JP3003830B2 - Laminated porous film and method for producing the same - Google Patents

Laminated porous film and method for producing the same

Info

Publication number
JP3003830B2
JP3003830B2 JP6098394A JP9839494A JP3003830B2 JP 3003830 B2 JP3003830 B2 JP 3003830B2 JP 6098394 A JP6098394 A JP 6098394A JP 9839494 A JP9839494 A JP 9839494A JP 3003830 B2 JP3003830 B2 JP 3003830B2
Authority
JP
Japan
Prior art keywords
film
temperature
porous
laminated
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6098394A
Other languages
Japanese (ja)
Other versions
JPH07304110A (en
Inventor
浩 倉内
哲夫 赤沢
明 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP6098394A priority Critical patent/JP3003830B2/en
Priority to KR1019950011752A priority patent/KR100242363B1/en
Priority to EP19950107221 priority patent/EP0682376B1/en
Priority to US08/440,075 priority patent/US5691047A/en
Priority to DE1995614711 priority patent/DE69514711T2/en
Priority to CA 2149284 priority patent/CA2149284C/en
Publication of JPH07304110A publication Critical patent/JPH07304110A/en
Application granted granted Critical
Publication of JP3003830B2 publication Critical patent/JP3003830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、剥離強度が高く、微細
で均一な孔径を有し、熱による無孔化維持温度領域が広
い積層多孔質フイルム及びその製法に関する。更に詳し
くは、本発明はポリプロピレンとポリエチレンとが積層
された三層の積層フイルムを延伸して多孔化してなる積
層多孔質フイルムに関し、電池用セパレータ、電解コン
デンサー用セパレータ、絶縁体等の電子機器分野、人工
肺用隔膜、血漿浄化膜、呼吸性医療用衣料等の医療分
野、細菌やウイルスろ過等の水処理分野、ガス分離分
野、空調分野等々で広く使用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated porous film having a high peeling strength, a fine and uniform pore diameter, and a wide temperature range for maintaining nonporosity by heat, and a method for producing the same. More specifically, the present invention relates to a laminated porous film obtained by stretching a three-layer laminated film in which polypropylene and polyethylene are laminated and making the film porous, and relates to the field of electronic devices such as battery separators, electrolytic capacitor separators, and insulators. It can be widely used in medical fields such as artificial lung membranes, plasma purification membranes, respiratory medical clothing, water treatment fields such as bacteria and virus filtration, gas separation fields, and air conditioning fields.

【0002】[0002]

【従来の技術】従来無孔の積層フイルムや単層の多孔質
フイルムについてはすでに多数知られているが、これら
に比べて積層多孔質フイルムについての提案は少ない。
近年技術の高度化に伴い、種々の分野で利用目的に応じ
た高精度のフイルムの要求が高くなり、積層多孔質フイ
ルムが注目されるようになってきた。
2. Description of the Related Art Conventionally, a large number of nonporous laminated films and single-layer porous films have already been known, but there have been few proposals for laminated porous films.
In recent years, with the advancement of technology, the demand for high-precision films according to the purpose of use has been increasing in various fields, and laminated porous films have attracted attention.

【0003】電池を例にとってみると、電池には正負両
極の短絡防止のためにセパレ−タが介在しているが、近
年高エネルギ−密度、高起電力、自己放電の少ないリチ
ウム電池のような非水電解液電池、特にリチウム二次電
池が開発、実用化されるようになってきた。リチウム電
池の負極としては例えば金属リチウム、リチウムと他の
金属との合金、カ−ボンやグラファイト等のリチウムイ
オンを吸着する能力又はインタ−カレ−ションにより吸
蔵する能力を有する有機材料、リチウムイオンをド−ピ
ングした導電性高分子材料等が知られており、また正極
としては例えば(CFx nで示されるフッ化黒鉛、M
nO2 、V2 5 、CuO、Ag2 CrO4 、TiO 2
等の金属酸化物や硫化物、塩化物が知られている。
[0003] Taking a battery as an example, batteries have both positive and negative
A separator is interposed to prevent short-circuiting of the pole.
Annual energy density, high electromotive force, low self-discharge
Non-aqueous electrolyte batteries such as lithium batteries, especially lithium secondary batteries
Ponds have been developed and put into practical use. Lithium electricity
Positive electrode of the pond, for example, metal lithium, lithium and other
Alloys with metals, lithium ions such as carbon and graphite
ON by the ability to absorb ON or by intercalation
Organic materials with the ability to store lithium ions
Known conductive polymer materials are known, and
For example, (CFx)nFluorinated graphite represented by M
nOTwo, VTwoOFive, CuO, AgTwoCrOFour, TiO Two
Metal oxides, sulfides, and chlorides are known.

【0004】また非水電解液として、エチレンカ−ボネ
−ト、プロピレンカ−ボネ−ト、γ−ブチロラクトン、
アセトニトリル、1,2−ジメトキシエタン、テトラヒ
ドロフラン等の有機溶媒にLiPF6 、LiBF4 、L
iClO4 、LiCF3 SO 3 等の電解質を溶解したも
のが使用されている。しかしリチウムは特に反応性が強
いため、外部短絡や誤接続等により異常電流が流れた場
合、電池温度が著しく上昇してこれを組み込んだ機器に
熱的ダメ−ジを与える懸念がある。このような危険性を
回避するために、従来セパレ−タとして下記のような種
々の多孔質フイルムの使用が提案されている。
As a non-aqueous electrolyte, ethylene carbonate
, Propylene carbonate, γ-butyrolactone,
Acetonitrile, 1,2-dimethoxyethane, tetrahi
LiPF for organic solvents such as drofuran6, LiBFFour, L
iCLOFour, LiCFThreeSO ThreeDissolved electrolytes such as
Is used. But lithium is particularly reactive
If an abnormal current flows due to an external short circuit or incorrect connection,
If the battery temperature rises significantly,
There is a concern of causing thermal damage. Such danger
To avoid this, the following types of conventional separators were used.
The use of various porous films has been proposed.

【0005】ポリエチレン、ポリプロピレン等の熱可
塑性樹脂の単層の多孔質フイルム(特公昭46−401
19号公報、特公昭55−32531号公報、特公昭5
9−37292号公報、特開昭60−23954号公
報、特開平2−75151号公報、米国特許第3679
538号明細書等)。 分子量の異なるポリエチレン混合物やポリエチレンと
ポリプロピレンの混合物を素材とした多孔質フイルム
(特開平2−21559号公報、特開平2−33430
9公報、特開平5−331306号公報等)。 支持体に熱可塑性樹脂や不織布を用いた多孔質フイル
ム(特開平3−245457公報、特開平1−2583
58公報等)。 材質の異なる熱可塑性樹脂の多孔質膜を複数枚積層し
た積層多孔質フイルム(特開昭62−10857号公
報、特開昭63−308866号公報、特公昭3−65
776号公報、特開平6−20671号公報等)。 またその他、積層多孔質フイルムとして二枚の多孔質
膜を接着剤を介して又は介さずに接着又は熱圧着したも
のが知られている。
A single-layer porous film of a thermoplastic resin such as polyethylene or polypropylene (Japanese Patent Publication No. 46-401)
No. 19, Japanese Patent Publication No. 55-32531, Japanese Patent Publication No. 5
9-37292, JP-A-60-23954, JP-A-2-75151, U.S. Pat.
No. 538). Porous films made of a mixture of polyethylene having different molecular weights or a mixture of polyethylene and polypropylene (JP-A-2-21559, JP-A-2-33430)
9 and JP-A-5-331306). A porous film using a thermoplastic resin or a non-woven fabric as a support (JP-A-3-245457, JP-A-1-25883)
58 gazette). Laminated porous films in which a plurality of porous films of thermoplastic resins of different materials are laminated (JP-A-62-10857, JP-A-63-308866, Japanese Patent Publication No. 3-65)
776, JP-A-6-20671). In addition, there is known a laminated porous film obtained by bonding or thermocompression bonding two porous films with or without an adhesive.

【0006】これらの単層又は積層多孔質フイルムをセ
パレ−タとして使用する基本的な考え方は、両極間の短
絡防止、電池電圧の維持等を図ると共に、異常電流等で
電池の内部温度が所定温度以上に上昇したときに、多孔
質フイルムを無孔化させて、換言すると孔を塞いで、両
極間にイオンが流れないように電気抵抗を増大させ、電
池機能を停止させて過度の温度上昇による発火等の危険
を防止し安全を確保することにある。過度の温度上昇に
よる危険防止機能は、電池用セパレ−タとして極めて重
要な機能であり、一般に無孔化或いはシャットダウン
(SDと略称)と呼ばれている。
The basic concept of using such a single-layer or laminated porous film as a separator is to prevent a short circuit between the two electrodes, maintain the battery voltage, etc., and to control the internal temperature of the battery due to an abnormal current or the like. When the temperature rises above the temperature, the porous film is made nonporous, in other words, the pores are closed, the electric resistance is increased so that ions do not flow between the two electrodes, the battery function is stopped, and the temperature rises excessively. The purpose of the present invention is to prevent the danger of fire and the like caused by fire and to ensure safety. The function of preventing danger due to an excessive rise in temperature is a very important function as a battery separator, and is generally called non-porous or shutdown (abbreviated as SD).

【0007】本明細書においては多孔質フイルムのガス
透過速度(ガ−レ−値:秒/100cc)が6000を
越えた時点を無孔化開始温度或いはSD開始温度と称す
る。なおガス透過速度はガス透過率と称することもあ
る。電池用セパレ−タにおいては、無孔化開始温度が低
すぎると、僅かな温度上昇でイオンの流れが阻止される
ため実用性の面で問題があり、また逆に高すぎるとリチ
ウム電池等においては発火等を引き起こす危険性がある
ため安全性の面で問題がある。一般に無孔化開始温度は
110〜160°C、好ましくは120〜150°Cが
好適と認識されている。また本明細書においては無孔化
或いはSD状態が維持される温度の上限温度を無孔化維
持上限温度或いは耐熱温度と称し、無孔化開始温度或い
はSD開始温度から耐熱温度までの温度領域或いは温度
幅を、無孔化維持温度領域或いは耐熱温度幅と称するこ
とにする。セパレ−タに多孔質フイルムを使用した電池
において、電池内の温度が無孔化維持上限温度を越えて
上昇した場合、フイルムが溶断して破れが生じ、無孔化
状態が喪失して、再びイオンが流れだし更なる温度上昇
を招く。それ故電池用セパレ−タとしては適当な無孔化
開始温度を有し、無孔化維持上限温度が高く無孔化維持
温度領域が広いという特性が要求される。また電池用セ
パレ−タとしては、前記無孔化に関する特性の他に、電
気抵抗が低いこと、引張弾性率等の機械的強度が高いこ
と、厚みムラや電気抵抗等のバラツキが小さいこと等が
要求される。
In the present specification, the point at which the gas permeation rate (Gurley value: seconds / 100 cc) of the porous film exceeds 6000 is referred to as the nonporous start temperature or the SD start temperature. The gas permeation speed may be referred to as gas permeation rate. In a battery separator, if the non-porous starting temperature is too low, the flow of ions is prevented by a slight rise in temperature, which poses a problem in terms of practicability. There is a problem in terms of safety because there is a risk of causing ignition. Generally, it has been recognized that the nonporous start temperature is preferably 110 to 160 ° C, preferably 120 to 150 ° C. In this specification, the upper limit temperature of the temperature at which the nonporous or SD state is maintained is referred to as the nonporous maintenance upper limit temperature or the heat-resistant temperature, and the temperature range from the nonporous start temperature or the SD start temperature to the heat-resistant temperature or The temperature range is referred to as a nonporous maintenance temperature region or a heat-resistant temperature range. In a battery using a porous film as a separator, if the temperature in the battery rises above the non-porous maintenance upper limit temperature, the film is melted and broken, the non-porous state is lost, and The ions flow out, causing a further rise in temperature. Therefore, a separator for a battery is required to have an appropriate non-poration starting temperature, a high non-poration maintaining upper limit temperature, and a wide non-poration maintaining temperature range. Further, in addition to the characteristics relating to non-porosity, battery separators have low electric resistance, high mechanical strength such as tensile elasticity, and small variations in thickness unevenness and electric resistance. Required.

【0008】[0008]

【発明が解決しようとする課題】多孔質フイルムは前記
〜のように種々のものが提案されているが、本発明
者らの研究によると、例えば電池用セパレ−タとして、
ポリプロピレンの単層多孔質フイルムは無孔化開始温度
が170°C程度以上とリチウムの融点に近いという難
点があり、ポリエチレンの単層多孔質フイルムは無孔化
開始温度が135°C程度と適当な温度であるが、無孔
化維持上限温度が145°C程度であるため無孔化維持
温度領域が狭すぎるという他に、引張弾性率が低いため
電池の生産工程で伸びが生じやすく生産性の面でも難点
があり、熱可塑性樹脂の単層の多孔質フイルムは安全面
等で更に改良の余地がある。
Various types of porous films have been proposed as described above. According to the research of the present inventors, for example, as a separator for batteries,
The single-layer porous film of polypropylene has a drawback that the non-porous onset temperature is about 170 ° C or more, which is close to the melting point of lithium, and the single-layer porous film of polyethylene has a non-porous onset temperature of about 135 ° C. Although the non-porous maintenance upper limit temperature is about 145 ° C., the non-porous maintenance temperature range is too narrow, and the tensile modulus is low, so that elongation is likely to occur in the battery production process and the productivity is high. However, there is room for further improvement in a single layer porous film of a thermoplastic resin in terms of safety and the like.

【0009】また、分子量の異なるポリエチレン混合物
を多孔化した多孔質フイルムは、無孔化維持上限温度が
150°C程度及び引張弾性率が3400kg/cm2
程度と上記ポリエチレンの単層多孔質フイルムよりも若
干高くなる程度である。またポリエチレンとポリプロピ
レンの混合物を延伸して多孔化した海島構造の多孔質フ
イルムは、無孔化維持上限温度180°C程度、引張弾
性率4200〜6400kg/cm2 程度でポリエチレ
ン混合物の場合よりもSD機能、機械的性質等は改良さ
れるが未だ十分とは言えず、また混合物を延伸して多孔
化した海島構造の形成は品質面でのバラツキが生じやす
くその再現性に難点がある。
A porous film obtained by making a polyethylene mixture having a different molecular weight into a porous material has a non-porous maintaining upper limit temperature of about 150 ° C. and a tensile modulus of 3,400 kg / cm 2.
The degree is slightly higher than that of the single-layer porous film of polyethylene. A sea-island structure porous film obtained by stretching a mixture of polyethylene and polypropylene to make it porous has a nonporous maintenance upper limit temperature of about 180 ° C. and a tensile modulus of elasticity of about 4200 to 6400 kg / cm 2 , which is higher than that of the polyethylene mixture. Although the functions and mechanical properties are improved, they cannot be said to be sufficient yet, and the formation of a sea-island structure which is made porous by stretching the mixture is likely to cause variations in quality, and has a problem in its reproducibility.

【0010】また、支持体に不織布等を用いた多孔質フ
イルムは、不織布等に起因する安全性に難点があるだけ
でなく、無孔化維持に関しても上記ポリエチレン、ポリ
プロピレン等の多孔質フイルムの場合と同様に高温での
信頼性の面で改良が必要である。
A porous film using a non-woven fabric or the like as a support not only has a drawback in safety due to the non-woven fabric or the like, but also has a problem in maintaining non-porosity when using a porous film such as the above polyethylene or polypropylene. Similarly, improvement in reliability at high temperatures is required.

【0011】材質の異なる熱可塑性樹脂の多孔質膜を複
数枚重ね合わせて積層した積層多孔質フイルムについて
は、いずれも予めフイルムを延伸等で多孔化して2種類
の材質の異なる多孔質フイルムを製造した後これを重ね
合わせ、延伸、圧着、接着剤による接着等によって製造
されている。このようにして得られた積層多孔質フイル
ムは、基本的には電池用セパレ−タとしての特性を備え
ているはずであるが、実生産においては重ね合わせによ
ってそれぞれのフイルムの孔の位置がずれ、微孔が表面
から裏面まで連通しないことが多く得られた積層多孔質
フイルムは電気抵抗が増加し易い。また特にフイルムの
カ−ルやシワが生じ易い。すでに多孔化されているため
接着自体困難な面はあるが、強く高温で圧着、接着等を
すると孔が押し潰されて多孔質フイルムとしての機能を
喪失し、電気抵抗が増加する。また多孔質フイルムとし
ての機能を維持するために、かるく圧着、接着等をする
と剥離強度が低いためセパレ−タを電池に組み込む工程
でフイルムの剥がれ、シワ、伸び等が生じ、電池の品質
面で問題が残る。また多孔質フイルムを重ね合わせて延
伸した場合、基本的に製造工程が増えるだけでなく、多
かれ少なかれ上記の問題点が生じ易く、またガ−レ−値
も低いので電池用セパレ−タとしては改良の余地があ
る。
Regarding a laminated porous film obtained by laminating a plurality of porous films of a thermoplastic resin of different materials, any of the films is previously made porous by stretching or the like to produce two types of porous films of different materials. After this, they are laminated, stretched, pressed, bonded by an adhesive or the like. The laminated porous film thus obtained should basically have the characteristics as a battery separator, but in actual production, the positions of the holes of the respective films are shifted due to superposition. On the other hand, the laminated porous film, in which micropores often do not communicate from the front surface to the back surface, tends to increase the electric resistance. Also, film curls and wrinkles are particularly likely to occur. Although it is already porous, there is a surface that is difficult to bond itself. However, if pressure bonding or bonding is performed at a high temperature, the holes are crushed and the function as a porous film is lost, and the electric resistance increases. Also, in order to maintain the function as a porous film, if the film is pressure-bonded or adhered lightly, the peel strength is low, so that the film is peeled off, wrinkled, stretched, etc. in the process of incorporating the separator into the battery, and the quality of the battery is reduced. The problem remains. Further, when the porous films are stretched by overlapping, not only basically the number of production steps is increased, but also the above problems are more or less likely to occur, and the Galley value is low, so that it is improved as a battery separator. There is room for

【0012】本発明者らは、すでに単層の多孔質フイル
ム(特公平2−11620号公報等)、ポリエチレン多
孔質膜とポリプロピレン多孔質膜が積層した積層多孔質
フイルム(特開平6−20671号公報)等について提
案しているが、上述した点に鑑み、多孔質フイルム、特
に微細で均一な孔径を有し、無孔化開始温度が適度な温
度で、無孔化維持上限温度が高く、無孔化維持温度領域
が広く、また剥離強度や引張弾性率が高く、且つ従来の
積層多孔質フイルムの難点を改良できる熱可塑性の積層
多孔質フイルムを開発することを課題として、鋭意研究
を重ねた結果、本発明に到った。
The present inventors have already proposed a single-layer porous film (Japanese Patent Publication No. 11620/1990) and a laminated porous film in which a polyethylene porous film and a polypropylene porous film are laminated (Japanese Patent Laid-Open No. 6-20671). Publication), etc., in view of the above points, in view of the above points, the porous film, particularly having a fine and uniform pore diameter, at an appropriate non-poration start temperature, high non-porous maintenance upper limit temperature, With the task of developing a thermoplastic laminated porous film that has a wide nonporous maintenance temperature range, high peel strength and high tensile elasticity, and that can improve the difficulties of conventional laminated porous films, we have conducted extensive research. As a result, the present invention has been achieved.

【0013】[0013]

【課題を解決するための手段】本発明は、ポリプロピレ
ンフイルムとポリエチレンフイルムとが交互に積層され
た三層の積層フイルムを延伸して得られる多孔質ポリプ
ロピレンフイルムと多孔質ポリエチレンフイルムとから
なる積層多孔質フイルムであって、前記ポリプロピレン
フイルムの複屈折が10×10-3〜20×10-3で、1
50℃で30分熱処理後の100%伸長時の弾性回復率
が80〜94%であり、且つ前記ポリエチレンフイルム
の複屈折が20×10-3〜40×10-3で、50%伸長
時の弾性回復率が20〜50%であり、前記積層多孔質
フイルムにおいて極大孔径が0.02〜2μm、空孔率
が30〜80%、層間剥離強度が3〜60g/15m
m、無孔化開始温度が135〜140℃、無孔化維持上
限温度が180〜190℃、カール度が5mm以下であ
ることを特徴とする積層多孔質フイルムに関する。
SUMMARY OF THE INVENTION The present invention provides a laminated porous film comprising a porous polypropylene film and a porous polyethylene film obtained by stretching a three-layer laminated film in which a polypropylene film and a polyethylene film are alternately laminated. And the birefringence of the polypropylene film is 10 × 10 −3 to 20 × 10 −3 and 1
The elastic recovery at 100% elongation after heat treatment at 50 ° C. for 30 minutes is 80 to 94%, and the birefringence of the polyethylene film is 20 × 10 −3 to 40 × 10 −3 , and at the time of 50% elongation. The elastic recovery rate is 20 to 50%, the maximum porous diameter of the laminated porous film is 0.02 to 2 μm, the porosity is 30 to 80%, and the delamination strength is 3 to 60 g / 15 m.
m, a nonporous starting temperature of 135 to 140 ° C, a nonporous maintaining upper limit temperature of 180 to 190 ° C, and a curl degree of 5 mm or less.

【0014】また本発明は、ポリプロピレンフイルムと
ポリエチレンフイルムとが交互となるように120〜1
40℃の温度で熱圧着した三層の積層フイルムを、11
0〜140℃の温度領域で熱処理した後、マイナス20
℃〜プラス50℃の温度に保持された状態で5〜200
%延伸し、次いで70〜130℃の温度に保持された状
態で100〜400%延伸した後、後者の延伸時の温度
より5〜45℃高い温度で熱処理することを特徴とする
積層多孔質フイルムの製法に関する。更にまた本発明
は、ポリプロピレンフイルムとポリエチレンフイルムと
が交互になるように120〜140℃の温度で熱圧着し
た三層の積層フイルムを、110〜140℃の温度領域
で熱処理した後、20℃〜35℃の温度に保持された状
態で10〜100%延伸し、次いで70〜130℃の温
度に保持された状態で100〜400%延伸した後、後
者の延伸時の温度より5〜45℃高い温度で熱処理し
て、極大孔径が0.02〜2μm、空孔率が30〜80
%、層間剥離強度が3〜60g/15mm、無孔化開始
温度が135〜140℃、無孔化維持上限温度が180
〜190℃の積層多孔質フイルムを得ることを特徴とす
る積層多孔質フイルムの製法に関する。また本発明は、
複屈折が10×10-3〜20×10-3で、150℃で3
0分熱処理後の100%伸長時の弾性回復率が80〜9
4%のポリプロピレンフイルムと、複屈折が20×10
-3〜40×10-3で、50%伸長時の弾性回復率が20
〜50%のポリエチレンフイルムとが交互となるように
120〜140℃の温度で熱圧着した三層の積層フイル
ムを、110〜140℃の温度領域で熱処理した後、マ
イナス20℃〜プラス50℃の温度に保持された状態で
5〜200%延伸し、次いで70〜130℃の温度に保
持された状態で100〜400%延伸した後、後者の延
伸時の温度より5〜45℃高い温度で熱処理することを
特徴とする積層多孔質フイルムの製法に関する。
Further, according to the present invention, the polypropylene film and the polyethylene film may be alternately formed in a range of 120 to 1 so that the film is alternately formed.
A three-layer laminated film thermocompressed at a temperature of 40 ° C.
After heat treatment in the temperature range of 0 to 140 ° C, minus 20
5 to 200 while being maintained at a temperature of 50 ° C. to + 50 ° C.
% Stretched, then stretched at 100 to 400% while being maintained at a temperature of 70 to 130 ° C., and then heat-treated at a temperature higher by 5 to 45 ° C. than the temperature of the latter stretching. Related to the production method. Furthermore, the present invention provides a three-layer laminated film thermocompressed at a temperature of 120 to 140 ° C. so that a polypropylene film and a polyethylene film are alternately formed, and then heat-treating the laminated film at a temperature of 110 to 140 ° C. After stretching 10 to 100% while maintaining the temperature of 35 ° C, and then stretching 100 to 400% while maintaining the temperature of 70 to 130 ° C, 5 to 45 ° C higher than the temperature at the time of the latter stretching. Heat treatment at a temperature, the maximum pore size is 0.02 to 2 μm, and the porosity is 30 to 80.
%, Delamination strength of 3 to 60 g / 15 mm, nonporous start temperature of 135 to 140 ° C., nonporous maintenance upper limit temperature of 180
The present invention relates to a method for producing a laminated porous film, characterized in that a laminated porous film having a temperature of up to 190 ° C. is obtained. The present invention also provides
Birefringence is 10 × 10 −3 to 20 × 10 −3 and 3 at 150 ° C.
The elastic recovery at 100% elongation after heat treatment for 0 minutes is 80 to 9
4% polypropylene film with birefringence of 20 × 10
-3 to 40 × 10 -3 and the elastic recovery rate at 50% elongation is 20
After heat-treating a three-layer laminated film at a temperature of 110 to 140 ° C. in a temperature range of 110 to 140 ° C., a temperature of −20 ° C. to plus 50 ° C. After stretching at 5 to 200% while maintaining the temperature, and then stretching at 100 to 400% while maintaining the temperature at 70 to 130 ° C, heat-treating at a temperature higher by 5 to 45 ° C than the temperature at the time of the latter stretching. The present invention relates to a method for producing a laminated porous film.

【0015】本発明は、多孔化していないポリプロピレ
ンフイルムとポリエチレンフイルムとが交互に積層され
た三層の積層フイルムを延伸して多孔化することを骨子
とする。各層を構成するポリプロピレン及びポリエチレ
ンはそれぞれ各層で分子量が異なっていてもよい。ポリ
プロピレンは立体規則性の高いものが好ましく、またポ
リエチレンは高密度ポリエチレンが好ましいが中密度ポ
リエチレンでもよい。これらポリプロピレンとポリエチ
レンには界面活性剤、老化防止剤、可塑剤、難燃剤、着
色剤等の添加剤が含まれていてもよい。三層の積層フイ
ルムは、フイルムの厚みが均一で延伸により多孔化する
性質を備えていれば、共押出しで一度に積層されたもの
でも、別々に成形して得られたポリエチレンフイルムと
ポリプロピレンフイルムを積層したものでもよい。しか
し成形機等の設備、成形操作の容易さ等を考慮すると後
者の別々に成形する方が有利である。成形方法は、Tダ
イによる溶融成形が好適であるが、インフレーション法
や湿式溶液法等を採用することもできる。別々にフイル
ムをTダイによる溶融成形する場合、一般にそれぞれの
樹脂の溶融温度より20〜60℃高い温度で、ドラフト
比10〜1000、好ましくは200〜500のドラフ
ト比で行なわれ、また引取速度は特に限定はされないが
普通10〜50m/min.で成形されるが、特に得ら
れたフイルムの複屈折及び弾性回復率が、延伸後の積層
多孔質フイルムの孔径、空孔率、層間剥離強度、機械的
強度等に影響する。
In the present invention, the main point is that a three-layer laminated film in which a non-porous polypropylene film and a polyethylene film are alternately laminated is stretched and porous. Polypropylene and polyethylene constituting each layer may have different molecular weights in each layer. Polypropylene is preferably high in stereoregularity, and polyethylene is preferably high density polyethylene, but may be medium density polyethylene. These polypropylene and polyethylene may contain additives such as a surfactant, an antioxidant, a plasticizer, a flame retardant, and a coloring agent. If the three-layer laminated film has the property that the thickness of the film is uniform and has the property of being made porous by stretching, it can be a polyethylene film and a polypropylene film obtained by molding separately, even if they are laminated at once by co-extrusion. They may be stacked. However, considering the equipment such as a molding machine, the ease of the molding operation, and the like, it is advantageous to form the latter separately. As the molding method, melt molding using a T-die is suitable, but an inflation method, a wet solution method, or the like can also be employed. When a film is separately melt-molded by a T-die, the film is generally formed at a draft ratio of 10 to 1000, preferably 200 to 500 at a temperature 20 to 60 ° C. higher than the melting temperature of each resin, and the take-off speed is Although not particularly limited, it is usually 10 to 50 m / min. In particular, the birefringence and elastic recovery of the obtained film affect the pore size, porosity, delamination strength, mechanical strength and the like of the laminated porous film after stretching.

【0016】ポリプロピレンフイルムは、その複屈折が
10×10-3〜20×10-3、好ましくは11×10-3
〜14×10-3で、150°Cで30分熱処理後の10
0%伸長時の弾性回復率が80〜94%、好ましくは8
4〜92%の範囲にあるのが好適である。またポリエチ
レンフイルムは、その複屈折が20×10-3〜40×1
-3、好ましくは25×10-3〜35×10-3で、50
%伸長時の弾性回復率が20〜50%、好ましくは25
〜40%の範囲にあるのが好適である。ポリプロピレン
フイルムとポリエチレンフイルムの複屈折がこれらの範
囲をはずれると、多孔化が十分にできないので適当では
なく、また弾性回復率が上記範囲をはずれた場合も多孔
化の程度が十分でなくなるので好ましくない。これら各
フイルムの厚みは、延伸、多孔化後の積層多孔質フイル
ムの厚み、用途等とも関係しているが、普通には各フイ
ルムとも5〜20μm、さらには10〜15μmが適当
である。
The birefringence of the polypropylene film is 10 × 10 −3 to 20 × 10 −3 , preferably 11 × 10 −3.
~ 14 × 10 -3 and after heat treatment at 150 ° C for 30 minutes
The elastic recovery at 0% elongation is 80 to 94%, preferably 8
Preferably, it is in the range of 4-92%. The polyethylene film has a birefringence of 20 × 10 −3 to 40 × 1.
0 −3 , preferably 25 × 10 −3 to 35 × 10 −3 , and 50
% Elastic recovery at elongation of 20 to 50%, preferably 25%
Preferably it is in the range of 4040%. If the birefringence of the polypropylene film and the polyethylene film deviates from these ranges, it is not suitable because porosity cannot be sufficiently obtained, and the degree of porosity is not sufficient even if the elastic recovery rate deviates from the above range, which is not preferable. . The thickness of each of these films is related to the thickness, application, and the like of the laminated porous film after stretching and making it porous, but it is usually appropriate that each film has a thickness of 5 to 20 μm, and more preferably 10 to 15 μm.

【0017】本発明において、複屈折は偏光顕微鏡を使
用し、直交ニコル下でベレックコンペンセ−タを用いて
測定された値である。また、弾性回復率は、次の式
(1)及び(2)による。式(1)はポリプロピレンフ
イルムの場合、式(2)はポリエチレンフイルム場合で
ある。なお、ポリプロピレンフイルムは150°Cで3
0分熱処理後、25°C、65%相対湿度において試料
幅10mm、長さ50mmで引張試験機にセットし50
mm/min.の速度で100%まで伸長した後、直ち
に同速度で弛緩させたものを測定し、またポリエチレン
フイルムは、25°C、65%相対湿度において試料幅
15mm、長さ2インチで引張試験機にセットし2イン
チ/min.の速度で50%まで伸長した後、1分間伸
長状態で保持しその後同速度で弛緩させたものを測定し
た。
In the present invention, the birefringence is a value measured using a Bellec compensator under a crossed Nicols using a polarizing microscope. The elastic recovery rate is based on the following equations (1) and (2). Equation (1) is for a polypropylene film, and equation (2) is for a polyethylene film. In addition, the polypropylene film is 3 at 150 ° C.
After heat treatment for 0 minutes, the sample was set in a tensile tester at 25 ° C. and 65% relative humidity with a sample width of 10 mm and a length of 50 mm.
mm / min. After elongating to 100% at the same speed, immediately relax at the same speed, and measure the polyethylene film in a tensile tester at 25 ° C and 65% relative humidity with a sample width of 15 mm and a length of 2 inches. 2 inches / min. After elongating to 50% at the speed, the sample was held in the stretched state for 1 minute and then relaxed at the same speed.

【0018】[0018]

【数1】 (Equation 1)

【0019】[0019]

【数2】 (Equation 2)

【0020】ポリプロピレンフイルムとポリエチレンフ
イルムは、熱圧着によって積層される。三枚のフイルム
の積層においては、これを加熱されたロ−ル間を通し熱
圧着される。詳細には、フイルムが3組の原反ロ−ルス
タンドから巻きだされ、加熱されたロ−ル間でニップさ
れ圧着されて積層される。積層は、各フイルムの複屈折
及び弾性回復率が実質的に低下しないように熱圧着する
ことが必要である。また三枚は、特に表と裏がポリプロ
ピレンで真ん中がポリエチレンになるように積層するの
が、フイルムのカ−ルがなく、外傷もうけ難く積層多孔
質フイルムの耐熱性、機械的強度等がよく、また電池用
セパレ−タとしての安全性、信頼性等々の特性を満たす
上からも好適である。
The polypropylene film and the polyethylene film are laminated by thermocompression bonding. In the case of laminating three films, they are passed through heated rolls and thermocompressed. Specifically, the film is unwound from three sets of roll roll stands, nip and crimped between heated rolls and laminated. The laminates need to be thermocompression bonded so that the birefringence and elastic recovery of each film do not substantially decrease. Also, the three sheets are laminated so that the front and back are made of polypropylene and the center is made of polyethylene, so there is no film curl, it is hard to be damaged, and the heat resistance, mechanical strength etc. of the laminated porous film are good, It is also suitable for satisfying characteristics such as safety and reliability as a battery separator.

【0021】加熱されたロ−ルの温度、換言すると熱圧
着温度は、120〜140°C、更に好ましくは125
〜135°Cが好適である。温度が低すぎるとフイルム
間の剥離強度が弱くその後の延伸工程で剥がれが生じ、
また逆に高すぎるとポリエチレンが溶融しフイルムの複
屈折及び弾性回復率が大きく低下し、所期の課題を満た
す積層多孔質フイルムが得られない。ニップ圧は1〜3
kg/cm2 、巻きだし速度は0.5〜8m/min.
が適当である。また積層フイルムの剥離強度は、3〜6
0g/15mmの範囲が好適である。積層フイルムの厚
みは、特に制限されないが一般には20〜60μmが適
当である。
The temperature of the heated roll, in other words, the thermocompression bonding temperature is 120 to 140 ° C., more preferably 125 ° C.
~ 135 ° C is preferred. If the temperature is too low, the peel strength between the films is weak and peeling occurs in the subsequent stretching step,
Conversely, if it is too high, the polyethylene melts, and the birefringence and elastic recovery of the film are greatly reduced, and a laminated porous film satisfying the intended problem cannot be obtained. Nip pressure is 1-3
kg / cm 2 , and the unwinding speed is 0.5 to 8 m / min.
Is appropriate. The peel strength of the laminated film is 3-6.
A range of 0 g / 15 mm is preferred. The thickness of the laminated film is not particularly limited, but generally, 20 to 60 μm is appropriate.

【0022】積層フイルムは延伸する前に熱処理され
る。熱処理は加熱空気循環オ−ブンもしくは加熱ロ−ル
により定長もしくは3%〜10%の緊張下で行われる。
熱処理温度は、110〜140°C、好ましくは115
〜130°Cの範囲が好適である。温度が低いと十分に
多孔化せず、また高すぎるとポリエチレンの溶融が生じ
て不都合である。熱処理時間は3秒〜3分間程度でよ
い。
The laminated film is heat-treated before stretching. The heat treatment is carried out by a heating air circulation oven or a heating roll under a constant length or under a tension of 3% to 10%.
The heat treatment temperature is 110-140 ° C, preferably 115
The range of ~ 130 ° C is preferred. If the temperature is low, the porous material is not sufficiently made porous. If the temperature is too high, the polyethylene is disadvantageously melted. The heat treatment time may be about 3 seconds to 3 minutes.

【0023】熱処理された積層フイルムは延伸して多孔
化し積層多孔質フイルムにする。延伸は、低温延伸した
後高温延伸するのが好ましい。いずれか一方の延伸だけ
ではポリプロピレンとポリエチレンが十分に多孔化され
なかったり、層間剥離強度が低くなったりして電池用セ
パレ−タとしての特性が悪くなる。
The heat-treated laminated film is stretched and made porous to form a laminated porous film. The stretching is preferably performed at a low temperature and then at a high temperature. If only one of the stretchings is performed alone, the polypropylene and the polyethylene are not sufficiently made porous or the delamination strength is lowered, so that the characteristics as a battery separator deteriorate.

【0024】低温延伸は普通には延伸ロ−ルの周速差で
延伸される。低温延伸の温度はマイナス20°C〜プラ
ス50°C、特に20〜35°Cが好ましい。この延伸
温度が低すぎると作業中にフイルムの破断が生じ易く、
逆に高すぎると多孔化が不十分になるので好ましくな
い。低温延伸の倍率は5〜200%、好ましくは10〜
100%の範囲である。延伸倍率が低すぎると、所定の
空孔率が小さいものしか得られず、また高すぎると所定
の空孔率と孔径のものが得られなくなるので上記範囲が
適当である。本発明において低温延伸倍率(E1 )は次
の式(3)に従う。式(3)のL1は低温延伸後のフイ
ルム寸法を意味し、L0 は低温延伸前のフイルム寸法を
意味する。
The low-temperature stretching is usually performed at a peripheral speed difference of a stretching roll. The temperature of the low-temperature stretching is preferably from -20 ° C to 50 ° C, particularly preferably from 20 to 35 ° C. If the stretching temperature is too low, the film is likely to break during work,
Conversely, if it is too high, porosity becomes insufficient, which is not preferable. The draw ratio at low temperature is 5 to 200%, preferably 10 to 200%.
The range is 100%. If the stretching ratio is too low, only a material having a predetermined porosity is small, and if it is too high, a material having a predetermined porosity and pore size cannot be obtained, so the above range is appropriate. In the present invention, the low-temperature stretching ratio (E 1 ) complies with the following equation (3). L 1 in the formula (3) means the film size after the low temperature stretching, and L 0 means the film size before the low temperature stretching.

【0025】[0025]

【数3】 (Equation 3)

【0026】低温延伸した積層フイルムは、次いで高温
延伸される。高温延伸は普通には加熱空気循環オ−ブン
中で延伸ロ−ルの周速差で延伸される。段数は特に制限
されないが7〜14段が適当である。高温延伸の温度は
70〜130°C、特に80〜125°Cが好ましい。
この範囲を外れると十分に多孔化されないので適当でな
い。また高温延伸は低温延伸の温度より40〜100°
C高い温度で行うのが好適である。高温延伸の倍率は1
00〜400%の範囲である。延伸倍率が低すぎると、
ガス透過率が低く、また高すぎるとガス透過率が高くな
りすぎるので上記範囲が好適である。本発明において高
温延伸倍率(E2 )は次の式(4)に従う。式(4)の
2は高温延伸後のフイルム寸法を意味し、L1 は低温
延伸後のフイルム寸法を意味する。
The laminated film stretched at a low temperature is stretched at a high temperature. High-temperature stretching is usually performed in a heated air circulation oven at a peripheral speed difference of a stretching roll. Although the number of stages is not particularly limited, 7-14 stages are appropriate. The high-temperature stretching temperature is preferably from 70 to 130 ° C, particularly preferably from 80 to 125 ° C.
Outside of this range, it is not suitable because it is not sufficiently porous. In addition, high temperature stretching is 40 to 100 ° below the temperature of low temperature stretching.
C It is preferable to carry out at a high temperature. High-temperature stretching ratio is 1
The range is from 00 to 400%. If the draw ratio is too low,
The above range is preferable since the gas permeability is too low, and if it is too high, the gas permeability becomes too high. In the present invention, the high-temperature stretching ratio (E 2 ) complies with the following equation (4). In the formula (4), L 2 means the film size after high-temperature stretching, and L 1 means the film size after low-temperature stretching.

【0027】[0027]

【数4】 (Equation 4)

【0028】本発明においては低温延伸と高温延伸をし
た後、高温延伸の温度より5〜45°C高い温度で熱処
理する。熱処理は、延伸時に作用した応力残留によるフ
イルムの延伸方向への収縮を防ぐために予め延伸後のフ
イルム長さが10〜50%減少する程度熱収縮させる方
法や延伸方向の寸法が変化しないように規制して加熱処
理する一般に熱固定とよばれている方法等で行われる。
この熱処理によって寸法安定性のよい所期の課題を満た
すことができる層間剥離強度の高い積層多孔質フイルム
が得られる。
In the present invention, after the low-temperature stretching and the high-temperature stretching, heat treatment is performed at a temperature higher by 5 to 45 ° C. than the high-temperature stretching temperature. In order to prevent the film from shrinking in the stretching direction due to the residual stress applied during stretching, a heat-shrinking method is used to reduce the length of the film after stretching by 10 to 50%, and the heat treatment is regulated so that the dimension in the stretching direction does not change. The heat treatment is performed by a method generally called heat setting.
By this heat treatment, a laminated porous film having high delamination strength and satisfying the desired problem of good dimensional stability can be obtained.

【0029】本発明において、積層多孔質フイルムは前
記製造条件の選択によっても多少異なるが、空孔率は3
0〜80%、好ましくは35〜60%、極大孔径は0.
02〜2μm、好ましくは0.08〜0.5μmであ
る。空孔率が低すぎると電池用セパレ−タとして使用し
たときの機能が十分でなく、また大きすぎると機械的強
度が悪くなる。また極大孔径が小さ過ぎると、電池用セ
パレ−タや電解コンデンサ−用セパレ−タとして使用し
たときイオンの移動性が悪く、その他の医療、水処理、
空調分野等の用途においても抵抗が大きくなるので適当
でなく、また極大孔径が大きすぎると電池用セパレ−タ
や電解コンデンサ−用セパレ−タではイオン移動が大き
すぎ、水処理分野では細菌やウイルス等の除去が十分で
なく、また医療分野では血漿浄化膜としては不十分にな
る。
In the present invention, the laminated porous film has a porosity of 3 although it varies somewhat depending on the selection of the production conditions.
0 to 80%, preferably 35 to 60%, and the maximum pore size is 0.
It is 02 to 2 μm, preferably 0.08 to 0.5 μm. If the porosity is too low, the function when used as a battery separator is not sufficient, and if it is too high, the mechanical strength deteriorates. If the maximum pore size is too small, the ion mobility is poor when used as a separator for a battery or a separator for an electrolytic capacitor.
It is not suitable for applications such as air-conditioning, because the resistance increases, and if the maximum pore size is too large, ion separation is too large in battery separators and electrolytic capacitor separators, and bacteria and viruses are used in the water treatment field. Etc. are not sufficiently removed, and in the medical field, it becomes insufficient as a plasma purification membrane.

【0030】また本発明において、積層多孔質フイルム
のガス透過速度は150〜1500、好ましくは300
〜800である。電池用セパレ−タとして使用する場
合、ガス透過速度が遅すぎると、イオンの流れが抑制さ
れ、また速すぎるとイオンの流れが速すぎて故障時の温
度上昇を高めることになるので適当ではない。層間剥離
強度は3〜60g/15mmである。また積層多孔質フ
イルムのカ−ル度は5mm以下、好ましくは3mm以
下、更には2mm以下である。層間剥離強度が低いと、
例えば電池用セパレ−タの製造工程でフイルムの剥が
れ、カ−ル、伸び等が生じ易く製品の品質面で問題があ
る。積層多孔質フイルムの全体の厚みは用途に応じて適
宜選択され特に制限はないが、電池用セパレ−タの場合
機械的強度、性能、小型化等の面から20〜50μmが
適当である。
In the present invention, the gas permeation rate of the laminated porous film is 150 to 1500, preferably 300.
800800. When used as a battery separator, if the gas permeation rate is too slow, the flow of ions is suppressed, and if it is too fast, the flow of ions is too fast and the temperature rise at the time of failure increases, which is not appropriate. . The delamination strength is 3 to 60 g / 15 mm. The degree of curl of the laminated porous film is 5 mm or less, preferably 3 mm or less, and more preferably 2 mm or less. If the delamination strength is low,
For example, film peeling, curling, elongation, etc. are likely to occur in the manufacturing process of a battery separator, which is problematic in terms of product quality. The overall thickness of the laminated porous film is appropriately selected depending on the application and is not particularly limited. However, in the case of a battery separator, the thickness is preferably 20 to 50 μm from the viewpoint of mechanical strength, performance, miniaturization, and the like.

【0031】[0031]

【実施例】次に実施例を示し本発明を更に詳細に説明す
るが、本発明はこれら一実施例に限定されるものではな
い。
Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0032】実施例1 吐出幅1000mm、吐出リップ開度4mmのTダイを
使用し、数平均分子量70000、重量平均分子量48
0000、メルトインデックス3のポリプロピレン(宇
部興産株式会社製、宇部ポリプロF103EA)を、2
00°Cで溶融押出した。吐出フイルムは90°Cの冷
却ロ−ルに導かれ、25°Cの冷風が吹きつけられて冷
却された後、32m/min.で引き取られた。このと
きのドラフト比は366であった。得られた未延伸ポリ
プロピレンフイルムの膜厚は12μm、複屈折は14.
7×10-3、弾性回復率は150°C、60分熱処理後
で88.2%であった。
Example 1 Using a T-die having a discharge width of 1000 mm and a discharge lip opening of 4 mm, a number average molecular weight of 70,000 and a weight average molecular weight of 48 were used.
000, polypropylene with a melt index of 3 (Ube Polypro F103EA, manufactured by Ube Industries, Ltd.)
Melt extruded at 00 ° C. The discharge film was guided to a cooling roll at 90 ° C. and cooled by blowing cool air at 25 ° C., and then cooled at 32 m / min. Was taken over. The draft ratio at this time was 366. The obtained unstretched polypropylene film has a thickness of 12 μm and a birefringence of 14.
7 × 10 -3 , elastic recovery was 88.2% after heat treatment at 150 ° C. for 60 minutes.

【0033】吐出幅1000mm、吐出リップ開度4m
mのTダイを使用し、密度0.968、メルトインデッ
クス5.5の高密度ポリエチレン(三井石油化学株式会
社製、ハイゼックス2208J)を、173°Cで溶融
押出した。吐出フイルムは115°Cの冷却ロ−ルに導
かれ、25°Cの冷風が吹きつけられて冷却された後、
40m/min.で引き取られた。このときのドラフト
比は448であった。得られた未延伸ポリエチレンフイ
ルムの膜厚は11μm、複屈折は27.1×10-3、5
0%伸長時の弾性回復率は29.6%であった。
Discharge width 1000 mm, discharge lip opening 4 m
Using a T die of m, high-density polyethylene having a density of 0.968 and a melt index of 5.5 (manufactured by Mitsui Petrochemical Co., Ltd., Hyzex 2208J) was melt-extruded at 173 ° C. The discharge film is guided to a cooling roll at 115 ° C. and cooled by blowing cool air at 25 ° C.
40 m / min. Was taken over. The draft ratio at this time was 448. The film thickness of the obtained unstretched polyethylene film is 11 μm, the birefringence is 27.1 × 10 −3 ,
The elastic recovery at 0% elongation was 29.6%.

【0034】この未延伸ポリプロピレンフイルムと未延
伸ポリエチレンフイルムとを使用し、両外層がポリプロ
ピレンで内層がポリエチレンのサンドイッチ構成の3層
の積層フイルムを次のようにして製造した。三組の原反
ロ−ルタンドから、未延伸ポリプロピレンフイルムと未
延伸ポリエチレンフイルムをそれぞれ巻きだし速度5.
4m/min.で巻きだし、加熱ロ−ルに導き温度12
5°C、線圧1.8kg/cmで熱圧着し、その後同速
度で50°Cの冷却ロ−ルに導いて巻き取った。このと
きの速度は5.4m/min.、巻きだし張力はポリプ
ロピレンフイルムが3kg、ポリエチレンフイルムが
0.9kgであった。得られた積層フイルムは膜厚34
μmで、剥離強度は16g/15mmであった。
Using this unstretched polypropylene film and unstretched polyethylene film, a three-layer laminated film having a sandwich construction in which both outer layers were polypropylene and the inner layer was polyethylene was produced as follows. Unrolled polypropylene film and undrawn polyethylene film are wound out of three sets of raw roll rolls at a speed of 5.
4 m / min. And rolled into a heating roll to reach a temperature of 12
Thermocompression bonding was performed at a linear pressure of 1.8 kg / cm at a temperature of 5 ° C., and then guided to a cooling roll of 50 ° C. at the same speed and wound up. The speed at this time is 5.4 m / min. The unwinding tension was 3 kg for the polypropylene film and 0.9 kg for the polyethylene film. The obtained laminated film has a film thickness of 34.
In μm, the peel strength was 16 g / 15 mm.

【0035】この3層の積層フイルムは125°Cに加
熱された熱風循環オ−ブン中に導かれ5%の緊張下で1
13秒通過熱処理された。次いで熱処理した積層フイル
ムは、35°Cに保持されたニップロ−ル間で20%低
温延伸された。このときのロ−ル間は350mm、供給
側のロ−ル速度は1.6m/min.であった。引き続
き110°Cに加熱された熱風循環オ−ブン中に導か
れ、ロ−ル周速差を利用してロ−ラ間で総延伸量115
%になるまで高温延伸された後、125°Cに加熱され
たロ−ルで16.7%緩和させて25秒間熱固定され、
連続的に積層多孔質フイルムを得た。
The three-layer film is introduced into a hot-air circulating oven heated to 125 ° C. and subjected to 1% under 5% tension.
It was heat treated for 13 seconds. Next, the heat-treated laminated film was stretched at a low temperature by 20% between nipples kept at 35 ° C. At this time, the distance between the rolls was 350 mm, and the roll speed on the supply side was 1.6 m / min. Met. It is then led into a hot air circulating oven heated to 110 ° C., and a total stretching amount of 115 between rollers is obtained by utilizing a difference in roll peripheral speed.
%, Stretched at a high temperature to 125 ° C., relaxed by 16.7% with a roll heated to 125 ° C., and heat-fixed for 25 seconds.
A laminated porous film was continuously obtained.

【0036】得られた積層多孔質フイルムの膜厚、空孔
率、極大孔径、細孔表面積、ガス透過速度、引張強度、
引張弾性率、SD開始温度、耐熱温度、剥離強度等の測
定結果を表1に示す。また積層多孔質フイルムにはカ−
ルはほとんどなく、ピンホ−ルは認められなかった。ま
た、熱閉塞挙動を図1に示す。図1において縦軸はガス
透過率(秒/100cc)、横軸は温度(°C)であ
る。なお、空孔率、極大孔径、細孔表面積は、水銀ポロ
シメ−タ(ユアサアイオニック社製)で測定し、ガス透
過速度(ガ−レ−)はJIS P8117に準じて、ま
た引張強度、引張弾性率はASTM D−822に準じ
て測定した。剥離強度は25°C、65%相対湿度にお
いて幅15mmで、予め測定接着面の一部を剥がした試
料を作成し、長さ75mmで引張試験機にT状態にセッ
トして500mm/min.の速度で層間剥離強度を測
定した。また、熱閉塞挙動、SD開始温度、耐熱温度
は、試料の積層多孔質フイルムを60mmΦのホルダ−
に全周拘束状態で取付け、各所定温度に設定された熱風
循環オ−ブン中に1分間放置し、次いで試料を熱風循環
オ−ブンから取り出して拘束状態で室温まで冷却し、各
温度処理された試料の透過率をJIS P8117に準
じて測定した。またカ−ル度は、幅20mm、長さ10
0mmの試料フイルムを水平な金属板上に置き、除電ブ
ラシでかるく2〜3回ならして5分経過後、図5に示す
ように、水平面に対して湾曲したフイルムの両端部を結
ぶ平行線の中心部から水平面迄の距離(D)を測定し
た。
The thickness, porosity, maximum pore size, pore surface area, gas permeation rate, tensile strength, and the like of the obtained laminated porous film
Table 1 shows the measurement results of the tensile modulus, SD start temperature, heat resistance temperature, peel strength, and the like. The laminated porous film has a car
No pinholes were observed. FIG. 1 shows the thermal closing behavior. In FIG. 1, the vertical axis represents gas permeability (sec / 100 cc), and the horizontal axis represents temperature (° C.). The porosity, the maximum pore diameter, and the pore surface area were measured with a mercury porosimeter (manufactured by Yuasa Ionic), and the gas permeation rate (Garay) was measured according to JIS P8117, and the tensile strength and tensile strength were measured. The elastic modulus was measured according to ASTM D-822. The peel strength was 15 mm in width at 25 ° C. and 65% relative humidity. A sample was prepared by peeling off a part of the measured adhesive surface in advance. The sample was set to 75 mm in length and set to T in a tensile tester at 500 mm / min. The delamination strength was measured at the following speed. The heat closing behavior, the SD start temperature, and the heat resistance temperature were measured using a laminated porous film of a sample with a holder of 60 mmφ.
The sample was taken out of the hot air circulation oven and cooled down to room temperature in a constrained condition, and was subjected to each temperature treatment. The transmittance of the sample was measured according to JIS P8117. The degree of curl is 20 mm in width and 10 in length.
Place a 0-mm sample film on a horizontal metal plate, lightly brush it 2-3 times with a neutralization brush, and after 5 minutes, parallel lines connecting both ends of the film curved to the horizontal plane as shown in FIG. Was measured from the center to the horizontal plane (D).

【0037】実施例2 吐出幅1000mm、吐出リップ開度4mmのTダイを
使用し、数平均分子量70000、重量平均分子量48
0000、メルトインデックス3のポリプロピレン(宇
部興産株式会社製、宇部ポリプロF103EA)を、2
00°Cで溶融押出した。吐出フイルムは90°Cの冷
却ロ−ルに導かれ、25°Cの冷風が吹きつけられて冷
却された後、32m/min.で引き取られた。このと
きのドラフト比は366であった。得られた未延伸ポリ
プロピレンフイルムの膜厚は12μm、複屈折は14.
7×10-3、弾性回復率は150°C、60分熱処理後
で88.2%であった。
Example 2 Using a T-die having a discharge width of 1000 mm and a discharge lip opening of 4 mm, a number average molecular weight of 70,000 and a weight average molecular weight of 48 were used.
000, polypropylene with a melt index of 3 (Ube Polypro F103EA, manufactured by Ube Industries, Ltd.)
Melt extruded at 00 ° C. The discharge film was guided to a cooling roll at 90 ° C. and cooled by blowing cool air at 25 ° C., and then cooled at 32 m / min. Was taken over. The draft ratio at this time was 366. The obtained unstretched polypropylene film has a thickness of 12 μm and a birefringence of 14.
7 × 10 -3 , elastic recovery was 88.2% after heat treatment at 150 ° C. for 60 minutes.

【0038】吐出幅1000mm、吐出リップ開度2m
mのTダイを使用し、密度0.964、メルトインデッ
クス0.3の高密度ポリエチレン(三井石油化学株式会
社製、ハイゼックス5202B)を、177°Cで溶融
押出した。吐出フイルムは120°Cの冷却ロ−ルに導
かれ、25°Cの冷風が吹きつけられて冷却された後、
35m/min.で引き取られた。このときのドラフト
比は380であった。得られた未延伸ポリエチレンフイ
ルムの膜厚は12μm、複屈折は35.3×10-3、5
0%伸長時の弾性回復率は38.9%であった。
Discharge width 1000 mm, discharge lip opening 2 m
Using a T die of m, high-density polyethylene having a density of 0.964 and a melt index of 0.3 (HIZEX-5202B, manufactured by Mitsui Petrochemical Co., Ltd.) was melt-extruded at 177 ° C. The discharge film is guided to a cooling roll at 120 ° C, and is cooled by blowing cool air at 25 ° C.
35 m / min. Was taken over. The draft ratio at this time was 380. The film thickness of the obtained unstretched polyethylene film is 12 μm, the birefringence is 35.3 × 10 −3 ,
The elastic recovery at 0% elongation was 38.9%.

【0039】この未延伸ポリプロピレンフイルムと未延
伸ポリエチレンフイルムとを使用し、両外層がポリプロ
ピレンで内層がポリエチレンのサンドイッチ構成の3層
の積層フイルムを次のようにして製造した。三組の原反
ロ−ルタンドから、未延伸ポリプロピレンフイルムと未
延伸ポリエチレンフイルムをそれぞれ巻きだし速度5.
4m/min.で巻きだし、加熱ロ−ルに導き温度13
0°C、線圧1.8kg/cmで熱圧着し、その後同速
度で50°Cの冷却ロ−ルに導いて巻き取った。このと
きの速度は5.45m/min.、巻きだし張力はポリ
プロピレンフイルムが3kg、ポリエチレンフイルムが
0.9kgであった。得られた積層フイルムは膜厚34
μmで、剥離強度は7g/15mmであった。
Using this unstretched polypropylene film and unstretched polyethylene film, a three-layer laminated film having both outer layers of polypropylene and inner layer of polyethylene was produced as follows. Unrolled polypropylene film and undrawn polyethylene film are wound out of three sets of raw roll rolls at a speed of 5.
4 m / min. And rolled to a heating roll to reach a temperature of 13
The thermocompression bonding was carried out at 0 ° C. and a linear pressure of 1.8 kg / cm, and thereafter, it was led to a cooling roll at 50 ° C. at the same speed and wound up. The speed at this time is 5.45 m / min. The unwinding tension was 3 kg for the polypropylene film and 0.9 kg for the polyethylene film. The obtained laminated film has a film thickness of 34.
In μm, the peel strength was 7 g / 15 mm.

【0040】この3層の積層フイルムは125°Cに加
熱された熱風循環オ−ブン中に導かれ5%の緊張下で1
13秒通過熱処理された。次いで熱処理した積層フイル
ムは、35°Cに保持されたニップロ−ル間で20%低
温延伸された。このときのロ−ル間は350mm、供給
側のロ−ル速度は1.6m/min.であった。引き続
き110°Cに加熱された熱風循環オ−ブン中に導か
れ、ロ−ル周速差を利用してロ−ラ間で総延伸量115
%になるまで高温延伸された後、125°Cに加熱され
たロ−ルで16.7%緩和させて25秒間熱固定され、
連続的に積層多孔質フイルムを得た。
The three-layer laminated film was introduced into a hot-air circulating oven heated to 125 ° C., and was placed under a tension of 5%.
It was heat treated for 13 seconds. Next, the heat-treated laminated film was stretched at a low temperature by 20% between nipples kept at 35 ° C. At this time, the distance between the rolls was 350 mm, and the roll speed on the supply side was 1.6 m / min. Met. It is then led into a hot air circulating oven heated to 110 ° C., and a total stretching amount of 115 between rollers is obtained by utilizing a difference in roll peripheral speed.
%, Stretched at a high temperature to 125 ° C., relaxed by 16.7% with a roll heated to 125 ° C., and heat-fixed for 25 seconds.
A laminated porous film was continuously obtained.

【0041】得られた積層多孔質フイルムは実施例1と
同様にして膜厚、空孔率、極大孔径、細孔表面積、ガス
透過速度、引張強度、引張弾性率、SD開始温度、耐熱
温度、剥離強度等を測定した。測定結果を表1に、また
熱閉塞挙動を図2に示す。また積層多孔質フイルムには
カ−ルははほとんどなく、ピンホ−ルは認められなかっ
た。
The obtained laminated porous film was formed in the same manner as in Example 1 to obtain a film thickness, a porosity, a maximum pore size, a pore surface area, a gas permeation rate, a tensile strength, a tensile elastic modulus, an SD start temperature, a heat resistance temperature, Peel strength and the like were measured. Table 1 shows the measurement results, and FIG. 2 shows the thermal closure behavior. The laminated porous film had almost no curl, and no pinhole was observed.

【0042】比較例1 吐出幅1000mm、吐出リップ開度4mmのTダイを
使用し、密度0.964、メルトインデックス0.3の
高密度ポリエチレン(三井石油化学株式会社製、ハイゼ
ックス5202B)を、163°Cで溶融押出した。吐
出フイルムは125°Cの冷却ロ−ルに導かれ、25°
Cの冷風が吹きつけられて冷却された後、10m/mi
n.で引き取られた。このときのドラフト比は120で
あった。得られた未延伸ポリエチレンフイルムの膜厚は
38μm、複屈折は31.6×10-3、50%伸長時の
弾性回復率は41.3%であった。
Comparative Example 1 Using a T-die having a discharge width of 1000 mm and a discharge lip opening of 4 mm, 163 high-density polyethylene having a density of 0.964 and a melt index of 0.3 (manufactured by Mitsui Petrochemical Co., Ltd., Hizex 5202B) was used. Melt extruded at ° C. The discharge film is led to a cooling roll at 125 ° C and 25 ° C.
10m / mi after being cooled by blowing cold air of C
n. Was taken over. The draft ratio at this time was 120. The film thickness of the obtained unstretched polyethylene film was 38 μm, the birefringence was 31.6 × 10 −3 , and the elastic recovery at 50% elongation was 41.3%.

【0043】この未延伸ポリエチレンフイルムは125
°Cに加熱された熱風循環オ−ブン中に導かれ10%の
緊張下で150秒通過熱処理された。次いで熱処理した
フイルムは、35°Cに保持されたニップロ−ル間で5
0%低温延伸された。このときのロ−ル間は350m
m、供給側のロ−ル速度は1.2m/min.であっ
た。引き続き80°Cに加熱された熱風循環オ−ブン中
に導かれ、ロ−ル周速差を利用してロ−ラ間で延伸量1
00%まで高温延伸された後、108°Cに加熱された
ロ−ルで16.7%緩和させて28秒間熱固定され、連
続的にポリエチレン単層多孔質フイルムを得た。
This unstretched polyethylene film is 125
It was introduced into a hot air circulating oven heated to ° C. and heat-treated for 150 seconds under a tension of 10%. Next, the heat-treated film is placed between nipples maintained at 35 ° C. for 5 minutes.
It was stretched by 0% at low temperature. The distance between the rolls at this time is 350 m
m, the roll speed on the supply side is 1.2 m / min. Met. Subsequently, it is led into a hot air circulating oven heated to 80 ° C., and the stretching amount between the rollers is 1 using the difference in roll peripheral speed.
After the film was stretched at a high temperature to 00%, the film was relaxed by a roll heated to 108 ° C. for 16.7% and heat-fixed for 28 seconds to obtain a polyethylene single-layer porous film continuously.

【0044】得られた多孔質フイルムは実施例1と同様
にして膜厚、空孔率、極大孔径、細孔表面積、ガス透過
速度、引張強度、引張弾性率、SD開始温度、耐熱温度
等を測定した。測定結果を表1に、また熱閉塞挙動を図
3に示す。
The obtained porous film was measured for film thickness, porosity, maximum pore size, pore surface area, gas permeation rate, tensile strength, tensile modulus, SD start temperature, heat resistance temperature, etc. in the same manner as in Example 1. It was measured. The measurement results are shown in Table 1, and the thermal closing behavior is shown in FIG.

【0045】比較例2 吐出幅1000mm、吐出リップ開度4mmのTダイを
使用し、数平均分子量70000、重量平均分子量48
0000、メルトインデックス3のポリプロピレン(宇
部興産株式会社製、宇部ポリプロF103EA)を、1
90°Cで溶融押出した。吐出フイルムは90°Cの冷
却ロ−ルに導かれ、25°Cの冷風が吹きつけられて冷
却された後、40m/min.で引き取られた。このと
きのドラフト比は156であった。得られた未延伸ポリ
プロピレンフイルムの膜厚は29μm、複屈折は13.
2×10-3、弾性回復率は150°C、60分熱処理後
で92%であった。
Comparative Example 2 Using a T-die having a discharge width of 1000 mm and a discharge lip opening of 4 mm, a number average molecular weight of 70,000 and a weight average molecular weight of 48 were used.
0000, polypropylene with a melt index of 3 (Ube Polypro F103EA, manufactured by Ube Industries, Ltd.)
It was melt extruded at 90 ° C. The discharge film was guided to a cooling roll at 90 ° C. and cooled by blowing cool air at 25 ° C., and then cooled at 40 m / min. Was taken over. The draft ratio at this time was 156. The film thickness of the obtained unstretched polypropylene film is 29 μm, and the birefringence is 13.
The elastic recovery was 2 × 10 −3 , and the elastic recovery was 92% after heat treatment at 150 ° C. for 60 minutes.

【0046】この未延伸ポリプロピレンフイルムは15
0°Cに加熱された熱風循環オ−ブン中に導かれ10%
の緊張下で113秒通過熱処理された。次いで熱処理し
たフイルムは、130°Cに保持されたニップロ−ル間
で20%低温延伸された。このときのロ−ル間は350
mm、供給側のロ−ル速度は1.6m/min.であっ
た。引き続き130°Cに加熱された熱風循環オ−ブン
中に導かれ、ロ−ル周速差を利用してロ−ラ間で延伸量
115%まで高温延伸された後、145°Cに加熱され
たロ−ルで16.7%緩和させて25秒間熱固定され、
連続的にポリプロピレン単層多孔質フイルムを得た。
The unstretched polypropylene film has a thickness of 15
10% guided into a hot air circulation oven heated to 0 ° C
Under a tension of 113 seconds. Next, the heat-treated film was stretched at a low temperature by 20% between nipples kept at 130 ° C. The distance between the rolls at this time is 350
mm, and the roll speed on the supply side is 1.6 m / min. Met. Subsequently, it is guided into a hot air circulation oven heated to 130 ° C., stretched at a high temperature to 115% between rolls by using a difference in roll peripheral speed, and then heated to 145 ° C. Roll for 16.7% and heat set for 25 seconds,
Continuously, a polypropylene single-layer porous film was obtained.

【0047】得られたポリプロピレンの多孔質フイルム
は実施例1と同様にして膜厚、空孔率、極大孔径、細孔
表面積、ガス透過速度、引張強度、引張弾性率、SD開
始温度、耐熱温度等を測定した。測定結果を表1に、ま
た熱閉塞挙動を図4に示す。
The obtained porous film of polypropylene was made in the same manner as in Example 1 for the film thickness, porosity, maximum pore size, pore surface area, gas permeation rate, tensile strength, tensile modulus, SD start temperature, heat resistance temperature. Etc. were measured. The measurement results are shown in Table 1, and the thermal closing behavior is shown in FIG.

【0048】比較例3 特公昭55−32531号公報に開示された方法によっ
て、厚さが8μm、多孔度が49%、平均孔径が0.1
23μmのポリエチレン多孔膜を作成した。また同様に
して厚さが18μm、多孔度が52%、平均孔径が0.
190μmのポリプロピレン多孔膜を作成した。ついで
ロ−ルプレスを用いて134°Cでポリエチレン多孔膜
とポリプロピレン多孔膜とを積層圧着して積層多孔フイ
ルムを得た。この積層多孔フイルムについて実施例1と
同様に測定した結果を表1に示す。
Comparative Example 3 According to the method disclosed in Japanese Patent Publication No. 55-32531, the thickness was 8 μm, the porosity was 49%, and the average pore size was 0.1.
A 23 μm polyethylene porous membrane was prepared. Similarly, the thickness is 18 μm, the porosity is 52%, and the average pore size is 0.2 μm.
A 190 μm porous polypropylene membrane was prepared. Then, a polyethylene porous film and a polypropylene porous film were laminated and pressed at 134 ° C. using a roll press to obtain a laminated porous film. Table 1 shows the measurement results of the laminated porous film in the same manner as in Example 1.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【発明の効果】本発明の積層多孔質フイルムは、微細で
均一な孔径を有し、無孔化開始温度が適度な温度で、無
孔化維持上限温度が高く、無孔化維持温度領域が広く、
また剥離強度が高くて従来の積層多孔質フイルムの難点
を改良でき、安全性、信頼性、精度等の要求される電池
用セパレ−タ、電解コンデンサ−用セパレ−タ、絶縁体
等の電子機器分野、人工肺用隔膜、血漿浄化膜、呼吸性
医療用衣料等の医療分野、細菌のウイルスろ過等の水処
理分野、ガス分離分野、空調分野等々で好適に使用する
ことができる。。また本発明によると連続的に品質のバ
ラツキのない前記積層多孔質フイルムを効率よく製造す
ることができる。
As described above, the laminated porous film of the present invention has a fine and uniform pore size, a moderate nonporous start temperature, a high nonporous maintaining upper limit temperature, and a high nonporous maintaining temperature range. Wide,
In addition, electronic devices such as separators for batteries, separators for electrolytic capacitors, insulators, etc., which have high peel strength and can improve the difficulties of conventional laminated porous films and require safety, reliability, accuracy, etc. It can be suitably used in medical fields such as fields, artificial lung membranes, plasma purification membranes, respiratory medical clothing, water treatment fields such as bacterial virus filtration, gas separation fields, and air conditioning fields. . Further, according to the present invention, it is possible to continuously and efficiently manufacture the laminated porous film having no quality variation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の積層多孔質フイルムの熱閉
塞挙動。
FIG. 1 is a graph showing the thermal closure behavior of a laminated porous film of Example 1 of the present invention.

【図2】本発明の実施例2の積層多孔質フイルムの熱閉
塞挙動。
FIG. 2 is a graph showing the thermal clogging behavior of the laminated porous film of Example 2 of the present invention.

【図3】比較例1のポリエチレン単層の多孔質フイルム
の熱閉塞挙動。
FIG. 3 is a graph showing the thermal closure behavior of a polyethylene single-layer porous film of Comparative Example 1.

【図4】比較例2のポリプロピレン単層の多孔質フイル
ムの熱閉塞挙動。
FIG. 4 is a graph showing a thermal closure behavior of a porous film having a single layer of polypropylene of Comparative Example 2.

【図5】カ−ル度の測定方法を説明する図である。FIG. 5 is a diagram illustrating a method of measuring the degree of curl.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−296840(JP,A) 特開 平5−13062(JP,A) 特開 平6−20671(JP,A) 特開 平6−55629(JP,A) (58)調査した分野(Int.Cl.7,DB名) B32B 1/00 - 35/00 H01M 2/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-296840 (JP, A) JP-A-5-13062 (JP, A) JP-A-6-20671 (JP, A) JP-A-6-20671 55629 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B32B 1/00-35/00 H01M 2/16

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリプロピレンフイルムとポリエチレン
イルムとが交互に積層された三層の積層フイルムを延伸
して得られる多孔質ポリプロピレンフイルムと多孔質ポ
リエチレンフイルムとからなる積層多孔質フイルムであ
って、前記ポリプロピレンフイルムの複屈折が10×1
-3 〜20×10 -3 で、150℃で30分熱処理後の1
00%伸長時の弾性回復率が80〜94%であり、且つ
前記ポリエチレンフイルムの複屈折が20×10 -3 〜4
0×10 -3 で、50%伸長時の弾性回復率が20〜50
%であり、前記積層多孔質フイルムにおいて極大孔径が
0.02〜2μm、空孔率が30〜80%、層間剥離強
度が3〜60g/15mm、無孔化開始温度が135〜
140℃、無孔化維持上限温度が180〜190℃、カ
ール度が5mm以下であることを特徴とする積層多孔質
フイルム。
1. A polypropylene film and polyethylene-off
The laminated porous film der which the Ilm is composed of a porous polypropylene film and a porous polyethylene film obtained by stretching a laminated film of three-layer laminated alternately
The birefringence of the polypropylene film is 10 × 1
0 -3 to 20 × 10 -3 and 1 after heat treatment at 150 ° C. for 30 minutes.
The elastic recovery rate at the time of 00% elongation is 80 to 94%, and
The birefringence of the polyethylene film is 20 × 10 −3 to 4
0 × 10 −3 , elastic recovery at 50% elongation is 20 to 50
% In the laminated porous film.
0.02 to 2 µm, porosity 30 to 80%, delamination strength
Degree is 3-60g / 15mm, non-porous start temperature is 135-
140 ° C, maximum non-porous maintenance temperature is 180-190 ° C,
A laminated porous film having a degree of penetration of 5 mm or less .
【請求項2】ポリプロピレンフイルムとポリエチレンフ
イルムとが交互となるように120〜140℃の温度で
熱圧着した三層の積層フイルムを、110〜140℃の
温度領域で熱処理した後、マイナス20℃〜プラス50
℃の温度に保持された状態で5〜200%延伸し、次い
で70〜130℃の温度に保持された状態で100〜4
00%延伸した後、後者の延伸時の温度より5〜45℃
高い温度で熱処理することを特徴とする積層多孔質フイ
ルムの製法。
2. A polypropylene film and a polyethylene film.
At a temperature of 120 to 140 ° C so that the
The heat-compressed three-layer laminated film is heated at 110 to 140 ° C.
After heat treatment in the temperature range, minus 20 ° C to plus 50
Stretched 5 to 200% while maintaining the temperature of
100 to 4 with the temperature maintained at 70 to 130 ° C.
After stretching by 00%, the temperature at the time of the latter stretching is 5 to 45 ° C.
Laminated porous film characterized by heat treatment at high temperature
Lum's recipe.
【請求項3】ポリプロピレンフイルムとポリエチレンフ
イルムとが交互になるように120〜140℃の温度で
熱圧着した三層の積層フイルムを、110〜140℃の
温度領域で熱処理した後、20℃〜35℃の温度に保持
された状態で10〜100%延伸し、次いで70〜13
0℃の温度に保持された状態で100〜400%延伸し
た後、後者の延伸時の温度より5〜45℃高い温度で熱
処理して、極大孔径が0.02〜2μm、空孔率が30
〜80%、層間剥離強度が3〜60g/15mm、無孔
化開始温度が135〜140℃、無孔化維持上限温度が
180〜190℃の積層多孔質フイルムを得ることを特
徴とする積層多孔質フイルムの製法。
3. A three-layer laminated film thermocompressed at a temperature of 120 to 140 ° C. so that a polypropylene film and a polyethylene film alternately are heat-treated in a temperature range of 110 to 140 ° C. 10 to 100% while maintaining the temperature at 70 ° C.
After stretching 100 to 400% while maintaining the temperature at 0 ° C., heat treatment is performed at a temperature 5 to 45 ° C. higher than the temperature at the time of the stretching , and the maximum pore diameter is 0.02 to 2 μm and the porosity is 30.
~ 80%, delamination strength 3 ~ 60g / 15mm, non-porous
The starting temperature is 135-140 ° C, and the non-porous maintaining upper limit temperature is
A method for producing a laminated porous film, comprising obtaining a laminated porous film at 180 to 190 ° C.
【請求項4】ポリプロピレンフイルムの複屈折が10×
10 -3 〜20×10 -3 で、150℃で30分熱処理後の
100%伸長時の弾性回復率が80〜94%であり、ポ
リエチレンフイルムの複屈折が20×10 -3 〜40×1
-3 で、50%伸長時の弾性回復率が20〜50%であ
る請求項2又は請求項3に記載の積層多孔質フイルムの
製法。
4. The birefringence of a polypropylene film is 10 ×
After heat treatment at 150 ° C. for 30 minutes at 10 −3 to 20 × 10 −3
The elastic recovery at 100% elongation is 80-94%,
Birefringence of polyethylene film is 20 × 10 -3 to 40 × 1
0 -3, elastic recovery at 50% elongation is 20-50% der
The laminated porous film according to claim 2 or claim 3
Manufacturing method.
JP6098394A 1994-05-12 1994-05-12 Laminated porous film and method for producing the same Expired - Lifetime JP3003830B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6098394A JP3003830B2 (en) 1994-05-12 1994-05-12 Laminated porous film and method for producing the same
KR1019950011752A KR100242363B1 (en) 1994-05-12 1995-05-12 Porous multi-layer film
EP19950107221 EP0682376B1 (en) 1994-05-12 1995-05-12 Porous multi-layer film
US08/440,075 US5691047A (en) 1994-05-12 1995-05-12 Porous multi-layer film
DE1995614711 DE69514711T2 (en) 1994-05-12 1995-05-12 Porous multilayer film
CA 2149284 CA2149284C (en) 1994-05-12 1995-05-12 Porous multi-layer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098394A JP3003830B2 (en) 1994-05-12 1994-05-12 Laminated porous film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07304110A JPH07304110A (en) 1995-11-21
JP3003830B2 true JP3003830B2 (en) 2000-01-31

Family

ID=14218629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098394A Expired - Lifetime JP3003830B2 (en) 1994-05-12 1994-05-12 Laminated porous film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3003830B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013800A1 (en) 2008-07-31 2010-02-04 旭化成イーマテリアルズ株式会社 Multilayer microporous membrane, method for producing same and battery separator
JP2010052237A (en) * 2008-08-27 2010-03-11 Asahi Kasei E-Materials Corp Laminated microporous film and process for manufacturing the same
JP2010194967A (en) * 2009-02-26 2010-09-09 Asahi Kasei E-Materials Corp Finely porous laminate film and method for manufacturing the same
WO2012090632A1 (en) 2010-12-28 2012-07-05 旭化成イーマテリアルズ株式会社 Polyolefin porous membrane and method of producing the same

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508510B2 (en) * 1997-10-24 2004-03-22 宇部興産株式会社 Laminated porous film and method for producing the same
KR100477582B1 (en) * 1998-01-23 2005-08-05 주식회사 새 한 Method for preparation of porous membrane
US6602593B1 (en) 1999-08-30 2003-08-05 Celgard Inc. Battery separators with reduced splitting propensity
KR100599898B1 (en) 2002-08-28 2006-07-19 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin Microporous Membrane and Method of Evaluating The Same
TWI331087B (en) 2003-03-06 2010-10-01 Sumitomo Chemical Co Method for producing laminated porous polyolefin film and laminated porous polyolefin film
DE602004026628D1 (en) 2003-12-03 2010-05-27 Tonen Sekiyukagaku Kk MICROPOROUS COMPOSITE FILM, METHOD OF MANUFACTURING THEREOF AND USE
KR101094115B1 (en) 2003-12-15 2011-12-15 미쓰비시 쥬시 가부시끼가이샤 Nonaqueous electrolyte secondary battery
US8795565B2 (en) * 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
JP5217138B2 (en) 2006-09-26 2013-06-19 住友化学株式会社 Porous film and separator for non-aqueous electrolyte secondary battery
JP5034414B2 (en) 2006-09-26 2012-09-26 住友化学株式会社 Laminated porous film and nonaqueous electrolyte secondary battery separator
JP5286817B2 (en) 2007-02-27 2013-09-11 住友化学株式会社 Separator
JP5286844B2 (en) 2007-03-23 2013-09-11 住友化学株式会社 Separator
JP5309628B2 (en) 2007-03-23 2013-10-09 住友化学株式会社 Porous film
US10862091B2 (en) 2007-05-10 2020-12-08 Maxell Holdings, Ltd. Electrochemical device comprising separator with laminated porous layers
JP5463772B2 (en) 2008-07-30 2014-04-09 住友化学株式会社 Sodium secondary battery
JP2010080424A (en) 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd Electrode active material and method for manufacturing the same
JP5287520B2 (en) 2008-09-02 2013-09-11 住友化学株式会社 Electrode active material, electrode and non-aqueous electrolyte secondary battery
KR20120104142A (en) * 2009-06-23 2012-09-20 폴리발러 에스.이.씨. Cast films, microporous membranes, and method of preparation thereof
JP2011073277A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Laminated microporous film, method for manufacturing the same, and separator for battery
JP5648284B2 (en) 2009-12-24 2015-01-07 住友化学株式会社 Laminated film and non-aqueous electrolyte secondary battery
WO2013179369A1 (en) * 2012-05-28 2013-12-05 株式会社美和テック Porous film manufacturing method
KR101739211B1 (en) 2012-07-27 2017-05-23 스미또모 가가꾸 가부시끼가이샤 Alumina slurry, method for producing same, and coating liquid
KR101442969B1 (en) * 2013-04-15 2014-09-23 삼성토탈 주식회사 Polymeric microporous film comprising polypropylene resin
JP6408237B2 (en) 2014-04-08 2018-10-17 住友化学株式会社 Method for producing laminated porous film
JP6264163B2 (en) 2014-04-08 2018-01-24 住友化学株式会社 Separator manufacturing method
CN106163807B (en) 2014-04-09 2018-04-24 住友化学株式会社 Laminated porous film and nonaqueous electrolytic solution secondary battery
JP6462994B2 (en) 2014-04-10 2019-01-30 住友化学株式会社 Laminated porous film and non-aqueous electrolyte secondary battery
JP2016013661A (en) * 2014-07-02 2016-01-28 旭化成イーマテリアルズ株式会社 Laminated microporous film and production method of the same
US11329349B2 (en) 2015-06-19 2022-05-10 Ube Industries, Ltd. Polyolefin micro porous film, separator film for power-storage device, and power-storage device
JP6094711B2 (en) * 2015-06-19 2017-03-15 宇部興産株式会社 Polyolefin microporous membrane, separator film for electricity storage device, and electricity storage device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013800A1 (en) 2008-07-31 2010-02-04 旭化成イーマテリアルズ株式会社 Multilayer microporous membrane, method for producing same and battery separator
JP2010052237A (en) * 2008-08-27 2010-03-11 Asahi Kasei E-Materials Corp Laminated microporous film and process for manufacturing the same
JP2010194967A (en) * 2009-02-26 2010-09-09 Asahi Kasei E-Materials Corp Finely porous laminate film and method for manufacturing the same
WO2012090632A1 (en) 2010-12-28 2012-07-05 旭化成イーマテリアルズ株式会社 Polyolefin porous membrane and method of producing the same
US9941498B2 (en) 2010-12-28 2018-04-10 Asahi Kasei E-Materials Corporation Polyolefin-based porous film and method for producing the same
US9991488B2 (en) 2010-12-28 2018-06-05 Asahi Kasei E-Materials Corporation Polyolefin-based porous film and method for producing the same
US10693114B2 (en) 2010-12-28 2020-06-23 Asahi Kasei E-Materials Corporation Polyolefin-based porous film and method for producing the same

Also Published As

Publication number Publication date
JPH07304110A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
JP3003830B2 (en) Laminated porous film and method for producing the same
JP3011309B2 (en) Battery separator and method of manufacturing the same
US5691047A (en) Porous multi-layer film
JP3381538B2 (en) Manufacturing method of laminated porous polyolefin film
JP3852492B2 (en) Manufacturing method of battery separator
JP4470248B2 (en) Battery separator
JP3352801B2 (en) Porous film, its production method and its use
JP2883726B2 (en) Manufacturing method of battery separator
JP4516796B2 (en) Battery separator and manufacturing method thereof
EP2607414B1 (en) Propylene resin microporous film, battery separator, battery, and method for producing propylene resin microporous film
JP6696518B2 (en) Polyolefin microporous membrane
WO2017073781A1 (en) Porous film and electricity storage device
WO2016204274A1 (en) Polyolefin micro porous film, separator film for power-storage device, and power-storage device
JP4075208B2 (en) Porous film and battery separator using the same
JPWO2019074122A1 (en) Polyolefin microporous membrane and lithium ion secondary battery using the same
JP3436055B2 (en) Battery separator
JPH11115084A (en) Laminated porous film
JP3508510B2 (en) Laminated porous film and method for producing the same
EP0924780B1 (en) Penta-layer battery separator
JPH11297297A (en) Manufacture of porous film and porous film
JP2000348703A (en) Separator for battery and lithium battery using same
JPH10241659A (en) Manufacture of porous film for battery separator
JP3536607B2 (en) Porous polymer film
JPH09117959A (en) Production of laminated porous polyolefin film
JP3511946B2 (en) Polymer electrolyte support and battery using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141119

Year of fee payment: 15

EXPY Cancellation because of completion of term