JP3536607B2 - Porous polymer film - Google Patents

Porous polymer film

Info

Publication number
JP3536607B2
JP3536607B2 JP22624097A JP22624097A JP3536607B2 JP 3536607 B2 JP3536607 B2 JP 3536607B2 JP 22624097 A JP22624097 A JP 22624097A JP 22624097 A JP22624097 A JP 22624097A JP 3536607 B2 JP3536607 B2 JP 3536607B2
Authority
JP
Japan
Prior art keywords
porous
film
polymer film
porous polymer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22624097A
Other languages
Japanese (ja)
Other versions
JPH1160764A (en
Inventor
政行 木内
輝昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP22624097A priority Critical patent/JP3536607B2/en
Publication of JPH1160764A publication Critical patent/JPH1160764A/en
Application granted granted Critical
Publication of JP3536607B2 publication Critical patent/JP3536607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池用セパレータ
や電解コンデンサ用隔膜等として有用な多孔質ポリマー
フイルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous polymer film useful as a separator for a battery or a diaphragm for an electrolytic capacitor.

【0002】[0002]

【従来の技術】従来、電池用セパレータや電解コンデン
サ用隔膜等としてポリオレフィン系多孔質フイルムが多
く使用されている。特に、近年技術の高度化に伴い、リ
チウム電池等においては高精度、高機能のセパレータが
要求されるようになってきた。
2. Description of the Related Art Hitherto, polyolefin-based porous films have been frequently used as separators for batteries and diaphragms for electrolytic capacitors. In particular, with the advancement of technology in recent years, a high-precision and high-performance separator has been required for a lithium battery or the like.

【0003】電池には正負両極の短絡防止のためにセパ
レータが介在しているが、近年高エネルギー密度、高起
電力、自己放電の少ないリチウム電池のような非水電解
液電池、特にリチウム二次電池が開発、実用化されてい
る。リチウム電池の負極としては例えば金属リチウム、
リチウムと他の金属との合金、カーボンやグラファイト
等のリチウムイオンを吸着する能力又はインターカレー
ションにより吸蔵する能力を有する炭素材料、リチウム
イオンをドーピングした導電性高分子材料等が知られて
おり、また正極としては例えば(CFx n で示される
フッ化黒鉛、MnO2 、V2 5 、CuO、Ag2 Cr
4 、TiO2 、LiCoO4 、LiMn2 4 等の金
属酸化物や硫化物、塩化物が知られている。
Although a separator is interposed in a battery to prevent a short circuit between the positive and negative electrodes, a non-aqueous electrolyte battery such as a lithium battery having a high energy density, a high electromotive force and low self-discharge, especially a lithium secondary battery has been recently used. Batteries have been developed and put into practical use. As the negative electrode of the lithium battery, for example, metal lithium,
Alloys of lithium and other metals, carbon materials having the ability to adsorb or occlude lithium ions such as carbon and graphite, and the ability to occlude by intercalation, conductive polymer materials doped with lithium ions, and the like are known. As the positive electrode, for example, fluorinated graphite represented by (CF x ) n , MnO 2 , V 2 O 5 , CuO, Ag 2 Cr
Metal oxides such as O 4 , TiO 2 , LiCoO 4 and LiMn 2 O 4 , sulfides and chlorides are known.

【0004】また非水電解液として、エチレンカーボネ
ート、プロピレンカーボネート、γ−ブチロラクトン、
アセトニトリル、1,2−ジメトキシエタン、テトラヒ
ドロフラン等の有機溶媒にLiPF6 、LiBF4 、L
iClO4 、LiCF3 SO 3 等の電解質を溶解したも
のが使用されている。しかしリチウムは特に反応性が強
いため、外部短絡や誤接続等により異常電流が流れた場
合、電池温度が著しく上昇して発火等の事故につながっ
たり、これを組み込んだ機器に熱的ダメージを与える懸
念がある。このような危険性を回避するために、従来セ
パレータとして下記のような種々の多孔質フイルムの使
用が提案されている。
As a non-aqueous electrolyte, ethylene carbonate is used.
, Propylene carbonate, γ-butyrolactone,
Acetonitrile, 1,2-dimethoxyethane, tetrahi
LiPF for organic solvents such as drofuran6, LiBFFour, L
iCLOFour, LiCFThreeSO ThreeDissolved electrolytes such as
Is used. But lithium is particularly reactive
If an abnormal current flows due to an external short circuit or incorrect connection,
If the battery temperature rises significantly, a fire or other accident may occur.
Or cause thermal damage to equipment incorporating it.
I have a mind. To avoid such dangers,
Various porous films such as
Has been proposed.

【0005】ポリエチレン、ポリプロピレン等の熱可
塑性樹脂の単層の多孔質フイルム(特公昭46−401
19号公報、特公昭55−32531号公報、特公昭5
9−37292号公報、特開昭60−23954号公
報、特開平2−75151号公報、米国特許第3679
538号明細書等)。 分子量の異なるポリエチレン混合物やポリエチレンと
ポリプロピレンの混合物を素材とした多孔質フイルム
(特開平2−21559号公報、特開平5−33130
6号公報等)。 支持体に熱可塑性樹脂や不織布を用いた多孔質フイル
ム(特開平3−245457公報、特開平1−2583
58公報等)。 材質の異なる熱可塑性樹脂の多孔質膜が複数枚積層さ
れた積層多孔質フイルム(特開昭62−10857号公
報、特開昭63−308866号公報、特開平2−77
108号公報、特開平5−13062号公報、特公平3
−65776号公報、特開平6−55629号公報、特
開平6−20671号公報、特開平7−307146号
公報等)。 上記多孔質フイルムは、一般に未延伸のフイルムを延伸
により多孔化する延伸法や、抽出可能な充填剤、可塑剤
等を配合した未延伸フイルムから溶媒で充填剤、可塑剤
等を抽出して多孔化し、必要に応じ抽出前または抽出後
に1軸あるいは2軸延伸を施す抽出法で製造されてい
る。
A single-layer porous film of a thermoplastic resin such as polyethylene or polypropylene (Japanese Patent Publication No. 46-401)
No. 19, Japanese Patent Publication No. 55-32531, Japanese Patent Publication No. 5
9-37292, JP-A-60-23954, JP-A-2-75151, U.S. Pat.
No. 538). Porous films made of a polyethylene mixture having a different molecular weight or a mixture of polyethylene and polypropylene (JP-A-2-21559, JP-A-5-33130)
No. 6). Porous films using a thermoplastic resin or a non-woven fabric as a support (JP-A-3-245457, JP-A-1-25883)
58 gazette). Laminated porous films in which a plurality of porous films of thermoplastic resins of different materials are laminated (JP-A-62-10857, JP-A-63-308866, JP-A-2-77)
No. 108, Japanese Patent Laid-Open No. 5-13062, Japanese Patent Publication No. 3
JP-A-65776, JP-A-6-55629, JP-A-6-20671, JP-A-7-307146, and the like. The above porous film is generally prepared by stretching a non-stretched film by stretching, or extracting a filler, a plasticizer, etc. with a solvent from an unstretched film containing an extractable filler and a plasticizer. It is manufactured by an extraction method in which uniaxial or biaxial stretching is performed before or after extraction as necessary.

【0006】単層又は積層多孔質フイルムをセパレータ
として使用する基本的な考え方は、両極間の短絡防止、
電池電圧の維持等を図ると共に、異常電流等で電池の内
部温度が所定温度以上に上昇したときに、多孔質フイル
ムを無孔化させて、換言すると孔を塞いで、両極間にイ
オンが流れないように電気抵抗を増大させ、電池機能を
停止させて過度の温度上昇による発火等の危険を防止し
安全性を確保することにある。過度の温度上昇による危
険防止機能は、電池用セパレータとして極めて重要な機
能であり、一般に無孔化或いはシャットダウン(SDと
略称)と呼ばれている。
[0006] The basic concept of using a single-layer or laminated porous film as a separator is to prevent short-circuiting between both electrodes.
While maintaining the battery voltage, etc., when the internal temperature of the battery rises above a predetermined temperature due to abnormal current, etc., the porous film is made nonporous, in other words, the pores are closed, and ions flow between the two electrodes. An object of the present invention is to increase the electric resistance so as not to cause the battery function to stop, prevent a danger such as ignition due to an excessive temperature rise, and ensure safety. The function of preventing danger due to excessive temperature rise is a very important function as a battery separator, and is generally called non-porous or shutdown (abbreviated as SD).

【0007】電池用セパレータにおいては、無孔化温度
が低すぎると、僅かな温度上昇でイオンの流れが阻止さ
れるため実用性の面で問題があり、また逆に高すぎると
リチウム電池等においては発火等を引き起こす危険性が
あるため安全性の面で問題がある。一般に無孔化温度は
110〜160℃、好ましくは120〜150℃が好適
と認識されている。セパレータに多孔質フイルムを使用
した電池において、電池内の温度が多孔質フイルムの耐
熱温度を越えて上昇した場合、フイルムが溶断して破れ
が生じ、無孔化状態が喪失して、再びイオンが流れだし
更なる温度上昇を招く。それ故電池用セパレータとして
は適当な無孔化温度を有し、耐熱温度が高いという特性
と共に無孔化温度域で確実に無孔化することが要求され
ている。また電池用セパレータとしては、前記無孔化に
関する特性の他に、電気抵抗が低いこと、引張弾性率等
の機械的強度が高いこと、厚みムラや電気抵抗等のバラ
ツキが小さいこと等が要求される。
[0007] In a battery separator, if the non-porous temperature is too low, the flow of ions is prevented by a slight rise in temperature, so that there is a problem in practicality. There is a problem in terms of safety because there is a risk of causing ignition. Generally, it is recognized that the non-porous temperature is 110 to 160 ° C, preferably 120 to 150 ° C. In a battery using a porous film as the separator, if the temperature inside the battery rises above the heat-resistant temperature of the porous film, the film is melted and broken, the non-porous state is lost, and ions are returned again. It starts to flow and causes a further rise in temperature. Therefore, it is required that the battery separator has an appropriate non-porous temperature, has a high heat-resistant temperature, and is reliably non-porous in the non-porous temperature range. In addition, in addition to the properties related to non-porosity, the battery separator is required to have a low electric resistance, a high mechanical strength such as a tensile elastic modulus, and a small variation in thickness unevenness and electric resistance. You.

【0008】[0008]

【発明が解決しようとする課題】多孔質フイルムは前記
〜のように種々のものが提案されているが、電池用
セパレータとして極めて重要な機能であるSDの確実性
において難点があった。単層多孔質フイルムにおいて
は、無孔化温度と耐熱温度の温度幅が狭く、確実なSD
の達成が困難であるという問題点があった。また、材質
の異なる熱可塑性樹脂の多孔質膜が複数枚重ね合わされ
て積層された積層多孔質フイルムは、融点の異なる2種
類の多孔質フイルムを組み合わせることにより、適当な
無孔化温度と高い耐熱温度をもたらすことができ、SD
の確実性において単層多孔質フイルムよりは優れてい
る。しかし、この場合でも、より低い温度で無孔化する
低融点側の多孔質フイルムが融点近傍で確実に無孔化す
ること、及び高融点側の多孔質フイルムの融点近傍まで
完全に無孔化した状態を保つことは困難であった。そこ
で、確実に無孔化できるセパレータの開発が望まれてい
る。
Various types of porous films have been proposed as described above, but there is a problem in the reliability of SD, which is an extremely important function as a battery separator. In a single-layer porous film, the temperature range between the non-porous temperature and the heat-resistant temperature is narrow,
There is a problem that achieving is difficult. In addition, a laminated porous film in which a plurality of porous films of thermoplastic resin of different materials are laminated and laminated is combined with two types of porous films having different melting points to provide an appropriate non-porous temperature and high heat resistance. Can bring temperature, SD
Is more reliable than a single-layer porous film. However, even in this case, the porous film on the lower melting point, which becomes nonporous at a lower temperature, is surely made nonporous near the melting point, and is completely nonporous near the melting point of the porous film on the higher melting point. It was difficult to keep the state. Therefore, development of a separator that can be made nonporous reliably is desired.

【0009】[0009]

【課題を解決するための手段】本発明は、延伸された多
孔質ポリマーフイルムにおいて、電解液中での常温にお
ける抵抗値の100倍以上となる無孔化温度域での弾性
率が10dyne/cm以上であり、無孔化温度域
で実質的に収縮により多孔質ポリマーフイルムが無孔化
され、無孔化温度域での収縮率が5%以上であることを
特徴とする多孔質ポリマーフイルムに関する。
SUMMARY OF THE INVENTION The present invention provides a stretched porous polymer film at room temperature in an electrolytic solution.
Elasticity in a non-porous temperature range that is 100 times or more the resistance value of the porous polymer film is not less than 10 4 dyne / cm 2 , and the porous polymer film is made non-porous by substantial shrinkage in the non-porous temperature range, The present invention relates to a porous polymer film having a shrinkage ratio in a nonporous temperature range of 5% or more.

【0010】[0010]

【発明の実施の形態】一般に、ポリマー材料は融点付近
まで加熱されたとき、結晶部分が部分的又は全て溶融し
ても低分子物質のようにいきなり流動状態を示さず、い
わゆるゴム状状態といわれる領域が存在する。したがっ
て、一般的に融点付近にある無孔化温度域において、多
孔質ポリマーフイルムは容易に変形又は流動をおこさず
完全な無孔化の達成は困難である。本発明に使用される
多孔質ポリマーフイルムは、延伸された多孔質フイルム
であり、フイルム強度、溶融時の形状保持性等を考慮し
て比較的弾性率の高いものが使用される。一般的には無
孔化温度域において104 dyne/cm2 以上のもの
が使用される。また、弾性率が高すぎるとフイルムとし
て脆くなるので無孔化温度域において弾性率が1011
yne/cm2 以下のものが好ましく用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, when a polymer material is heated to a temperature close to its melting point, even if the crystal part is partially or completely melted, the polymer material does not suddenly show a fluidized state like a low molecular weight substance, but is called a so-called rubbery state. There is an area. Therefore, in the nonporous temperature range generally near the melting point, the porous polymer film does not easily deform or flow, and it is difficult to achieve complete nonporous. The porous polymer film used in the present invention is a stretched porous film, and a film having a relatively high elastic modulus is used in consideration of film strength, shape retention during melting, and the like. Generally, a material having a density of 10 4 dyne / cm 2 or more in a non-porous temperature range is used. If the elastic modulus is too high, the film becomes brittle, so that the elastic modulus is 10 11 d in the non-porous temperature range.
yne / cm 2 or less is preferably used.

【0011】本発明において多孔質ポリマーフイルムと
して、無孔化温度域における弾性率が104 dyne/
cm2 以上のものが使用された場合には、フイルム強度
が大きく、比較的粘度が高く、溶融時の形状保持性等に
優れており、しかも無孔化温度域で実質的に収縮により
完全な無孔化を達成することができる。特に、収縮力の
働きにより容易に流動しない状態にある多孔質ポリマー
フイルムを縮める作用をもたらし完全な無孔化を達成す
ることができる。なお、無孔化温度域における弾性率が
過度に高い場合には成形性が劣ることになるので、無孔
化温度域での弾性率は1011dyne/cm2 以下の多
孔質ポリマーフイルムが好ましい。
In the present invention, the porous polymer film has an elastic modulus in a nonporous temperature range of 10 4 dyne /
if cm 2 or more ones are used, large film strength, relatively high viscosity, is excellent in shape retention and the like at the time of melting, yet complete by substantially shrink-free hole temperature range Non-porous can be achieved. In particular, the action of the shrinking force has the effect of shrinking the porous polymer film that is not easily flowable, and complete nonporosity can be achieved. When the elastic modulus in the non-porous temperature range is excessively high, the moldability is inferior. Therefore, a porous polymer film having an elastic modulus in the non-porous temperature range of 10 11 dyne / cm 2 or less is preferable. .

【0012】したがって、本発明の多孔質ポリマーフイ
ルムが電池用セパレータとして使用された場合、異常発
生時に確実に多孔質ポリマーフイルムは無孔化され、か
つ溶融時の形状保持性に優れるため、より高温域まで安
定的に無孔化状態を維持することが可能となる。
Therefore, when the porous polymer film of the present invention is used as a battery separator, the porous polymer film is reliably made nonporous at the time of occurrence of an abnormality and has excellent shape retention during melting. It is possible to stably maintain the nonporous state up to the region.

【0013】無孔化に必要な収縮率は無孔化温度におい
て通常数%以上、好ましくは5%以上であることが好ま
しい。収縮率は大きいほど収縮力も大きく作用する点で
は好ましいが、あまり大きくなりすぎると寸法変化が大
きくなりすぎるため一般的には90%以下であることが
好ましい。このような収縮率を得る方法としては、例え
ば抽出法においては、抽出前または抽出後に適当な延伸
倍率で1軸あるいは2軸延伸を施す方法(特開昭60−
242035号公報、特開昭55−131028号公報
等)、延伸法においては、適当な延伸倍率で延伸する
(特公昭55−32531号公報等)等の公知の方法が
用いられる。収縮率は延伸倍率と比例の関係にあり、延
伸倍率を大きくすると収縮率も大きくすることができ、
上記範囲の収縮率の調整は、延伸倍率を調整することで
容易に達成される。延伸法は多孔化と収縮率の付与とを
同時に行える点で抽出法よりも優れた方法である。
[0013] The shrinkage required for nonporosity is usually at least several percent at the nonporous temperature, preferably at least 5%. A larger shrinkage ratio is preferable in that the larger the shrinkage force, the larger the shrinkage force. However, if the shrinkage ratio is too large, the dimensional change becomes too large. As a method for obtaining such a shrinkage ratio, for example, in the extraction method, monoaxial or biaxial stretching is performed at an appropriate stretching ratio before or after extraction (Japanese Patent Application Laid-Open No. 60-1985).
In the stretching method, a known method such as stretching at an appropriate stretching ratio (Japanese Patent Publication No. 55-32531) is used. The shrinkage ratio is in a proportional relationship with the stretching ratio, and when the stretching ratio is increased, the shrinkage ratio can be increased,
The adjustment of the shrinkage in the above range can be easily achieved by adjusting the stretching ratio. The stretching method is superior to the extraction method in that the porosity and the provision of the shrinkage ratio can be simultaneously performed.

【0014】また、主たる収縮方向は、多孔質ポリマー
フイルムの縦方向(多孔質ポリマーフイルムの長さ方
向)であることが好ましい。ここで縦方向とは、多孔質
ポリマーフイルムの巻き取り方向を意味し、例えば電池
用セパレータに使用された場合は、電極とともに巻回す
る方向である。縦方向の収縮より横方向(フイルムの幅
方向)の収縮が大きくなると、収縮により電極板の露出
を生じ好ましくない。横方向には収縮せず、わずかに膨
張するか、もしくは収縮する場合でも縦方向の収縮率よ
り小さいことが好ましい。横方向に膨張する場合は無孔
化温度域において、収縮率は0〜−5%(−は膨張を意
味する)であることが好ましく、横方向に収縮する場合
は縦方向と横方向の収縮率比(縦方向収縮率/横方向収
縮率)が2以上、より好ましくは4以上である。
It is preferable that the main contraction direction is the longitudinal direction of the porous polymer film (the length direction of the porous polymer film). Here, the longitudinal direction refers to the direction in which the porous polymer film is wound, and for example, when used in a battery separator, is the direction in which it is wound with the electrodes. If the shrinkage in the horizontal direction (the width direction of the film) is larger than the shrinkage in the vertical direction, the shrinkage undesirably exposes the electrode plate. It is preferable that the resin does not contract in the horizontal direction but expands slightly, or even if contracted, has a smaller shrinkage in the vertical direction. In the case of expanding in the horizontal direction, the shrinkage ratio is preferably 0 to -5% (-means expansion) in the nonporous temperature range, and in the case of contracting in the horizontal direction, contraction in the vertical and horizontal directions is preferable. The ratio (vertical shrinkage / lateral shrinkage) is 2 or more, more preferably 4 or more.

【0015】本発明における無孔化温度とは、多孔質ポ
リマーフイルムの電解液中での常温における抵抗値の1
00倍以上となる温度であり、その測定方法および抵抗
測定装置は、以下の通りである。 測定方法:電解液 プロピレンカーボネート 150ml ジメトキシエタン 150ml 過塩素酸リチウム 31.92g 電極面積 1cm2 多孔質ポリマーフイルム試料を5分間電解液に浸漬した
後電極間にセットし、オーブン中で2℃/分の速度で昇
温しながら抵抗値を測定した。 抵抗測定装置:LCRハイテスタ(日置電気(株)製) 測定周波数 1kHz
The non-porous temperature in the present invention is defined as the resistance of the porous polymer film at room temperature in an electrolyte at room temperature.
The temperature is at least 00 times, and the measuring method and the resistance measuring device are as follows. Measurement method: Electrolyte propylene carbonate 150 ml Dimethoxyethane 150 ml Lithium perchlorate 31.92 g Electrode area 1 cm 2 A porous polymer film sample was immersed in an electrolyte for 5 minutes, then set between electrodes, and placed in an oven at 2 ° C./min. The resistance value was measured while increasing the temperature at a speed. Resistance measuring device: LCR HiTester (manufactured by Hioki Electric Co., Ltd.) Measurement frequency 1 kHz

【0016】また、本発明における弾性率の測定方法
は、以下のような記載の方法で行う。弾性率の測定方法 測定装置:ダイナミックスペクトロメーターRDS2
(レオメトリックス社製) 測定条件:ねじりモード 動的測定 周波数 10rad/sec
Further, the method for measuring the elastic modulus in the present invention is carried out by the following method. Measurement method of elastic modulus Measurement device: Dynamic Spectrometer RDS2
(Manufactured by Rheometrics) Measurement conditions: torsional mode dynamic measurement Frequency 10 rad / sec

【0017】以下に実施例を示し、本発明についてさら
に詳細に説明するが、本発明はこれら一実施例に限定さ
れるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0018】実施例1 吐出幅1000mm、吐出リップ開度2mmのTダイを
使用し、数平均分子量70000、重量平均分子量48
0000、メルトインデックス3、融点166℃のポリ
プロピレン(宇部興産株式会社製、宇部ポリプロF10
3EA)を、200℃で溶融押出した。吐出フイルムは
90℃の冷却ロールに導かれ、25℃の冷風が吹きつけ
られて冷却された後、40m/minで引き取られた。
得られた未延伸ポリプロピレンフイルムの膜厚は11.
5μmであった。この未延伸ポリプロピレンフイルム
は、これを熱処理するために、3インチ径紙管に350
0m巻いた状態で120℃に保持した熱風循環式オーブ
ン(田葉井製作所製PS−222型)にいれて24時間
放置した後、オーブンから取り出し室温まで冷却した。
熱処理された未延伸ポリプロピレンフイルムの複屈折は
20.1×10-3(熱処理前17.0×10-3)、10
0%伸長時の弾性回復率は90.5%(熱処理前75.
3%)であった。なお、100%伸長時の弾性回復率
(%)は、下記式(1)によって求めた。
Example 1 Using a T-die having a discharge width of 1000 mm and a discharge lip opening of 2 mm, a number average molecular weight of 70,000 and a weight average molecular weight of 48 were used.
0000, a melt index of 3, and a melting point of 166 ° C. polypropylene (Ube Polypro F10 manufactured by Ube Industries, Ltd.)
3EA) was melt extruded at 200 ° C. The discharge film was guided to a cooling roll at 90 ° C., cooled by blowing cool air at 25 ° C., and then taken out at 40 m / min.
The film thickness of the obtained unstretched polypropylene film is 11.
It was 5 μm. This unstretched polypropylene film is placed in a 3-inch diameter paper tube by 350 mm to heat-treat it.
After being wound in a state of being wound by 0 m and placed in a hot-air circulation oven (PS-222 manufactured by Tabai Seisakusho) maintained at 120 ° C. for 24 hours, it was taken out of the oven and cooled to room temperature.
The birefringence of the heat-treated unstretched polypropylene film is 20.1 × 10 −3 (17.0 × 10 −3 before heat treatment), 10
The elastic recovery at 0% elongation is 90.5% (75.
3%). In addition, the elastic recovery rate (%) at 100% elongation was determined by the following equation (1).

【0019】[0019]

【数1】 (Equation 1)

【0020】吐出幅1000mm、吐出リップ開度2m
mのTダイを使用し、密度0.964、メルトインデッ
クス0.33、融点132℃の高密度ポリエチレン(三
井石油化学株式会社製、ハイゼックス5202B)を、
173℃で溶融押出した。吐出フイルムは115℃の冷
却ロールに導かれ、25℃の冷風が吹きつけられて冷却
された後、20m/minで引き取られた。得られた未
延伸ポリエチレンフイルムの膜厚は8μmであった。こ
の未延伸ポリエチレンフイルムは、これを熱処理するた
めに、3インチ径紙管に3500m巻いた状態で95℃
に保持した熱風循環式オーブン(田葉井製作所製PS−
222型)にいれて24時間放置した後、オーブンから
取り出し室温まで冷却した。熱処理された未延伸ポリエ
チレンフイルムの複屈折は、40.5×10-3(熱処理
前36.0×10-3)、50%伸長時の弾性回復率は、
72.5%(熱処理前42.0%)であった。なお、5
0%伸長時の弾性回復率(%)は、下記式(2)によっ
て求めた。
Discharge width 1000 mm, discharge lip opening 2 m
Using a T die of m, a high-density polyethylene having a density of 0.964, a melt index of 0.33, and a melting point of 132 ° C. (manufactured by Mitsui Petrochemical Co., Ltd., Hyzex 5202B)
It was melt extruded at 173 ° C. The discharge film was guided to a cooling roll of 115 ° C., cooled by blowing cool air of 25 ° C., and then taken out at 20 m / min. The thickness of the obtained unstretched polyethylene film was 8 μm. This unstretched polyethylene film is heated at 95 ° C. in a state of being wound around a 3 inch diameter paper tube at 3,500 m in order to heat-treat the unstretched polyethylene film.
Hot air circulation type oven (PS-made by Tabai Seisakusho)
222 type) and left for 24 hours, then removed from the oven and cooled to room temperature. The birefringence of the heat-treated unstretched polyethylene film is 40.5 × 10 −3 (36.0 × 10 −3 before heat treatment), and the elastic recovery at 50% elongation is:
72.5% (42.0% before heat treatment). In addition, 5
The elastic recovery rate (%) at 0% elongation was determined by the following equation (2).

【0021】[0021]

【数2】 (Equation 2)

【0022】次いで、両外層がポリプロピレンで内層が
ポリエチレンのサンドイッチ構造の3層の積層フイルム
を次のようにして製造した。三組の原反ロールタンドか
ら、前記熱処理した未延伸ポリプロピレンフイルムと未
延伸ポリエチレンフイルムとを、それぞれ巻きだし速度
4.0m/minで巻きだし、加熱ロールに導き温度1
34℃、線圧1.8kg/cmで熱圧着し、その後同速
度で50℃の冷却ロールに導いて巻き取った。このとき
の速度は4.0m/min、巻きだし張力はポリプロピ
レンフイルムが3kg、ポリエチレンフイルムが0.9
kgであった。
Next, a three-layer laminated film having a sandwich structure in which both outer layers were polypropylene and the inner layer was polyethylene was manufactured as follows. The heat-treated unstretched polypropylene film and unstretched polyethylene film were unwound at a winding speed of 4.0 m / min, respectively, from three sets of raw roll tunds.
Thermocompression bonding was performed at 34 ° C. and a linear pressure of 1.8 kg / cm. The speed at this time was 4.0 m / min, and the unwinding tension was 3 kg for the polypropylene film and 0.9 kg for the polyethylene film.
kg.

【0023】この3層の積層フイルムは、35℃に保持
されたニップロール間で20%低温延伸された。このと
きのロール間は350mm、供給側のロール速度は1.
6m/minであった。引き続き126℃に加熱された
熱風循環オーブン中に導かれ、ロール周速差を利用して
ロール間で総延伸量180%になるまで高温延伸された
後、126℃に加熱されたロールで総延伸量の17%緩
和させ、25秒間熱固定して、連続的に積層多孔質フイ
ルムを得た。
The three-layer laminated film was stretched at a low temperature of 20% between nip rolls maintained at 35 ° C. At this time, the distance between the rolls was 350 mm, and the roll speed on the supply side was 1.
It was 6 m / min. It is then led into a hot-air circulation oven heated to 126 ° C, stretched at high temperature between rolls using a difference in roll peripheral speed until the total stretch amount reaches 180%, and then stretched by rolls heated to 126 ° C. The amount was relaxed by 17% and heat set for 25 seconds to continuously obtain a laminated porous film.

【0024】得られた積層多孔質フイルムの膜厚、空孔
率、極大孔径、ガーレー値及び引張強さの測定結果を表
1に示す。また、積層多孔質フイルムの構成フイルムの
うち低融点側の多孔質ポリエチレンの弾性率は、無孔化
温度域135℃で6.7×108 dyne/cm2 であ
った。
Table 1 shows the measurement results of the film thickness, porosity, maximum pore size, Gurley value and tensile strength of the obtained laminated porous film. Further, among the constituent films of the laminated porous film, the elastic modulus of the porous polyethylene on the low melting point side was 6.7 × 10 8 dyne / cm 2 in a non-porous temperature range of 135 ° C.

【0025】上記評価の方法は以下に従って行った。 空孔率及び極大孔径 空孔率及び極大孔径は、水銀ポロシメータ(ユアサアイ
オニック社製)で測定した細孔分布曲線の極大値から求
めた。詳しくは、30mm×300mmの短冊状試料片
を採取し、セルの中に入れ、細孔径に対する水銀量と圧
力から空孔率と極大孔径を求めた。 ガーレー値 JIS P8117に準じて測定した。測定装置として
B型ガーレーデンソメーター(東洋精機社製)を使用し
た。試料片を直径28.6mm、面積645mm2 の円
孔に締め付ける。内筒重量567gにより、筒内の空気
を試験円孔部から筒外へ通過させる。空気100ccが
通過する時間を測定し透気度(ガーレー値)とした。 引張強さ ASTM D−822に準じて測定した。
The above evaluation method was performed as follows. Porosity and maximum pore diameter The porosity and the maximum pore diameter were determined from the maximum value of a pore distribution curve measured by a mercury porosimeter (manufactured by Yuasa Ionic). Specifically, a 30 mm × 300 mm strip sample piece was collected and placed in a cell, and the porosity and the maximum pore diameter were determined from the amount of mercury and the pressure relative to the pore diameter. Gurley value Measured according to JIS P8117. A B-type Gurley densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The sample piece is clamped in a circular hole having a diameter of 28.6 mm and an area of 645 mm 2 . With the inner cylinder weight of 567 g, the air in the cylinder is allowed to pass through the test hole to the outside of the cylinder. The time required for 100 cc of air to pass was measured and defined as the air permeability (Gurley value). Tensile strength was measured according to ASTM D-822.

【0026】[0026]

【表1】 [Table 1]

【0027】多孔質ポリマーフイルムの抵抗値の変化を
25℃における値を1とした時の各温度での抵抗値比と
して求めた。その結果を表2に示す。表中の収縮率は、
多孔質ポリマーフイルム(250mm×250mm)を
135℃で1時間オーブン中で処理し、処理前後のフイ
ルム寸法を測定し、その面積から求めた。なお、表2
中、横方向収縮率の欄の「−」は膨張を意味する。
The change in the resistance value of the porous polymer film was determined as the resistance value ratio at each temperature when the value at 25 ° C. was set to 1. Table 2 shows the results. The shrinkage in the table is
The porous polymer film (250 mm × 250 mm) was treated in an oven at 135 ° C. for 1 hour, and the dimensions of the film before and after the treatment were measured and determined from the area. Table 2
In the middle, “−” in the column of the lateral shrinkage means expansion.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例2 実施例1で得られた両外層がポリプロピレンで内層ポリ
エチレンのサンドイッチ構造の3層の多孔質ポリマーフ
イルムに0.2mmφの孔を5mm間隔で格子状に開け
たものを用い、実施例1と同様にして多孔質ポリマーフ
イルムの抵抗値の変化を25℃における値を1とした時
の各温度での抵抗値比として求めた。その結果を表2に
示す。
Example 2 Three layers of a porous polymer film having a sandwich structure of both outer layers of polypropylene and inner layer of polyethylene obtained in Example 1 were used, in which 0.2 mmφ holes were formed in a grid pattern at 5 mm intervals. In the same manner as in Example 1, the change in the resistance value of the porous polymer film was determined as the resistance value ratio at each temperature when the value at 25 ° C. was set to 1. Table 2 shows the results.

【0030】比較例1 実施例1の製造工程において各未延伸フイルムを積層し
た積層フイルムに実施例2と同様な孔を格子状に開けた
ものを用い、実施例1と同様にして多孔質ポリマーフイ
ルムの抵抗値の変化を25℃における値を1とした時の
各温度での抵抗値比として求めた。その結果を表2に示
す。
COMPARATIVE EXAMPLE 1 In the same manner as in Example 1, a laminated film in which each unstretched film was laminated in the manufacturing process of Example 1 but having the same holes as in Example 2 in a lattice pattern was used. The change in the resistance value of the film was determined as a resistance value ratio at each temperature when the value at 25 ° C. was set to 1. Table 2 shows the results.

【0031】[0031]

【発明の効果】本発明の多孔質ポリマーフイルムは、フ
イルム強度が大きく、比較的粘度が高く、溶融時の形状
保持性等に優れており、しかも無孔化温度域で完全な無
孔化を達成することができる。したがって、電池用セパ
レータとして使用された場合、無孔化温度域で実質的に
収縮することができ、たとえピンホール等の欠陥があっ
た場合でも、異常発生時に確実に多孔質ポリマーフイル
ムは無孔化される。特に、無孔化温度で実質的に収縮す
る多孔質ポリマーフイルムは、収縮力の働きにより容易
に流動しない状態にある多孔質ポリマーフイルムを縮め
る作用をもたらし完全な無孔化を達成することができ
る。
The porous polymer film of the present invention has high film strength, relatively high viscosity, excellent shape retention during melting, and complete nonporosity in a nonporous temperature range. Can be achieved. Therefore, when used as a battery separator, it can be substantially shrunk in a non-porous temperature range, and even if there is a defect such as a pinhole, the porous polymer film is reliably non-porous when an abnormality occurs. Be converted to In particular, a porous polymer film that substantially shrinks at a non-porous temperature can have a function of shrinking a porous polymer film in a state where it does not easily flow due to the action of a shrinking force, thereby achieving complete non-porous film. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C08L 23:04 C08L 23:04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C08L 23:04 C08L 23:04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 延伸された多孔質ポリマーフイルムにお
いて、電解液中での常温における抵抗値の100倍以上
となる無孔化温度域での弾性率が10dyne/cm
以上であり、無孔化温度域で実質的に収縮により多孔
質ポリマーフイルムが無孔化され、無孔化温度域での収
縮率が5%以上であることを特徴とする多孔質ポリマー
フイルム。
1. A stretched porous polymer film that is at least 100 times the resistance value at room temperature in an electrolytic solution.
Become modulus at no Anaka temperature range 10 4 dyne / cm
2 or more, wherein the porous polymer film is made nonporous by substantial shrinkage in a nonporous temperature range, and the shrinkage ratio in the nonporous temperature range is 5% or more. .
【請求項2】 無孔化温度域での弾性率が10dyn
e/cm以上1011dyne/cm以下であるこ
とを特徴とする請求項1記載の多孔質ポリマーフイル
ム。
2. An elastic modulus in a non-porous temperature range of 10 4 dyn.
The porous polymer film according to claim 1, wherein the film thickness is not less than e / cm 2 and not more than 10 11 dyne / cm 2 .
【請求項3】 無孔化温度域での収縮率が5%以上90
%以下であることを特徴とする請求項1記載の多孔質ポ
リマーフイルム。
3. A shrinkage ratio in a non-porous temperature range of 5% or more and 90% or less.
% Or less.
【請求項4】 無孔化温度域での収縮方向が多孔質ポリ
マーフイルムの延伸方向であることを特徴とする請求項
1記載の多孔質ポリマーフイルム。
4. The porous polymer film according to claim 1, wherein the shrinking direction in the non-porous temperature range is the stretching direction of the porous polymer film.
JP22624097A 1997-08-22 1997-08-22 Porous polymer film Expired - Lifetime JP3536607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22624097A JP3536607B2 (en) 1997-08-22 1997-08-22 Porous polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22624097A JP3536607B2 (en) 1997-08-22 1997-08-22 Porous polymer film

Publications (2)

Publication Number Publication Date
JPH1160764A JPH1160764A (en) 1999-03-05
JP3536607B2 true JP3536607B2 (en) 2004-06-14

Family

ID=16842098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22624097A Expired - Lifetime JP3536607B2 (en) 1997-08-22 1997-08-22 Porous polymer film

Country Status (1)

Country Link
JP (1) JP3536607B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160763A (en) * 1997-08-22 1999-03-05 Ube Ind Ltd Porous polymer film
JP5070659B2 (en) * 2001-03-05 2012-11-14 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2002289164A (en) * 2001-03-28 2002-10-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100542196B1 (en) 2003-08-21 2006-01-10 삼성에스디아이 주식회사 Seperator for Lithium Secondary Battery and Lithium Secondary Battery
SG10201702726QA (en) * 2017-04-03 2018-11-29 Airbus Singapore Private Ltd Conductive carbon coated polymer for high temperature lithium ion battery shutdown deposited through 3d printing technique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011309B2 (en) * 1994-05-12 2000-02-21 宇部興産株式会社 Battery separator and method of manufacturing the same
JPH1160763A (en) * 1997-08-22 1999-03-05 Ube Ind Ltd Porous polymer film

Also Published As

Publication number Publication date
JPH1160764A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP3003830B2 (en) Laminated porous film and method for producing the same
KR100242363B1 (en) Porous multi-layer film
JP2883726B2 (en) Manufacturing method of battery separator
JP4470248B2 (en) Battery separator
US6949315B1 (en) Shutdown separators with improved properties
JP3011309B2 (en) Battery separator and method of manufacturing the same
JP3381538B2 (en) Manufacturing method of laminated porous polyolefin film
KR101103163B1 (en) Polyolefin microporous membrane
EP2607414B1 (en) Propylene resin microporous film, battery separator, battery, and method for producing propylene resin microporous film
JP3852492B2 (en) Manufacturing method of battery separator
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JPH11322989A (en) Polyolefin-made microporous film for battery separator
JP4573284B2 (en) Polyethylene microporous membrane
JPWO2008044761A1 (en) Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery
JPH11115084A (en) Laminated porous film
JP3436055B2 (en) Battery separator
JP3508510B2 (en) Laminated porous film and method for producing the same
JP5235324B2 (en) Polyolefin microporous membrane
JP4230584B2 (en) Polyethylene microporous membrane
JP3536607B2 (en) Porous polymer film
JPH11297297A (en) Manufacture of porous film and porous film
US7662518B1 (en) Shutdown separators with improved properties
JP2000348703A (en) Separator for battery and lithium battery using same
JPH09241411A (en) Porous membrane, its production, and lithium ion secondary cell
JP5352075B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term