JPH11115084A - Laminated porous film - Google Patents

Laminated porous film

Info

Publication number
JPH11115084A
JPH11115084A JP9280190A JP28019097A JPH11115084A JP H11115084 A JPH11115084 A JP H11115084A JP 9280190 A JP9280190 A JP 9280190A JP 28019097 A JP28019097 A JP 28019097A JP H11115084 A JPH11115084 A JP H11115084A
Authority
JP
Japan
Prior art keywords
porous
film
laminated
polyethylene
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9280190A
Other languages
Japanese (ja)
Inventor
Masayuki Kiuchi
政行 木内
Teruaki Fujii
輝昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9280190A priority Critical patent/JPH11115084A/en
Publication of JPH11115084A publication Critical patent/JPH11115084A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated porous film, the strength of which in pore- vanishing temperature region is large, which is excellent in the shape retention at melting or the like and can realize the perfect pore-losing in the pore- vanishing temperature region and substantially can shrink in the pore-vanishing temperature region under the condition being used as a cell separator and surely losses pores when an abnormality occurs. SOLUTION: This film is a laminated porous film having three or more layers, which consists of a high melting point porous polyolefin and a low melting point porous polyolefin, the difference between the melting point of which is 20 deg.C or more, and the surface layer part made of porous polyethylene under the condition that the gulley value of the total layers is 100-700 sec/100 cc and the elastic modulus of porous polyethylene surface layer part in a pore- vanishing temperature region is 10<4> dyne/cm<2> or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池用セパレータ
や電解コンデンサ用隔膜等として有用な積層多孔質フイ
ルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated porous film useful as a separator for a battery or a diaphragm for an electrolytic capacitor.

【0002】[0002]

【従来の技術】従来、電池用セパレータや電解コンデン
サ用隔膜等としてポリオレフィン系多孔質フイルムが使
用されている。特に、近年技術の高度化に伴い、リチウ
ム電池等においては高精度、高機能のセパレータが要求
されるようになり、従来の単層多孔質フイルムに代えて
積層多孔質フイルムのセパレータが注目されるようにな
ってきた。
2. Description of the Related Art Hitherto, polyolefin porous films have been used as separators for batteries, diaphragms for electrolytic capacitors, and the like. In particular, with the advancement of technology in recent years, high-precision, high-performance separators have been required in lithium batteries and the like, and separators of laminated porous films have been attracting attention instead of conventional single-layer porous films. It has become.

【0003】電池を例にとってみると、電池には正負両
極の短絡防止のためにセパレータが介在しているが、近
年高エネルギー密度、高起電力、自己放電の少ないリチ
ウム電池のような非水電解液電池、特にリチウム二次電
池が開発、実用化されている。リチウム電池の負極とし
ては例えば金属リチウム、リチウムと他の金属との合
金、カーボンやグラファイト等のリチウムイオンを吸着
する能力又はインターカレーションにより吸蔵する能力
を有する炭素材料、リチウムイオンをドーピングした導
電性高分子材料等が知られており、また正極としては例
えば(CFx nで示されるフッ化黒鉛、MnO2 、V
2 5 、CuO、Ag2 CrO4 、TiO 2 、LiCo
4 、LiMn2 4 等の金属酸化物や硫化物、塩化物
が知られている。
[0003] Taking a battery as an example, batteries have both positive and negative
A separator is interposed to prevent short-circuiting of the pole.
Annual energy density, high electromotive force, low self-discharge
Non-aqueous electrolyte batteries such as lithium batteries, especially lithium secondary batteries
Ponds have been developed and put into practical use. Used as a negative electrode for lithium batteries
For example, the combination of lithium metal and lithium with other metals
Adsorb lithium ions such as gold, carbon and graphite
Ability to absorb or occlude by intercalation
Carbon material with lithium ion doping
Conductive polymer materials are known, and examples of positive electrodes
For example, (CFx)nFluorinated graphite, MnOTwo, V
TwoOFive, CuO, AgTwoCrOFour, TiO Two, LiCo
OFour, LiMnTwoOFourMetal oxides, sulfides, chlorides, etc.
It has been known.

【0004】また非水電解液として、エチレンカーボネ
ート、プロピレンカーボネート、γ−ブチロラクトン、
アセトニトリル、1,2−ジメトキシエタン、テトラヒ
ドロフラン等の有機溶媒にLiPF6 、LiBF4 、L
iClO4 、LiCF3 SO 3 等の電解質を溶解したも
のが使用されている。しかしリチウムは特に反応性が強
いため、外部短絡や誤接続等により異常電流が流れた場
合、電池温度が著しく上昇して発火等の事故につながっ
たり、これを組み込んだ機器に熱的ダメージを与える懸
念がある。このような危険性を回避するために、従来セ
パレータとして下記のような種々の多孔質フイルムの使
用が提案されている。
As a non-aqueous electrolyte, ethylene carbonate is used.
, Propylene carbonate, γ-butyrolactone,
Acetonitrile, 1,2-dimethoxyethane, tetrahi
LiPF for organic solvents such as drofuran6, LiBFFour, L
iCLOFour, LiCFThreeSO ThreeDissolved electrolytes such as
Is used. But lithium is particularly reactive
If an abnormal current flows due to an external short circuit or incorrect connection,
If the battery temperature rises significantly, a fire or other accident may occur.
Or cause thermal damage to equipment incorporating it.
I have a mind. To avoid such dangers,
Various porous films such as the following can be used as parators.
Has been proposed.

【0005】ポリエチレン、ポリプロピレン等の熱可
塑性樹脂の単層の多孔質フイルム(特公昭46−401
19号公報、特公昭55−32531号公報、特公昭5
9−37292号公報、特開昭60−23954号公
報、特開平2−75151号公報、米国特許第3679
538号明細書等)。 分子量の異なるポリエチレン混合物やポリエチレンと
ポリプロピレンの混合物を素材とした多孔質フイルム
(特開平2−21559号公報、特開平5−33130
6号公報等)。 支持体に熱可塑性樹脂や不織布を用いた多孔質フイル
ム(特開平3−245457公報、特開平1−2583
58公報等)。 材質の異なる熱可塑性樹脂の多孔質膜が複数枚積層さ
れた積層多孔質フイルム(特開昭62−10857号公
報、特開昭63−308866号公報、特開平2−77
108号公報、特開平5−13062号公報、特公平3
−65776号公報、特開平6−55629号公報、特
開平6−20671号公報、特開平7−307146号
公報等)。 上記多孔質フイルムは、一般に未延伸のフイルムを延伸
により多孔化する延伸法や、抽出可能な充填剤、可塑剤
等を配合した未延伸フイルムから溶媒で充填剤、可塑剤
等を抽出して多孔化する抽出法で製造されている。
A single-layer porous film of a thermoplastic resin such as polyethylene or polypropylene (Japanese Patent Publication No. 46-401)
No. 19, Japanese Patent Publication No. 55-32531, Japanese Patent Publication No. 5
9-37292, JP-A-60-23954, JP-A-2-75151, U.S. Pat.
No. 538). Porous films made of a mixture of polyethylene having different molecular weights or a mixture of polyethylene and polypropylene (JP-A-2-21559, JP-A-5-33130)
No. 6). A porous film using a thermoplastic resin or a non-woven fabric as a support (JP-A-3-245457, JP-A-1-25883)
58 gazette). Laminated porous films in which a plurality of porous films of thermoplastic resins of different materials are laminated (JP-A-62-10857, JP-A-63-308866, JP-A-2-77)
No. 108, Japanese Patent Application Laid-Open No. 5-13062, Japanese Patent Publication No. 3
JP-A-65776, JP-A-6-55629, JP-A-6-20671, JP-A-7-307146, and the like. The porous film is generally prepared by stretching a non-stretched film by stretching, or extracting a filler, a plasticizer, etc. with a solvent from an unstretched film containing an extractable filler and a plasticizer. It is manufactured by an extraction method.

【0006】単層又は積層多孔質フイルムをセパレータ
として使用する基本的な考え方は、両極間の短絡防止、
電池電圧の維持等を図ると共に、異常電流等で電池の内
部温度が所定温度以上に上昇したときに、多孔質フイル
ムを無孔化させて、換言すると孔を塞いで、両極間にイ
オンが流れないように電気抵抗を増大させ、電池機能を
停止させて過度の温度上昇による発火等の危険を防止し
安全性を確保することにある。過度の温度上昇による危
険防止機能は、電池用セパレータとして極めて重要な機
能であり、一般に無孔化或いはシャットダウン(SDと
略称)と呼ばれている。
[0006] The basic concept of using a single-layer or laminated porous film as a separator is to prevent short-circuiting between both electrodes.
In addition to maintaining the battery voltage, etc., when the internal temperature of the battery rises above a predetermined temperature due to abnormal current or the like, the porous film is made nonporous, in other words, the pores are closed, and ions flow between the two electrodes. An object of the present invention is to increase the electrical resistance so as not to cause the battery function to stop, prevent a danger such as ignition due to an excessive rise in temperature, and ensure safety. The function of preventing danger due to excessive temperature rise is a very important function as a battery separator, and is generally called non-porous or shutdown (abbreviated as SD).

【0007】電池用セパレータにおいては、無孔化温度
が低すぎると、僅かな温度上昇でイオンの流れが阻止さ
れるため実用性の面で問題があり、また逆に高すぎると
リチウム電池等においては発火等を引き起こす危険性が
あるため安全性の面で問題がある。一般に無孔化温度は
110〜160℃、好ましくは120〜150℃が好適
と認識されている。セパレータに多孔質フイルムを使用
した電池において、電池内の温度が多孔質フイルムの耐
熱温度を越えて上昇した場合、フイルムが溶断して破れ
が生じ、無孔化状態が喪失して、再びイオンが流れだし
更なる温度上昇を招く。それ故電池用セパレータとして
は適当な無孔化温度を有し、耐熱温度が高いという特性
と共に無孔化温度域で確実に無孔化することが要求され
ている。また電池用セパレータとしては、前記無孔化に
関する特性の他に、電気抵抗が低いこと、引張弾性率、
突き刺し強度等の機械的強度が高いこと、厚みムラや電
気抵抗等のバラツキが小さいこと等が要求される。
[0007] In a battery separator, if the non-porous temperature is too low, the flow of ions is prevented by a slight rise in temperature, which poses a problem in terms of practicality. There is a problem in terms of safety because there is a risk of causing ignition. Generally, it has been recognized that the non-porous temperature is preferably 110 to 160 ° C, preferably 120 to 150 ° C. In a battery using a porous film as a separator, if the temperature inside the battery rises above the heat-resistant temperature of the porous film, the film is melted and broken, the non-porous state is lost, and ions are regenerated. It starts to flow and causes a further rise in temperature. Therefore, it is required that the separator for a battery has an appropriate non-porous temperature, has a high heat resistance temperature, and is reliably non-porous in a non-porous temperature range. Further, as a battery separator, in addition to the properties related to non-porous, low electrical resistance, tensile modulus,
It is required that mechanical strength such as piercing strength is high, and that variations such as uneven thickness and electric resistance are small.

【0008】[0008]

【発明が解決しようとする課題】多孔質フイルムは前記
〜のように種々のものが提案されているが、電池用
セパレータとして、ポリオレフィン、例えばポリプロピ
レンの単層多孔質フイルムは無孔化温度が170℃程度
以上とリチウムの融点に近いという難点があり、ポリエ
チレンの単層多孔質フイルムは無孔化温度が135℃前
後と適当な温度ではあるが、耐熱温度が145℃程度で
あるという他に、突き刺し強度が低いため電池の生産工
程及び使用中に穴があきやすいという難点があり、ポリ
オレフィン単層の多孔質フイルムは電池用セパレータと
して安全面及び強度面等で更に改良の余地がある。
Various types of porous films have been proposed as described above. However, as a battery separator, a single-layer porous film of polyolefin, for example, polypropylene, has a non-porous temperature of 170. There is a drawback that it is close to the melting point of lithium, which is about ℃ or higher, and the single-layer porous film of polyethylene has an appropriate nonporous temperature of about 135 ° C, but in addition to the heat resistance temperature of about 145 ° C, Since the piercing strength is low, holes are easily formed during the production process and use of the battery, and there is room for further improvement in the safety and strength of a porous film of a polyolefin single layer as a battery separator.

【0009】また、分子量の異なるポリエチレン混合物
を多孔化した多孔質フイルムは、耐熱温度が150℃程
度と上記ポリエチレンの単層多孔質フイルムよりも若干
高くなる程度である。またポリエチレンとポリプロピレ
ンの混合物を延伸して多孔化した海島構造の多孔質フイ
ルムは、耐熱温度180℃程度でポリエチレン混合物の
場合よりもSD機能は改良されるが機械的性質等は未だ
十分とは言えず、また混合物を延伸して多孔化した海島
構造の形成は品質面でのバラツキが生じやすくその再現
性に難点がある。また、支持体に不織布等を用いた多孔
質フイルムは、不織布等に起因する安全性に難点がある
だけでなく、安全面等に関しても上記ポリエチレン、ポ
リプロピレン等の多孔質フイルムの場合と同様に高温で
の信頼性の面で改良が必要である。
A porous film obtained by making a mixture of polyethylene having different molecular weights into a porous film has a heat-resistant temperature of about 150 ° C., which is slightly higher than the above-mentioned single-layer porous film of polyethylene. A sea-island structure porous film obtained by stretching a mixture of polyethylene and polypropylene to make it porous is improved in the SD function at a heat-resistant temperature of about 180 ° C compared to the polyethylene mixture, but the mechanical properties and the like are still insufficient. In addition, the formation of a sea-island structure that is made porous by stretching the mixture is likely to cause variations in quality, and there is a problem in its reproducibility. Further, a porous film using a non-woven fabric or the like as a support has not only a disadvantage in safety due to the non-woven fabric or the like but also a high temperature as in the case of the porous film such as the above polyethylene and polypropylene in terms of safety and the like. It is necessary to improve the reliability of the system.

【0010】材質の異なる熱可塑性樹脂の多孔質膜が複
数枚重ね合わされて積層された積層多孔質フイルムにつ
いては、予めフイルムを延伸法、抽出法等で多孔化して
2種類の材質や融点の異なる多孔質フイルムを製造した
後これを重ね合わせ、延伸、圧着、接着剤による接着等
によって製造されるか、融点の異なるポリオレフィンを
熱圧着した積層フイルムを延伸法等により多孔化する等
の方法で製造されている。
With respect to a laminated porous film in which a plurality of porous films of thermoplastic resins of different materials are laminated and laminated, the film is previously made porous by a stretching method, an extraction method, or the like, so that two types of materials and different melting points are used. After the porous film is manufactured, it is laminated and stretched, compressed, manufactured by bonding with an adhesive, or manufactured by a method such as stretching a laminated film obtained by thermocompression bonding of polyolefins having different melting points. Have been.

【0011】これらの積層多孔質フイルムは融点の異な
る2種類の多孔質フイルムを組み合わせることにより、
135℃程度の無孔化温度と180℃程度の耐熱温度を
持ち安全性に優れた電池用セパレータを提供する。また
機械的強度の異なる2種類の多孔質フイルムを組み合わ
せることにより突き刺し強度等の機械的強度の高い電池
用セパレータを提供することもでき、基本的には電池用
セパレータとして優れた特性を有している。
These laminated porous films are obtained by combining two types of porous films having different melting points.
Provided is a battery separator having a non-porous temperature of about 135 ° C. and a heat-resistant temperature of about 180 ° C. and having excellent safety. Also, by combining two types of porous films having different mechanical strengths, it is possible to provide a battery separator having high mechanical strength such as piercing strength, and basically having excellent characteristics as a battery separator. I have.

【0012】また、これらの積層多孔質フイルムの多孔
化方法には大別して延伸法(乾式法)と抽出法(湿式
法)とがある、湿式法は材質や融点の異なる熱可塑性樹
脂に充填剤や可塑剤を配合した樹脂組成物を共押出して
積層フイルムを製造し、その後フイルムから充填剤や可
塑剤を抽出して多孔化して、積層多孔質フイルムを得る
方法であるが、これらの方法では充填剤や可塑剤の配合
や抽出を必要とし、微細で均一な孔径を有する積層多孔
質フイルムにするためには操作工程が複雑化するだけで
なく、抽出液の処理等の問題がある。これに対して延伸
法は、融点の異なる熱可塑性樹脂を共押出するかあるい
はそれぞれ別々に押出した後にラミネートしたものを延
伸多孔化するか、もしくは融点の異なる熱可塑性樹脂を
それぞれ別々に押出して延伸多孔化した後ラミネートす
る方法で製造される。これらの延伸法は全く溶剤を使用
しない乾式プロセスであるため極めて簡便で安全性に優
れ且つ低コストのプロセスである上に、微細で均一な孔
径の多孔質膜が得られる点で電池用セパレータの製造方
法として湿式法に比較して優れている。しかしながら、
延伸法による場合でも、更に無孔化温度域が比較的狭
く、確実に無孔化できるセパレータの開発が望まれてい
る。
[0012] These laminated porous films can be roughly classified into a stretching method (dry method) and an extraction method (wet method). The wet method is a method in which a filler is added to a thermoplastic resin having a different material or melting point. It is a method of producing a laminated film by co-extruding a resin composition containing a plasticizer and a plasticizer, then extracting a filler or a plasticizer from the film to make it porous, and obtaining a laminated porous film. In order to form a laminated porous film having a fine and uniform pore size, not only the operation steps are complicated, but also there are problems such as treatment of the extract and the like. On the other hand, in the stretching method, thermoplastic resins having different melting points are co-extruded or separately extruded and then laminated to be stretched and porous, or thermoplastic resins having different melting points are separately extruded and stretched. It is manufactured by a method of laminating after making it porous. Since these stretching methods are dry processes that do not use any solvent at all, they are extremely simple, have excellent safety, and are low-cost processes.In addition, a porous membrane having a fine and uniform pore size can be obtained. It is superior to the wet method as a production method. However,
Even in the case of the stretching method, there is a demand for the development of a separator which has a relatively narrow non-porous temperature range and can surely be non-porous.

【0013】特に、材質の異なる熱可塑性樹脂の多孔質
膜が複数枚積層された積層多孔質フイルムは、SD特性
と耐熱性等に複数の機能を合わせ持つ材料として電池用
セパレータ等に好ましく用いられている。なかでも、中
間層に多孔質ポリエチレン、その両外層に多孔質ポリプ
ロピレンを使用したものがそれらの融点の違いをうまく
生かし実用化されている。しかし、表層部(外層部)が
多孔質ポリプロピレンからなる積層多孔質フイルムは電
解液等の濡れ性、浸透性に劣ることが指摘されていた。
本発明は上記課題を解決し、耐熱性を維持しながら電解
液に対する濡れ性が改良された積層多孔質フイルムを提
供することを目的とする。
In particular, a laminated porous film in which a plurality of porous films of thermoplastic resins of different materials are laminated is preferably used as a material having a plurality of functions such as SD characteristics and heat resistance for a battery separator and the like. ing. Above all, those using porous polyethylene for the intermediate layer and porous polypropylene for both outer layers have been put to practical use by making good use of the difference in their melting points. However, it has been pointed out that a laminated porous film whose surface layer (outer layer) is made of porous polypropylene is inferior in wettability and permeability of an electrolytic solution or the like.
An object of the present invention is to solve the above problems and to provide a laminated porous film having improved wettability to an electrolytic solution while maintaining heat resistance.

【0014】[0014]

【課題を解決するための手段】本発明は、融点が20℃
以上異なる高融点多孔質ポリオレフィンと低融点多孔質
ポリオレフィンとからなり、表層部が多孔質ポリエチレ
ンである三層以上積層された積層多孔質フイルムであっ
て、全層のガーレー値が100〜700sec/100
ccであり、かつ表層部の多孔質ポリエチレンの無孔化
温度域における弾性率が104 dyne/cm2 以上で
あることを特徴とする積層多孔質フイルムに関する。
According to the present invention, the melting point is 20 ° C.
A laminated porous film composed of the above-mentioned different high-melting-point porous polyolefin and low-melting-point porous polyolefin, wherein the surface layer portion is a porous polyethylene and three or more layers are laminated, and the Gurley value of all the layers is 100 to 700 sec / 100.
The present invention relates to a laminated porous film characterized in that the porous polyethylene film has a modulus of elasticity of 10 4 dyne / cm 2 or more in a nonporous temperature range of the surface polyethylene.

【0015】[0015]

【発明の実施の形態】本発明において、高融点多孔質ポ
リオレフィンと低融点多孔質ポリオレフィンとは、融点
差が小さいと無孔化して破膜するまでの無孔化維持温度
領域が狭くなるので、両者の融点が20℃以上、好まし
くは30℃以上異なっているものが使用される。本明細
書において、ポリオレフィンの融点とは、示差走査熱量
計(島津製作所製、DSC−50)を用いて、試料約1
0mgを窒素気流下で、昇温速度10℃/分で室温から
昇温して測定したときの、融解に伴う吸熱ピーク温度を
意味する。高融点多孔質ポリオレフィンとしては、例え
ばポリプロピレン、ポリ4−メチルペンテン−1、ポリ
3−メチルブテン−1等が使用され、また低融点ポリオ
レフィンとしてはポリエチレン、ポリブテン、エチレン
プロピレン共重合体等が使用される。好適には高融点多
孔質ポリオレフィンとしてポリプロピレン、低融点多孔
質ポリオレフィンとしてポリエチレンが好ましく使用さ
れる。ポリプロピレンは立体規則性の高いものが好まし
く、またポリエチレンは高密度ポリエチレンが好ましい
が中密度ポリエチレンでもよい。高融点多孔質ポリオレ
フィン及び低融点多孔質ポリオレフィンには、界面活性
剤、老化防止剤、可塑剤、難燃剤、着色剤等の添加剤が
適宜含まれていてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a high-melting-point porous polyolefin and a low-melting-point porous polyolefin have a small melting point difference. Those having different melting points of 20 ° C. or more, preferably 30 ° C. or more are used. In the present specification, the melting point of the polyolefin is about 1 sample using a differential scanning calorimeter (DSC-50, manufactured by Shimadzu Corporation).
It means the endothermic peak temperature accompanying melting when 0 mg is measured from a room temperature at a heating rate of 10 ° C./min under a nitrogen stream. As the high-melting-point porous polyolefin, for example, polypropylene, poly4-methylpentene-1, poly-3-methylbutene-1 and the like are used, and as the low-melting-point polyolefin, polyethylene, polybutene, ethylene-propylene copolymer and the like are used. . Preferably, polypropylene is used as the high-melting-point porous polyolefin, and polyethylene is used as the low-melting-point porous polyolefin. Polypropylene is preferably high in stereoregularity, and polyethylene is preferably high density polyethylene, but may be medium density polyethylene. The high-melting-point porous polyolefin and the low-melting-point porous polyolefin may appropriately contain additives such as a surfactant, an antioxidant, a plasticizer, a flame retardant, and a coloring agent.

【0016】本発明において、表層部の多孔質ポリエチ
レンとしては、無孔化温度域において弾性率が104
yne/cm2 以上のものが使用される。
In the present invention, the porous polyethylene of the surface layer has an elastic modulus of 10 4 d in a nonporous temperature range.
yne / cm 2 or more is used.

【0017】本発明における弾性率の測定方法は、以下
のような記載の方法で行う。
The method of measuring the elastic modulus in the present invention is carried out by the method described below.

【0018】多孔質ポリエチレンの弾性率が過度に小さ
い場合には、溶融時の形状保持性及びフイルム強度が悪
化するので、104 dyne/cm2 以上の弾性率を有
する多孔質ポリエチレンが使用される。なお、弾性率が
高すぎるとフイルムとして脆くなるため、無孔化温度域
において弾性率が1011dyne/cm2 以下のものが
好ましく用いられる。
If the elastic modulus of the porous polyethylene is excessively small, the shape retention during melting and the film strength are deteriorated. Therefore, a porous polyethylene having an elastic modulus of 10 4 dyne / cm 2 or more is used. . If the elastic modulus is too high, the film becomes brittle. Therefore, those having an elastic modulus of 10 11 dyne / cm 2 or less in a non-porous temperature range are preferably used.

【0019】一般的にポリマー材料は融点付近まで加熱
されたとき、結晶部分が溶融しても低分子物質のように
いきなり流動状態を示さず、いわゆるゴム状状態といわ
れる領域が存在する。したがって、一般的に融点付近に
ある無孔化温度域において、多孔質ポリマーフイルムは
容易に流動をおこさず完全な無孔化の達成は困難であ
る。
In general, when a polymer material is heated to a temperature close to its melting point, even if the crystal part is melted, it does not suddenly show a fluidized state like a low molecular substance, but has a region called a so-called rubbery state. Therefore, in the non-porous temperature range generally near the melting point, the porous polymer film does not easily flow and it is difficult to achieve complete non-porous.

【0020】本発明において多孔質ポリマーフイルムと
して、無孔化温度域において104dyne/cm2
上の弾性率を有する多孔質ポリエチレンが使用された場
合には、フイルム強度が大きく、比較的粘度が高く、溶
融時の形状保持性等に優れており、しかも無孔化温度域
で実質的に収縮により完全な無孔化を達成することがで
きる。特に、収縮力の働きにより容易に流動しない状態
にある多孔質ポリマーフイルムを縮める作用をもたらし
完全な無孔化を達成することができる。
In the present invention, when a porous polyethylene film having an elastic modulus of 10 4 dyne / cm 2 or more in a non-porous temperature range is used as the porous polymer film, the film strength is large and the viscosity is relatively high. It is excellent in shape retention and the like at the time of melting, and can achieve complete nonporosity by substantial shrinkage in a nonporous temperature range. In particular, the action of the shrinking force has the effect of shrinking the porous polymer film that is not easily flowable, and complete nonporosity can be achieved.

【0021】したがって、本発明の多孔質ポリマーフイ
ルムが電池用セパレータとして使用された場合、異常発
生時に確実に多孔質ポリマーフイルムは無孔化される。
Therefore, when the porous polymer film of the present invention is used as a battery separator, the porous polymer film is reliably made nonporous when an abnormality occurs.

【0022】無孔化に必要な収縮率は無孔化温度におい
て通常数%以上、好ましくは5%以上であることが好ま
しい。収縮率は大きいほど収縮力も大きく作用する点で
は好ましいが、あまり大きくなりすぎると寸法変化が大
きくなりすぎるため一般的には90%以下であることが
好ましい。本発明における無孔化温度とは、多孔質ポリ
マーフイルムの電解液中での常温における抵抗値の10
0倍以上となる温度であり、その測定方法および抵抗測
定装置は、以下の通りである。
It is preferable that the shrinkage required for nonporosity is usually several percent or more, preferably 5% or more at the nonporous temperature. A larger shrinkage ratio is preferred in that the larger the shrinkage force, the greater the shrinkage force. However, if the shrinkage ratio is too large, the dimensional change will be too large. The non-porous temperature in the present invention refers to a resistance of a porous polymer film in an electrolyte at room temperature of 10%.
The temperature is 0 times or more, and the measuring method and the resistance measuring device are as follows.

【0023】 測定方法:電解液 1mol濃度の過塩素酸リチウムを溶解したプロピレンカー ボネートとジメトキシエタンの等容積混合液を使用。 電極面積 1cm2 抵抗測定装置:LCRハイテスタ(日置電気(株)製) 測定周波数 1kHz 多孔質ポリマーフイルム試料を5分間電解液に浸漬した
後電極間にセットし、オーブン中で2℃/分の速度で昇
温しながら抵抗値を測定した。
Measurement method: Electrolyte solution An equal volume mixture of propylene carbonate and dimethoxyethane in which 1 mol of lithium perchlorate is dissolved is used. Electrode area 1 cm 2 Resistance measuring device: LCR HiTester (manufactured by Hioki Electric Co., Ltd.) Measurement frequency 1 kHz A porous polymer film sample is immersed in an electrolytic solution for 5 minutes, set between electrodes, and set in an oven at a rate of 2 ° C./min. The resistance value was measured while raising the temperature at.

【0024】電解液に対する濡れ性の評価は以下のよう
な測定方法により行った。 測定条件:温度 23℃、湿度 50% 電解液 1mol濃度の過塩素酸リチウムを溶解したプロピレンカー ボネートとジメトキシエタンの等容積混合液を使用。 測定装置:画像処理式接触角計 CA−X型 協和界面化学(株)製
The wettability to the electrolytic solution was evaluated by the following measuring method. Measurement conditions: Temperature 23 ° C, Humidity 50% Electrolyte Use an equal volume mixture of propylene carbonate and dimethoxyethane in which 1 mol of lithium perchlorate is dissolved. Measuring device: Image processing type contact angle meter CA-X type Kyowa Interface Chemical Co., Ltd.

【0025】接触角が小さいほどセパレータの電解液に
対する濡れ性に優れる。濡れ性が悪いとセパレータに対
する電解液の浸透性に劣り、浸透に要する時間が長くな
ったり、電解液の枯渇が生じやすくなり好ましくない。
The smaller the contact angle, the better the separator wettability with the electrolyte. If the wettability is poor, the permeability of the electrolytic solution to the separator is inferior, the time required for the permeation becomes longer, or the electrolytic solution is easily depleted, which is not preferable.

【0026】積層多孔質フイルムのガーレー値は100
〜700sec/100ccであることが好ましい。ガ
ーレー値がこれより過度に大きくなると濡れ性が低下す
るばかりでなく、電解液中でのイオンの移動速度が遅く
なり好ましくない。またガーレー値がこれより過度に小
さくなると機械的強度が低下して好ましくない。ガーレ
ー値を上記の範囲とし、表層部が必ず多孔質ポリエチレ
ンとなるように配置した積層多孔質フイルムとすること
により、電解液に対する濡れ性が向上し、セパレータに
対する電解液の浸透性が良好となる。
The Gurley value of the laminated porous film is 100
It is preferably ~ 700 sec / 100 cc. If the Gurley value is excessively larger than this, not only the wettability is reduced, but also the movement speed of ions in the electrolyte is undesirably reduced. On the other hand, if the Gurley value is too small, the mechanical strength decreases, which is not preferable. By setting the Gurley value to the above range and making the laminated porous film in which the surface layer portion is always made of porous polyethylene, the wettability to the electrolyte is improved, and the permeability of the electrolyte to the separator is improved. .

【0027】表層部の多孔質ポリエチレンの空孔率を4
0〜60%とするとさらに濡れ性が良くなり好ましい。
空孔率がこれより過度に大きくなると機械的強度が低下
し好ましくない。空孔率がこれより過度に小さくなると
濡れ性が低下するばかりでなくイオンの移動速度が遅く
なり好ましくない。
The porosity of the porous polyethylene in the surface layer is 4
When the content is 0 to 60%, the wettability is further improved, which is preferable.
If the porosity is too large, the mechanical strength decreases, which is not preferable. If the porosity is too small, not only the wettability will decrease but also the ion moving speed will be undesirably low.

【0028】破膜温度は以下のような測定方法により求
めた。 測定方法:試料幅 25mm、試料長さ 100mm 長さ方向両端部を固定した状態で昇温する。室温から1
0℃毎昇温する。各温度で約10分間保持する。破膜状
態を肉眼で観察する。破膜した時の温度を破膜温度とす
る。
The film breaking temperature was determined by the following measuring method. Measuring method: sample width 25 mm, sample length 100 mm The temperature is raised with both ends in the length direction fixed. From room temperature to 1
Raise the temperature every 0 ° C. Hold at each temperature for about 10 minutes. The rupture state is visually observed. The temperature at the time of film rupture is defined as the film rupture temperature.

【0029】無孔化温度域において弾性率が104 dy
ne/cm2 以上である多孔質ポリエチレンを表層部に
配置した積層多孔質フイルムとすることにより、多孔質
ポリエチレンが無孔化した温度域以上の温度において
も、高融点多孔質ポリオレフィンと積層することにより
破膜せず、高融点多孔質ポリオレフィンの融点以上の耐
熱性を維持することができる。
The elastic modulus is 10 4 dy in the non-porous temperature range.
By laminating a porous polyethylene film having a ne / cm 2 or more in a surface layer portion, a porous polyethylene film can be laminated with a high-melting-point porous polyolefin even at a temperature higher than a temperature range in which the porous polyethylene is nonporous. Accordingly, heat resistance equal to or higher than the melting point of the high-melting-point porous polyolefin can be maintained without causing film breakage.

【0030】静摩擦係数は以下の測定方法により求め
た。 測定方法:JIS K7125に準じて測定 動・静摩擦係数測定器 理学工業(株) 試料寸法63mm角、荷重200g、移動速度 100mm/min 相手材 クロムメッキステンレススチール
The coefficient of static friction was determined by the following measuring method. Measuring method: Measured in accordance with JIS K7125 Dynamic / Static Friction Coefficient Measuring Device Rigaku Kogyo Co., Ltd. Sample size 63 mm square, load 200 g, moving speed 100 mm / min Counterpart material Chrome-plated stainless steel

【0031】静摩擦係数の小さなものが、電池組立時に
電極とセパレータとをともに巻き込むときのピン抜け性
等に優れ好ましい。表層部に多孔質ポリエチレンを配置
した場合、静摩擦係数も小さくすることができ、電池組
立時の特性が改善される。
A material having a small coefficient of static friction is preferred because it has excellent pin detachability when the electrode and the separator are wound together during battery assembly. When the porous polyethylene is disposed on the surface layer, the coefficient of static friction can be reduced, and the characteristics at the time of battery assembly are improved.

【0032】以下に実施例および比較例を示し、本発明
についてさらに詳細に説明するが、本発明はこれら一実
施例に限定されるものではない。
The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0033】実施例1 吐出幅1000mm、吐出リップ開度2mmのTダイを
使用し、数平均分子量70000、重量平均分子量48
0000、メルトインデックス3、融点166℃のポリ
プロピレン(宇部興産株式会社製、宇部ポリプロF10
3EA)を、200℃で溶融押出した。吐出フイルムは
90℃の冷却ロールに導かれ、25℃の冷風が吹きつけ
られて冷却された後、40m/minで引き取られた。
得られた未延伸ポリプロピレンフイルムの膜厚は11.
5μmであった。この未延伸ポリプロピレンフイルム
は、これを熱処理するために、3インチ径紙管に350
0m巻いた状態で120℃に保持した熱風循環式オーブ
ン(田葉井製作所製PS−222型)にいれて24時間
放置した後、オーブンから取り出し室温まで冷却した。
Example 1 Using a T-die having a discharge width of 1000 mm and a discharge lip opening of 2 mm, a number average molecular weight of 70,000 and a weight average molecular weight of 48 were used.
0000, a melt index of 3, and a melting point of 166 ° C. polypropylene (Ube Polypro F10 manufactured by Ube Industries, Ltd.)
3EA) was melt extruded at 200 ° C. The discharge film was guided to a cooling roll at 90 ° C., cooled by blowing cool air at 25 ° C., and then taken out at 40 m / min.
The film thickness of the obtained unstretched polypropylene film is 11.
It was 5 μm. The unstretched polypropylene film is placed in a 3 inch diameter paper tube at 350 mm for heat treatment.
After being wound in a state of being wound by 0 m, it was placed in a hot-air circulation oven (PS-222, manufactured by Tabai Seisakusho) maintained at 120 ° C., allowed to stand for 24 hours, taken out of the oven, and cooled to room temperature.

【0034】吐出幅1000mm、吐出リップ開度2m
mのTダイを使用し、密度0.964、メルトインデッ
クス0.33、融点132℃の高密度ポリエチレン(三
井石油化学株式会社製、ハイゼックス5202B)を、
173℃で溶融押出した。吐出フイルムは115℃の冷
却ロールに導かれ、25℃の冷風が吹きつけられて冷却
された後、20m/minで引き取られた。得られた未
延伸ポリエチレンフイルムの膜厚は10.5μmであっ
た。この未延伸ポリエチレンフイルムは、これを熱処理
するために、3インチ径紙管に3500m巻いた状態で
95℃に保持した熱風循環式オーブン(田葉井製作所製
PS−222型)にいれて24時間放置した後、オーブ
ンから取り出し室温まで冷却した。
Discharge width 1000 mm, discharge lip opening 2 m
Using a T die having a density of 0.964, a melt index of 0.33, and a melting point of 132 ° C., high-density polyethylene (HIZEX5202B manufactured by Mitsui Petrochemical Co., Ltd.)
It was melt extruded at 173 ° C. The discharge film was guided to a cooling roll at 115 ° C., cooled by blowing cool air at 25 ° C., and then taken out at 20 m / min. The film thickness of the obtained unstretched polyethylene film was 10.5 μm. This unstretched polyethylene film was placed in a hot-air circulation oven (type PS-222, manufactured by Taibai Seisakusho) held at 95 ° C. in a state of being wound around a 3-inch diameter paper tube at 3,500 m for 24 hours in order to heat-treat it. After standing, it was taken out of the oven and cooled to room temperature.

【0035】次いで、両外層がポリエチレンで内層がポ
リプロピレンのサンドイッチ構造の3層の積層フイルム
を次のようにして製造した。三組の原反ロールタンドか
ら、前記熱処理した未延伸ポリプロピレンフイルムと未
延伸ポリエチレンフイルムとを、それぞれ巻きだし速度
4.0m/minで巻きだし、加熱ロールに導き温度1
28℃、線圧1.5kg/cmで熱圧着し、その後同速
度で50℃の冷却ロールに導いて巻き取った。このとき
の速度は4.0m/min、巻きだし張力はポリプロピ
レンフイルムが3kg、ポリエチレンフイルムが0.9
kgであった。
Next, a three-layer laminated film having a sandwich structure in which both outer layers were polyethylene and the inner layer was polypropylene was manufactured as follows. The heat-treated unstretched polypropylene film and unstretched polyethylene film were unwound at a winding speed of 4.0 m / min from three sets of roll roll tunds.
Thermocompression bonding was performed at 28 ° C. and a linear pressure of 1.5 kg / cm, and then guided to a cooling roll at 50 ° C. at the same speed and wound. The speed at this time was 4.0 m / min, and the unwinding tension was 3 kg for the polypropylene film and 0.9 kg for the polyethylene film.
kg.

【0036】この3層の積層フイルムは、35℃に保持
されたニップロール間で原寸に対して30%低温延伸さ
れた。このときのロール間は350mm、供給側のロー
ル速度は1.6m/minであった。引き続き120℃
に加熱された熱風循環オーブン中に導かれ、ロール周速
差を利用してローラ間で総延伸量200%になるまで高
温延伸された後、120℃に加熱されたロールで25%
緩和させ、25秒間熱固定して、連続的に積層多孔質フ
イルムを得た。
This three-layer laminated film was stretched at a low temperature of 30% of the original size between nip rolls maintained at 35 ° C. At this time, the distance between the rolls was 350 mm, and the roll speed on the supply side was 1.6 m / min. Continue at 120 ° C
After being drawn into a hot air circulation oven heated to a temperature of 200% and stretched at a high temperature to a total stretching amount of 200% between the rollers using a difference in roll peripheral speed, the roll heated to 120 ° C. is 25%
The film was relaxed and heat-set for 25 seconds to continuously obtain a laminated porous film.

【0037】得られた積層多孔質フイルムの全層ガーレ
ー値、表層部の空孔率(%)、接触角(度)、破膜温度
(℃)、静摩擦係数の測定結果を表1に示す。
Table 1 shows the measurement results of the Gurley value of all layers, the porosity (%) of the surface layer, the contact angle (degree), the rupture temperature (° C.), and the coefficient of static friction of the obtained laminated porous film.

【0038】また、得られた積層多孔質ポリマーフイル
ムにおいて、多孔質ポリエチレンフイルムは、無孔化温
度域133℃で弾性率6.8×108 dyne/cm2
であった。接触角(度)、破膜温度(℃)、静摩擦係数
の測定は上記の方法により行った。また、表層部の空孔
率(%)、全層ガーレー値の測定は以下の方法により行
った。
In the obtained laminated porous polymer film, the porous polyethylene film has a modulus of elasticity of 6.8 × 10 8 dyne / cm 2 at a nonporous temperature range of 133 ° C.
Met. The measurement of the contact angle (degree), the rupture temperature (° C.), and the coefficient of static friction were performed by the above methods. The porosity (%) of the surface layer and the Gurley value of the entire layer were measured by the following methods.

【0039】 空孔率及び極大孔径 空孔率及び極大孔径は、水銀ポロシメータ(ユアサアイ
オニック社製)で測定した細孔分布曲線の極大値から求
めた。詳しくは、MD30mm、TD300mmの試料
片を採取し、セルの中に入れ、細孔径に対する水銀量と
圧力から空孔率と極大孔径を求めた。 ガーレー値 JIS P8117に準じて測定した。測定装置として
B型ガーレーデンソメーター(東洋精機社製)を使用し
た。試料片を直径28.6mm、面積645mm2 の円
孔に締め付ける。内筒重量567gにより、筒内の空気
を試験円孔部から筒外へ通過させる。空気100ccが
通過する時間を測定し透気度(ガーレー値)とした。
Porosity and maximum pore diameter The porosity and the maximum pore diameter were determined from the maximum value of a pore distribution curve measured with a mercury porosimeter (manufactured by Yuasa Ionic). Specifically, a sample piece having a MD of 30 mm and a TD of 300 mm was collected and placed in a cell, and the porosity and the maximum pore diameter were determined from the amount of mercury and the pressure relative to the pore diameter. Gurley value It was measured according to JIS P8117. A B-type Gurley densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The sample piece is clamped in a circular hole having a diameter of 28.6 mm and an area of 645 mm 2 . With the inner cylinder weight of 567 g, the air in the cylinder is allowed to pass from the test hole to the outside of the cylinder. The time required for 100 cc of air to pass was measured and defined as the air permeability (Gurley value).

【0040】[0040]

【表1】 [Table 1]

【0041】実施例2 延伸倍率の条件を250%延伸、20%緩和と設定した
以外は、実施例1と同様にして積層多孔質フイルムを製
造した。得られた積層多孔質フイルムの全層ガーレー
値、表層部の空孔率(%)、接触角(度)、破膜温度
(℃)、静摩擦係数の測定結果を表1に示す。また、得
られた積層多孔質フイルムにおいて、多孔質ポリエチレ
ンフイルムは、無孔化温度域133℃で弾性率6.8×
108 dyne/cm2 であった。上記評価の方法は実
施例1と同様に行った。
Example 2 A laminated porous film was produced in the same manner as in Example 1, except that the stretching ratio was set to 250% stretching and 20% relaxation. Table 1 shows the measurement results of the Gurley value of all layers, the porosity (%) of the surface layer, the contact angle (degree), the rupture temperature (° C.), and the coefficient of static friction of the obtained laminated porous film. In the obtained laminated porous film, the porous polyethylene film had a modulus of elasticity of 6.8 × at a nonporous temperature range of 133 ° C.
It was 10 8 dyne / cm 2 . The above evaluation method was performed in the same manner as in Example 1.

【0042】実施例3 原反のポリプロピレンの厚さを14.3μm、原反のポ
リエチレンの厚さを9.5μmとし、また、延伸倍率の
条件を270%延伸、20%緩和と設定した以外は、実
施例1と同様にして積層多孔質フイルムを製造した。得
られた積層多孔質フイルムの全層ガーレー値、表層部の
空孔率(%)、接触角(度)、破膜温度(℃)、静摩擦
係数の測定結果を表1に示す。また、得られた積層多孔
質フイルムにおいて、多孔質ポリエチレンフイルムは、
無孔化温度域133℃で弾性率6.8×108 dyne
/cm2 であった。
Example 3 Except that the thickness of the raw polypropylene was 14.3 μm, the thickness of the raw polyethylene was 9.5 μm, and the stretching ratio was set to 270% stretching and 20% relaxation. A laminated porous film was manufactured in the same manner as in Example 1. Table 1 shows the measurement results of the Gurley value of all layers, the porosity (%) of the surface layer, the contact angle (degree), the rupture temperature (° C.), and the coefficient of static friction of the obtained laminated porous film. Further, in the obtained laminated porous film, the porous polyethylene film is:
Elasticity 6.8 × 10 8 dyne in non-porous temperature range 133 ° C
/ Cm 2 .

【0043】比較例1 積層ポリマーフイルムとして、両外層がポリプロピレン
で内層がポリエチレンのサンドイッチ構造の3層の積層
フイルムを次のようにして製造した。三組の原反ロール
タンドから、前記熱処理した未延伸ポリプロピレンフイ
ルムと未延伸ポリエチレンフイルムとを、それぞれ巻き
だし速度4.0m/minで巻きだし、加熱ロールに導
き温度134℃、線圧1.8kg/cmで熱圧着し、そ
の後同速度で50℃の冷却ロールに導いて巻き取った。
このときの速度は4.0m/min、巻きだし張力はポ
リプロピレンフイルムが3kg、ポリエチレンフイルム
が0.9kgであった。
Comparative Example 1 As a laminated polymer film, a three-layer laminated film having a sandwich structure in which both outer layers were polypropylene and the inner layer was polyethylene was produced as follows. The heat-treated unstretched polypropylene film and unstretched polyethylene film were unwound at a winding speed of 4.0 m / min from three sets of roll roll tunds, respectively, and guided to a heating roll at a temperature of 134 ° C. and a linear pressure of 1.8 kg / min. cm, and then led to a 50 ° C. cooling roll at the same speed and wound up.
The speed at this time was 4.0 m / min, and the unwinding tension was 3 kg for the polypropylene film and 0.9 kg for the polyethylene film.

【0044】この3層の積層フイルムは、35℃に保持
されたニップロール間で20%低温延伸された。このと
きのロール間は350mm、供給側のロール速度は1.
6m/minであった。引き続き126℃に加熱された
熱風循環オーブン中に導かれ、ロール周速差を利用して
ローラ間で総延伸量180%になるまで高温延伸された
後、126℃に加熱されたロールで17%緩和させ、2
5秒間熱固定して、連続的に積層多孔質フイルムを得
た。また、得られた積層多孔質フイルムにおいて、無孔
化温度域135℃で多孔質ポリエチレンの弾性率は6.
7×108 dyne/cm2 であった。
This three-layer laminated film was stretched at a low temperature of 20% between nip rolls maintained at 35 ° C. At this time, the distance between the rolls was 350 mm, and the roll speed on the supply side was 1.
It was 6 m / min. Subsequently, it is guided into a hot air circulating oven heated to 126 ° C., stretched at a high temperature to a total stretching amount of 180% between rollers using a difference in roll peripheral speed, and then 17% by a roll heated to 126 ° C. Relax, 2
By heat setting for 5 seconds, a laminated porous film was continuously obtained. Further, in the obtained laminated porous film, the elastic modulus of the porous polyethylene was 6.degree.
It was 7 × 10 8 dyne / cm 2 .

【0045】得られた積層多孔質フイルムの全層ガーレ
ー値、表層部の空孔率(%)、接触角(度)、破膜温度
(℃)、静摩擦係数の測定結果を表1に示す。
Table 1 shows the measurement results of the Gurley value of all layers, the porosity (%) of the surface layer, the contact angle (degree), the rupture temperature (° C.), and the coefficient of static friction of the obtained laminated porous film.

【0046】比較例2 吐出幅1000mm、吐出リップ開度2mmのTダイを
使用し、密度0.964、メルトインデックス0.3
3、融点132℃の高密度ポリエチレン(三井石油化学
株式会社製、ハイゼックス5202B)を、163℃で
溶融押出した。吐出フイルムは125℃の冷却ロールに
導かれ、25℃の冷風が吹きつけられて冷却された後、
10m/minで引き取られた。
Comparative Example 2 Using a T-die having a discharge width of 1000 mm and a discharge lip opening of 2 mm, a density of 0.964 and a melt index of 0.3 were used.
3. A high-density polyethylene having a melting point of 132 ° C. (Hizex 5202B manufactured by Mitsui Petrochemical Co., Ltd.) was melt-extruded at 163 ° C. The discharge film is guided to a cooling roll of 125 ° C., and is cooled by blowing cool air of 25 ° C.
It was picked up at 10 m / min.

【0047】この未延伸ポリエチレンフイルムは、これ
を熱処理するために、3インチ径紙管に3500m巻い
た状態で125℃に保持した熱風循環式オーブン(田葉
井製作所製PS−222型)にいれて10%の緊張下で
150秒通過熱処理された。次いで熱処理したフイルム
は、35℃に保持されたニップロール間で50%低温延
伸された。このときのロール間は350mm、供給側の
ロール速度は1.2m/minであった。引き続き80
℃に加熱された熱風循環オーブン中に導かれ、ロール周
速差をりようしてローラ間で総延伸量200%まで高温
延伸された後、108℃に加熱されたロールで25%緩
和させて28秒間熱固定され、連続的にポリエチレン単
層多孔質フイルムを得た。
The unstretched polyethylene film is placed in a hot-air circulation oven (Model PS-222, manufactured by Taibai Seisakusho) which is kept at 125 ° C. while being wound around a 3-inch diameter paper tube at 3,500 m for heat treatment. For 150 seconds under 10% strain. Next, the heat-treated film was stretched at a low temperature by 50% between nip rolls maintained at 35 ° C. At this time, the distance between the rolls was 350 mm, and the roll speed on the supply side was 1.2 m / min. Continue 80
After being drawn into a hot-air circulation oven heated to 80 ° C. and stretched between the rollers at a high temperature up to a total stretching amount of 200% by reducing the peripheral speed of the rolls, the roll is heated to 108 ° C. and relaxed by 25%. It was heat-fixed for 28 seconds to continuously obtain a polyethylene single-layer porous film.

【0048】得られた積層多孔質フイルムの全層ガーレ
ー値、表層部の空孔率(%)、接触角(度)、破膜温度
(℃)、静摩擦係数の測定結果を表1に示す。
Table 1 shows the measurement results of the Gurley value of all layers, the porosity (%) of the surface layer, the contact angle (degree), the rupture temperature (° C.), and the coefficient of static friction of the obtained laminated porous film.

【0049】[0049]

【発明の効果】本発明の多孔質ポリマーフイルムは、フ
イルム強度が大きく、比較的粘度が高く、溶融時の形状
保持性等に優れており、しかも無孔化温度域で完全な無
孔化を達成することができる。したがって、電池用セパ
レータとして使用された場合、無孔化温度域で実質的に
収縮することができ、異常発生時に確実に多孔質ポリマ
ーフイルムは無孔化される。また、本発明の多孔質ポリ
マーフイルムは、電解液に対する濡れ性に優れており、
電池製造時の作業性に優れている。
The porous polymer film of the present invention has high film strength, relatively high viscosity, excellent shape retention during melting, and complete nonporosity in a nonporous temperature range. Can be achieved. Therefore, when the porous polymer film is used as a battery separator, it can be substantially contracted in a non-porous temperature range, and when an abnormality occurs, the porous polymer film is reliably non-porous. Further, the porous polymer film of the present invention has excellent wettability to an electrolytic solution,
Excellent workability during battery manufacturing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 2/16 H01M 2/16 P ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI H01M 2/16 H01M 2/16 P

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 融点が20℃以上異なる高融点多孔質ポ
リオレフィンと低融点多孔質ポリオレフィンとからな
り、表層部が多孔質ポリエチレンである三層以上積層さ
れた積層多孔質フイルムであって、全層のガーレー値が
100〜700sec/100ccであり、かつ表層部
の多孔質ポリエチレンの無孔化温度域における弾性率が
104 dyne/cm2 以上であることを特徴とする積
層多孔質フイルム。
1. A laminated porous film comprising a high-melting-point porous polyolefin and a low-melting-point porous polyolefin having melting points different from each other by 20 ° C. or more, and a surface layer portion of which is a laminated layer of three or more layers of porous polyethylene. Wherein the Gurley value of the laminated porous film is 100 to 700 sec / 100 cc, and the elastic modulus in the nonporous temperature range of the surface polyethylene is at least 10 4 dyne / cm 2 .
【請求項2】表層部の多孔質ポリエチレンの空孔率が4
0〜60%であることを特徴とする請求項1記載の積層
多孔質フイルム。
2. The porosity of the porous polyethylene of the surface layer is 4
The laminated porous film according to claim 1, wherein the content is 0 to 60%.
【請求項3】高融点多孔質ポリオレフィンが多孔質ポリ
プロピレンである請求項1記載の積層多孔質フイルム。
3. The laminated porous film according to claim 1, wherein the high-melting-point porous polyolefin is porous polypropylene.
JP9280190A 1997-10-14 1997-10-14 Laminated porous film Pending JPH11115084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9280190A JPH11115084A (en) 1997-10-14 1997-10-14 Laminated porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9280190A JPH11115084A (en) 1997-10-14 1997-10-14 Laminated porous film

Publications (1)

Publication Number Publication Date
JPH11115084A true JPH11115084A (en) 1999-04-27

Family

ID=17621562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9280190A Pending JPH11115084A (en) 1997-10-14 1997-10-14 Laminated porous film

Country Status (1)

Country Link
JP (1) JPH11115084A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123799A (en) * 1997-10-24 1999-05-11 Ube Ind Ltd Laminated porous film
WO2007034856A1 (en) * 2005-09-22 2007-03-29 Mitsubishi Plastics, Inc. Process for producing porous laminate and porous laminate
JP2007083542A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Manufacturing method of porous laminated body, and porous laminated body
JP2007083537A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Perforated laminate and its manufacturing method
JP2009019118A (en) * 2007-07-12 2009-01-29 Toray Ind Inc Porous film and electricity storage device using the same
JP2009187724A (en) * 2008-02-05 2009-08-20 Hitachi Vehicle Energy Ltd Rolled lithium ion secondary battery
JP2011005867A (en) * 2010-08-16 2011-01-13 Mitsubishi Plastics Inc Porous laminate
WO2011013300A1 (en) * 2009-07-31 2011-02-03 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2011062285A1 (en) * 2009-11-20 2011-05-26 三菱樹脂株式会社 Laminated porous film, separator for battery, and battery
JP2012179910A (en) * 2005-10-24 2012-09-20 Toray Battery Separator Film Co Ltd Polyolefin multilayer microporous film and battery separator
JP2015053134A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device
WO2018180713A1 (en) * 2017-03-30 2018-10-04 東レ株式会社 Polyolefin microporous film and battery using same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123799A (en) * 1997-10-24 1999-05-11 Ube Ind Ltd Laminated porous film
KR100950189B1 (en) * 2005-09-22 2010-03-29 미쓰비시 쥬시 가부시끼가이샤 Process for producing porous laminate and porous laminate
JP2007083542A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Manufacturing method of porous laminated body, and porous laminated body
JP2007083537A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Perforated laminate and its manufacturing method
JP4546910B2 (en) * 2005-09-22 2010-09-22 三菱樹脂株式会社 Method for producing porous laminate and porous laminate
JP4594837B2 (en) * 2005-09-22 2010-12-08 三菱樹脂株式会社 Method for producing porous laminate
WO2007034856A1 (en) * 2005-09-22 2007-03-29 Mitsubishi Plastics, Inc. Process for producing porous laminate and porous laminate
US8486555B2 (en) 2005-09-22 2013-07-16 Mitsubishi Plastics, Inc. Method for producing porous laminate and porous laminate
JP2012179910A (en) * 2005-10-24 2012-09-20 Toray Battery Separator Film Co Ltd Polyolefin multilayer microporous film and battery separator
EP1942000B1 (en) * 2005-10-24 2018-12-12 Toray Industries, Inc. Polyolefin multilayer microporous film, method for producing same and battery separator
US8932748B2 (en) 2005-10-24 2015-01-13 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyolefin membrane, its production method, and battery separator
JP2009019118A (en) * 2007-07-12 2009-01-29 Toray Ind Inc Porous film and electricity storage device using the same
JP2009187724A (en) * 2008-02-05 2009-08-20 Hitachi Vehicle Energy Ltd Rolled lithium ion secondary battery
WO2011013300A1 (en) * 2009-07-31 2011-02-03 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
CN102197511A (en) * 2009-07-31 2011-09-21 松下电器产业株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
CN102712185A (en) * 2009-11-20 2012-10-03 三菱树脂株式会社 Laminated porous film, separator for battery, and battery
JP2011126275A (en) * 2009-11-20 2011-06-30 Mitsubishi Plastics Inc Laminated porous film, battery separator, and battery
WO2011062285A1 (en) * 2009-11-20 2011-05-26 三菱樹脂株式会社 Laminated porous film, separator for battery, and battery
JP2011005867A (en) * 2010-08-16 2011-01-13 Mitsubishi Plastics Inc Porous laminate
JP2015053134A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device
WO2018180713A1 (en) * 2017-03-30 2018-10-04 東レ株式会社 Polyolefin microporous film and battery using same

Similar Documents

Publication Publication Date Title
JP3003830B2 (en) Laminated porous film and method for producing the same
KR101577383B1 (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
KR101666045B1 (en) A separator for electrochemical device
KR101656413B1 (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
JP4470248B2 (en) Battery separator
JP3011309B2 (en) Battery separator and method of manufacturing the same
JP3381538B2 (en) Manufacturing method of laminated porous polyolefin film
KR20160093096A (en) Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery
WO2017073781A1 (en) Porous film and electricity storage device
US9755208B2 (en) Non-aqueous-secondary-battery separator and non-aqueous secondary battery
EP2551293A1 (en) Polyolefin microporous membrane, method for producing same, separator for nonaqueous secondary battery and nonaqueous secondary battery
KR20200108418A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JPH1050286A (en) Manufacture of separator for battery
WO2014021289A1 (en) Non-aqueous electrolyte battery separator, non-aqueous electrolyte battery, and manufacturing method of non-aqueous electrolyte battery
US20150318528A1 (en) Non-aqueous-secondary-battery separator and non-aqueous secondary battery
JPWO2008044761A1 (en) Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery
JPH11115084A (en) Laminated porous film
KR20230007535A (en) Manufacturing method of separator roll
JP3436055B2 (en) Battery separator
JP3508510B2 (en) Laminated porous film and method for producing the same
KR20150030102A (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
JPH11297297A (en) Manufacture of porous film and porous film
JP3536607B2 (en) Porous polymer film
KR20160041493A (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040512

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040806