
率は、積層フィルムの延伸前の長さL0とすべての低温
延伸が終わった後の長さL2を用い、下記式(4)によ
り算出した値である。
After the completion of the first low-temperature stretching, the second and subsequent low-temperature stretching are performed. Although the interval between each low-temperature stretching is not particularly limited, it is usually performed for 1 second to 10 minutes. The total stretching ratio of the low-temperature stretching performed in several times is usually 5 to 150%, preferably 20 to 100%, and the stretching speed of each stage after the second time is usually 100 to 1000% / min. Note that this stretching ratio is a value calculated by the following equation (4) using the length L 0 of the laminated film before stretching and the length L 2 after all the low-temperature stretching is completed.

【0024】 延伸率(%)=(L2−L0)/L0×100 (4)Stretch ratio (%) = (L 2 −L 0 ) / L 0 × 100 (4)

【0025】本発明の方法では、この低温延伸の後に
(Tmb−30)℃〜(Tmb−2)℃の高温領域にお
いて低温延伸時の延伸方向と同一方向に1軸延伸を行
う。この高温延伸により、低温延伸時に積層フィルムに
生じた極微細孔が拡大されて空孔率が増大される。高温
延伸時の温度が低すぎると空孔率の増加が達成できず、
高すぎると低融点樹脂が融解し、抵抗値の高いものしか
得られない。
In the method of the present invention, after this low-temperature stretching, uniaxial stretching is performed in the high-temperature region of (Tmb-30) ° C. to (Tmb-2) ° C. in the same direction as the low-temperature stretching. By this high-temperature stretching, the micropores generated in the laminated film during the low-temperature stretching are enlarged, and the porosity is increased. If the temperature during high-temperature stretching is too low, the porosity cannot be increased,
If it is too high, the low melting point resin melts and only a resin having a high resistance value can be obtained.

【0026】この高温延伸も低温延伸と同じくロール延
伸、テンター延伸等により行うことができる。また、高
温延伸時の延伸率は通常、10〜600%、好ましくは
20〜300%であり、延伸速度は通常10〜400%
/分である。なおこの延伸率は、低温延伸済みの積層フ
ィルムの長さ(高温延伸前の長さ)L2と高温延伸後の
長さL3を用い、低温延伸前の積層フィルムの長さL0
基準として下記式(5)により算出した値である。
This high-temperature stretching can be performed by roll stretching, tenter stretching or the like, similarly to low-temperature stretching. The stretching ratio during high-temperature stretching is usually 10 to 600%, preferably 20 to 300%, and the stretching speed is usually 10 to 400%.
/ Min. Note that the stretching ratio is based on the length L 0 of the laminated film before the low-temperature stretching, using the length L 2 of the laminated film that has been subjected to the low-temperature stretching (the length before the high-temperature stretching) and the length L 3 after the high-temperature stretching. Is a value calculated by the following equation (5).

【0027】 延伸率(%)=(L3−L2)/L0×100 (5)Stretch rate (%) = (L 3 −L 2 ) / L 0 × 100 (5)

【0028】上記低温延伸および高温延伸を順次施して
得られるセパレータは延伸歪みを内蔵することがあり、
その除去のため、高温延伸後にセパレータを緊張状態あ
るいは緩和状態に保ち、所定温度(通常は該高温延伸時
とほぼ同じ温度)で加熱することができる。この歪み除
去のための加熱時間は、温度、セパレータに残存する歪
み量等に応じて設定するが、通常2秒〜10分である。
The separator obtained by sequentially performing the low-temperature stretching and the high-temperature stretching may have a built-in stretching strain.
For the removal, the separator can be kept in a tensioned state or a relaxed state after the high-temperature stretching, and can be heated at a predetermined temperature (usually the same temperature as the high-temperature stretching). The heating time for removing the distortion is set in accordance with the temperature, the amount of distortion remaining in the separator, and the like, and is usually 2 seconds to 10 minutes.

【0029】このような方法によって得られる電池用セ
パレータは、高融点樹脂成分と低融点樹脂成分とを有す
る積層体であり、いずれの層も多孔質化されている。こ
のようなセパレータの多孔構造は電子顕微鏡等によって
確認でき、その孔径及び空孔率は製造条件によって調整
することができるが、孔径は約0.02〜1μmとする
ことが好ましく、空孔率は約20〜60%とすることが
好ましい。また、有機電解液中で測定した電気抵抗は約
10〜30Ωcm2とすることが好ましい。
The battery separator obtained by such a method is a laminate having a high melting point resin component and a low melting point resin component, and each layer is made porous. The porous structure of such a separator can be confirmed by an electron microscope or the like, and its pore size and porosity can be adjusted according to manufacturing conditions. However, the pore size is preferably about 0.02 to 1 μm, and the porosity is Preferably, it is about 20-60%. The electric resistance measured in the organic electrolyte is preferably about 10 to 30 Ωcm 2 .

【0030】本発明によって得られるセパレータを組み
込んだ電池は、その使用時に異常電流により内部温度が
上昇すると、セパレータの低融点樹脂成分は迅速に融解
して孔を閉塞し、一方、高融点樹脂成分はその融点まで
は融解することなくセパレータ形状を維持する。そし
て、低融点樹脂成分の融解による孔の閉塞により、電気
抵抗が急激に増大して電流が遮断され、そのために過度
の温度上昇が制御されて安全性が保たれる。また、低融
点樹脂成分の含有率の異なる複数の層により構成された
積層フィルムの場合、低融点樹脂成分の含有率が高い層
がいち早く孔の閉塞を終了して電流を遮断し、一方、含
有率の低い層がセパレータの支持体として機能して確実
に形状を維持することができる。
In the battery incorporating the separator obtained by the present invention, when the internal temperature rises due to an abnormal current during use, the low melting point resin component of the separator quickly melts and closes the pores, while the high melting point resin component Maintains the shape of the separator without melting up to its melting point. Then, due to the blockage of the holes due to the melting of the low-melting-point resin component, the electric resistance sharply increases and the electric current is interrupted, so that an excessive rise in temperature is controlled and the safety is maintained. In the case of a laminated film composed of a plurality of layers having different contents of the low-melting resin component, a layer having a high content of the low-melting resin component closes the pores as soon as possible to cut off the current. The layer having a low ratio functions as a support for the separator, and can reliably maintain the shape.

【0031】本発明によって得られるセパレータの安全
性についてより具体的に説明する。室温付近で有機電解
液(電導度約10mS/cm)中にて測定したリチウム
電池用セパレータの電気抵抗は一般に、厚さ25μmで
約10Ωcm2である。そして異常電流による過度の温
度上昇を制御するため、電流を遮断するには電気抵抗が
室温付近の値よりも少なくとも2桁〜3桁以上増大する
必要があると認識されている。本発明者がポリエチレン
とポリプロピレンを含む積層フィルムを用いて、本発明
の方法によって製造したセパレータについて試験したと
ころ、該セパレータの室温付近での電気抵抗は厚さ25
μmで約10Ωcm2であるが、低融点樹脂成分の融点
Tmbより高い温度では約10万〜100万Ωcm2
なり、4桁〜5桁の抵抗増加を示すことが判明した。こ
の大きな抵抗増加は、このセパレータの電気遮断機能、
すなわちSD特性が優れていること、及びこのセパレー
タを組み込んだ電池の安全性が優れていることを示すも
のである。
The safety of the separator obtained by the present invention will be described more specifically. The electrical resistance of a lithium battery separator measured in an organic electrolyte solution (conductivity of about 10 mS / cm) at around room temperature is generally about 10 Ωcm 2 at a thickness of 25 μm. It has been recognized that in order to control an excessive rise in temperature due to an abnormal current, it is necessary to increase the electric resistance by at least two to three orders of magnitude over a value near room temperature in order to cut off the current. When the present inventors tested a separator manufactured by the method of the present invention using a laminated film containing polyethylene and polypropylene, the electrical resistance of the separator near room temperature was 25%.
It is about 10 Ωcm 2 at μm, but it is about 100,000 to 1,000,000 Ωcm 2 at a temperature higher than the melting point Tmb of the low-melting resin component, and it has been found that the resistance increases by 4 to 5 digits. This large increase in resistance is due to the electrical cutoff function of this separator,
That is, it indicates that the SD characteristics are excellent and the safety of the battery incorporating the separator is excellent.

【0032】低温延伸を2回以上で行うことにより特に
SD特性が改善される原因は、2回以上の低温延伸を行
うことにより通気度の低下、言い換えれば孔径の縮小が
起こり確実に孔を塞げるようになるからであると思われ
る。
The reason why the SD characteristics are particularly improved by performing the low-temperature stretching twice or more is that the air permeability decreases by performing the low-temperature stretching twice or more, in other words, the pore diameter is reduced and the pores are securely closed. It seems to be because it becomes.

【0033】なお、本発明によって得られるセパレータ
は電解液に対する濡れ性を向上させるため、コロナ放電
処理、界面活性剤含浸・乾燥処理、親水性モノマーのド
ラフト重合処理等の親水化処理を施して電池に組み込ん
でもよい。
The separator obtained by the present invention is subjected to a hydrophilic treatment such as a corona discharge treatment, a surfactant impregnation / drying treatment, and a draft polymerization treatment of a hydrophilic monomer in order to improve the wettability to the electrolyte. It may be incorporated in

【0034】[0034]

【実施例】以下の実施例、比較例で作製したセパレータ
の特性評価は下記要領により測定した。
EXAMPLES The characteristics of the separators produced in the following examples and comparative examples were measured in the following manner.

【0035】(通気度)通気度は100ccの空気を通
すのに必要な時間で、測定は安田精機製、ガーレ式デン
ソウメータNO.323で行った。
(Air permeability) The air permeability is the time required for passing 100 cc of air, and the measurement is made by a Gurley type densometer NO. 323.

【0036】(平均孔径)比重計として東洋精機製作所
製のDENSIMETER−Hを用い未延伸の積層フィ
ルムの密度(ρ0)を求める。次に該積層フィルムから
得られたセパレータの厚さ、面積及び重量から該セパレ
ータの見かけ密度(ρ1)を求める。そして下記式
(6)によって空孔率を算出する。
(Average pore diameter) The density (ρ 0 ) of the unstretched laminated film is determined using DENSIMETER-H manufactured by Toyo Seiki Seisakusho as a specific gravity meter. Next, the apparent density (ρ 1 ) of the separator is determined from the thickness, area and weight of the separator obtained from the laminated film. Then, the porosity is calculated by the following equation (6).

【0037】 空孔率=(1−(ρ1/ρ0))×100 (6)Porosity = (1− (ρ 1 / ρ 0 )) × 100 (6)

【0038】(SD特性)図3に示すように直径20m
mの白金板電極1、1´を対向させると共にその間にセ
パレータ2を配置し、シリコーンゴム3、3´をパッキ
ンとし、さらにポリテトラフルオロエチレン板4、4´
で全体を両側から締め付けた。電解液としてはプロピレ
ンカーボネートとジメトキシエタンを同量づつ混合し、
これにLiBF4を1モル/リットルの濃度になるよう
に溶解したものを使用し、これを電極1、1´とポリテ
トラフルオロエチレン板4、4´の間に充填されたポリ
プロピレン製不織布5、5´に含浸させた。なお、図示
を省略したが、白金電極には、抵抗計を接続し、電極と
セパレータの間には薄型熱電対を配置した。このような
構造の測定セルを乾燥機中にセットし、5〜7℃/分の
速度で温度を上昇させ、各温度における電気抵抗値を測
定した。電気抵抗は国洋電気工業社製の抵抗計、LCR
メータKC−533型を用い、1kHzの交流抵抗で測
定し下記式(7)により換算した。
(SD Characteristics) As shown in FIG.
m platinum plate electrodes 1 and 1 ′ are opposed to each other, and a separator 2 is disposed therebetween, silicone rubbers 3 and 3 ′ are used as packing, and polytetrafluoroethylene plates 4 and 4 ′ are further provided.
The whole was fastened from both sides. As the electrolyte, propylene carbonate and dimethoxyethane were mixed in equal amounts,
A solution prepared by dissolving LiBF 4 at a concentration of 1 mol / liter was used, and this was mixed with a nonwoven polypropylene fabric 5 filled between the electrodes 1, 1 ′ and the polytetrafluoroethylene plates 4, 4 ′. 5 'was impregnated. Although not shown, an ohmmeter was connected to the platinum electrode, and a thin thermocouple was arranged between the electrode and the separator. The measurement cell having such a structure was set in a dryer, the temperature was increased at a rate of 5 to 7 ° C./min, and the electric resistance at each temperature was measured. The electric resistance is a resistance meter manufactured by Kokuyo Electric Industries, LCR
Using a meter KC-533 type, it was measured at an alternating current resistance of 1 kHz and converted by the following equation (7).

【0039】 電気抵抗=抵抗(Ω)×電極面積(cm2) (7)Electric resistance = resistance (Ω) × electrode area (cm 2 ) (7)

【0040】(実施例)低融点樹脂成分をポリエチレン
(融点130℃)、高融点樹脂成分をポリプロピレン
(融点165℃)とした三層構造の積層フィルムを用い
た。中間層部はポリエチレン:ポリプロピレン=1:1
の割合の混合物で、この層の両面にポリプロピレン単体
の層を積層した。各層の厚さの比率は1:1:1とし
た。ダイス温度230℃で押出成形法を行い、厚み32
μmの積層フィルムを得た。この積層フィルムを145
℃で5分間加熱しアニーリングを施した後、30℃で長
尺方向に延伸率が10%になるように1回目の1軸延伸
を行い、10秒後、総低温延伸率が40%になるように
同様の低温延伸を行った。ついで125℃で前記方向と
同一方向に延伸率が200%になるように1軸延伸して
セパレータを得た。
Example A laminated film having a three-layer structure in which the low melting point resin component was polyethylene (melting point 130 ° C.) and the high melting point resin component was polypropylene (melting point 165 ° C.) was used. Intermediate layer part: polyethylene: polypropylene = 1: 1
And a layer of polypropylene alone was laminated on both sides of this layer. The thickness ratio of each layer was 1: 1: 1. Extrusion molding is performed at a die temperature of 230 ° C.
A μm laminated film was obtained. 145 of this laminated film
After heating at 5 [deg.] C. for 5 minutes to perform annealing, the first uniaxial stretching is performed at 30 [deg.] C. so that the stretching ratio becomes 10% in the machine direction, and after 10 seconds, the total low temperature stretching ratio becomes 40%. The same low-temperature stretching was performed as described above. Next, the separator was uniaxially stretched at 125 ° C. in the same direction as the above so that the stretching ratio became 200%, to obtain a separator.

【0041】このセパレータの厚みは25μm、通気度
は650(秒/100cc)、平均孔径は0.042μ
m、空孔率は41%、25℃における電気抵抗は12Ω
cm 2であった。このSD特性は図1に示す通りであ
る。図1からわかるようにこのセパレータは130℃付
近で抵抗値が4〜5桁急激に増大し、この大きな抵抗値
が160℃付近まで維持される。130℃付近の抵抗値
の急激な増大は、多孔質ポリエチレンが融解したために
生じる現象であり、この抵抗増大現象が160℃付近ま
で維持されることからこのセパレータが優れたSD特性
を有することが理解できる。
The thickness of this separator is 25 μm,
Is 650 (sec / 100 cc), and the average pore size is 0.042 μm.
m, porosity is 41%, electric resistance at 25 ° C. is 12Ω
cm TwoMet. This SD characteristic is as shown in FIG.
You. As can be seen from FIG.
The resistance value increases rapidly by 4 to 5 orders in the near future, and this large resistance value
Is maintained at around 160 ° C. Resistance value around 130 ° C
The rapid increase in
This phenomenon occurs when the resistance increase phenomenon occurs around 160 ° C.
This separator has excellent SD characteristics because it is maintained at
It can be understood that

【0042】(比較例)実施例と同様の材料、押し出し
条件で作製された積層フィルムに、実施例と同様のアニ
ーリングを施した。これを30℃で長尺方向に延伸率が
40%になるように1回で低温延伸を行った。ついで1
25℃で前記方向と同一方向に延伸率が200%になる
ように1軸延伸してセパレータを得た。
(Comparative Example) A laminated film produced under the same materials and extrusion conditions as in the example was subjected to the same annealing as in the example. This was subjected to a single low-temperature stretching at 30 ° C. so that the stretching ratio was 40% in the machine direction. Then 1
The separator was uniaxially stretched at 25 ° C. in the same direction as the above so that the stretching ratio became 200%, to obtain a separator.

【0043】このセパレータの厚さは25μm、通気度
は600(秒/100cc)、平均孔径は0.044μ
m、空孔率は42%、25℃における電気抵抗は12.
5Ωcm2であった。このSD特性は図2に示す通りで
ある。図2からわかるようにこのセパレータは130℃
付近で抵抗値が4〜5桁増大し、この大きな抵抗値が1
60℃付近まで維持されるが、抵抗値上昇は急激ではな
い。
The separator had a thickness of 25 μm, an air permeability of 600 (sec / 100 cc), and an average pore diameter of 0.044 μm.
m, porosity is 42%, and electric resistance at 25 ° C. is 12.
It was 5 Ωcm 2 . This SD characteristic is as shown in FIG. As can be seen from FIG.
In the vicinity, the resistance value increases by 4 to 5 digits, and this large resistance value becomes 1
The temperature is maintained up to around 60 ° C., but the resistance value rise is not sharp.

【0044】[0044]

【発明の効果】以上説明したように本発明によれば、低
融点樹脂成分と高融点樹脂成分とを含むフィルムを所定
の低温領域で2回以上1軸延伸した後、所定の高温領域
で前記延伸と同一方向に延伸することにより、SD機能
の温度に対する応答性が高く、より安全性の高いセパレ
ータが提供できる。
As described above, according to the present invention, a film containing a low-melting resin component and a high-melting resin component is uniaxially stretched twice or more in a predetermined low-temperature region, and then is stretched in a predetermined high-temperature region. By stretching in the same direction as the stretching, it is possible to provide a separator having high responsiveness to the temperature of the SD function and higher safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例により得られた電池用セパレータのS
D特性を示すグラフである。
FIG. 1 shows S of a battery separator obtained according to an example.
It is a graph which shows D characteristic.

【図2】 比較例により得られた電池用セパレータのS
D特性を示すグラフである。
FIG. 2 shows S of a battery separator obtained according to a comparative example.
It is a graph which shows D characteristic.

【図3】 セパレータのSD特性を測定するための装置
の概略を示す断面図である。
FIG. 3 is a cross-sectional view schematically showing an apparatus for measuring SD characteristics of a separator.

【符号の説明】[Explanation of symbols]

1、1´ 白金電極 2 セパレータ 3、3´ シリコーンゴム 4、4´ ポリテトラフルオロエチレン板 5、5´ ポリプロピレン製不織布 1, 1 'platinum electrode 2 separator 3, 3' silicone rubber 4, 4 'polytetrafluoroethylene plate 5, 5' polypropylene non-woven fabric

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低融点樹脂成分とこの樹脂成分よりも融
点が高い高融点樹脂成分とを含むフィルムを下記式
(1)の温度範囲で2回以上1軸延伸した後、下記式
(2)の温度範囲で前記1軸延伸の方向と同一の方向に
延伸を行うことを特徴とする電池用セパレータの製造方
法。 −20℃〜(Tmb−30)℃ (1) (Tmb−30)℃〜(Tmb−2)℃ (2) 但し、Tmbは前記低融点樹脂成分の融点である。
1. A film containing a low melting point resin component and a high melting point resin component having a higher melting point than this resin component is uniaxially stretched twice or more in a temperature range of the following formula (1), and then the following formula (2) Wherein the film is stretched in the same direction as the uniaxial stretching in the temperature range described above. -20 ° C to (Tmb-30) ° C (1) (Tmb-30) ° C to (Tmb-2) ° C (2) where Tmb is the melting point of the low melting point resin component.
【請求項2】 前記フィルムが低融点樹脂成分の含有率
の異なる二以上の層からなる請求項1に記載の電池用セ
パレータの製造方法。
2. The method for producing a battery separator according to claim 1, wherein the film comprises two or more layers having different contents of the low melting point resin component.
【請求項3】 低融点樹脂成分がポリエチレンであり、
高融点樹脂成分がポリプロピレンである請求項1または
2に記載の電池用セパレータの製造方法。
3. The low melting point resin component is polyethylene,
3. The method for producing a battery separator according to claim 1, wherein the high melting point resin component is polypropylene.
JP9106411A 1997-04-23 1997-04-23 Production for separator of battery Pending JPH10302747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9106411A JPH10302747A (en) 1997-04-23 1997-04-23 Production for separator of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9106411A JPH10302747A (en) 1997-04-23 1997-04-23 Production for separator of battery

Publications (1)

Publication Number Publication Date
JPH10302747A true JPH10302747A (en) 1998-11-13

Family

ID=14432942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9106411A Pending JPH10302747A (en) 1997-04-23 1997-04-23 Production for separator of battery

Country Status (1)

Country Link
JP (1) JPH10302747A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433951B1 (en) * 2000-05-03 2004-06-04 주식회사 엘지화학 Multi-component polymer membrane and method for preparing the same
WO2010026954A1 (en) * 2008-09-03 2010-03-11 三菱樹脂株式会社 Laminated porous film for separator
JP2010061973A (en) * 2008-09-03 2010-03-18 Mitsubishi Plastics Inc Laminated porous film for separator and method for manufacturing the same
JP2010061974A (en) * 2008-09-03 2010-03-18 Mitsubishi Plastics Inc Laminated porous film for separator and method for manufacturing the same
JP2010120217A (en) * 2008-11-18 2010-06-03 Mitsubishi Plastics Inc Laminated porous film, separator for battery and battery
JP2011073277A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Laminated microporous film, method for manufacturing the same, and separator for battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433951B1 (en) * 2000-05-03 2004-06-04 주식회사 엘지화학 Multi-component polymer membrane and method for preparing the same
WO2010026954A1 (en) * 2008-09-03 2010-03-11 三菱樹脂株式会社 Laminated porous film for separator
JP2010061973A (en) * 2008-09-03 2010-03-18 Mitsubishi Plastics Inc Laminated porous film for separator and method for manufacturing the same
JP2010061974A (en) * 2008-09-03 2010-03-18 Mitsubishi Plastics Inc Laminated porous film for separator and method for manufacturing the same
JP2010120217A (en) * 2008-11-18 2010-06-03 Mitsubishi Plastics Inc Laminated porous film, separator for battery and battery
JP2011073277A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Laminated microporous film, method for manufacturing the same, and separator for battery

Similar Documents

Publication Publication Date Title
JP2883726B2 (en) Manufacturing method of battery separator
JP3352801B2 (en) Porous film, its production method and its use
KR102137131B1 (en) Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery
JP6306019B2 (en) Method for producing porous separation membrane containing elastic substance, porous separation membrane (separator) produced by the method, and secondary battery comprising the separation membrane
JP5584371B2 (en) Non-aqueous electrolyte battery separator, non-aqueous electrolyte battery, and non-aqueous electrolyte battery manufacturing method
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JP5612797B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2018104713A (en) Polyolefin microporous membrane
WO2014136837A1 (en) Nonaqueous-secondary-battery separator and nonaqueous secondary battery
JPH1050286A (en) Manufacture of separator for battery
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JPH11115084A (en) Laminated porous film
JP3436055B2 (en) Battery separator
JP3589778B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery
KR20120026296A (en) A separator with developed safety, preparation method thereof, and electrochemical device containing the same
JPH10302747A (en) Production for separator of battery
JP2000348703A (en) Separator for battery and lithium battery using same
JP3974264B2 (en) Battery separator and non-aqueous electrolyte battery using the same
JPH11123799A (en) Laminated porous film
JPH10241659A (en) Manufacture of porous film for battery separator
WO2017138512A1 (en) Polyolefin microporous membrane, separator film for power storage device, and power storage device
JPH10249974A (en) Laminated porous film, its application, and manufacture
JP3536607B2 (en) Porous polymer film
JP3511946B2 (en) Polymer electrolyte support and battery using the same
JPH11158304A (en) Porous film, separator for battery by using the same, and battery