JP2011246539A - Method for producing biaxially stretched polyolefin-based porous film, and biaxially stretched polyolefin-based porous film - Google Patents

Method for producing biaxially stretched polyolefin-based porous film, and biaxially stretched polyolefin-based porous film Download PDF

Info

Publication number
JP2011246539A
JP2011246539A JP2010119108A JP2010119108A JP2011246539A JP 2011246539 A JP2011246539 A JP 2011246539A JP 2010119108 A JP2010119108 A JP 2010119108A JP 2010119108 A JP2010119108 A JP 2010119108A JP 2011246539 A JP2011246539 A JP 2011246539A
Authority
JP
Japan
Prior art keywords
stretching
porous membrane
film
cold
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010119108A
Other languages
Japanese (ja)
Other versions
JP5594873B2 (en
Inventor
Miyuki Ito
己行 伊東
Kentaro Kikuchi
健太朗 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2010119108A priority Critical patent/JP5594873B2/en
Publication of JP2011246539A publication Critical patent/JP2011246539A/en
Application granted granted Critical
Publication of JP5594873B2 publication Critical patent/JP5594873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a porous film, capable of producing the porous film in high productivity.SOLUTION: The method for producing a biaxially stretched polyolefin-based porous film stretched by a dry method is provided by comprising an MD (machine direction) cold stretching step of MD-cold stretching the film constituted by the polyolefin-based resin and a TD (transverse direction) cold stretching step of TD-cold stretching the film at a stretching temperature satisfying a condition expressed by formula (1): (Tg+20)≤T≤(Tm-30) [wherein, T is the stretching temperature (unit:°C), Tg is the glass transition temperature (unit:°C) of the film, and Tm is the melting point (unit:°C) of the film].

Description

本発明は、ポリオレフィン系二軸延伸多孔質膜の製造方法及びポリオレフィン系二軸延伸多孔質膜に関する。   The present invention relates to a method for producing a polyolefin biaxially stretched porous membrane and a polyolefin biaxially stretched porous membrane.

ポリオレフィン系多孔質膜に代表される樹脂多孔質膜は、機械的特性、耐薬品性及び電気的特性などに優れ、包装材料用途、メディカル用途及び電気材料用途などに利用されている。それらの中でも、リチウムイオンバッテリーなどに備えられるセパレータの用途では、特定の温度で孔が閉塞する性質(シャットダウン機能)を利用し、樹脂多孔質膜がパソコン及び携帯電話などの民生用機器用途に多用されるようになった。今後、リチウムイオンバッテリーは、ハイブリット自動車(HEV)及び電気自動車(EV)などの動力としての普及が見込まれているが、それにあたってのコストダウンが大きな課題となっている。   Resin porous membranes typified by polyolefin-based porous membranes are excellent in mechanical properties, chemical resistance, electrical properties and the like, and are used for packaging material applications, medical applications, electrical material applications, and the like. Among them, separators used in lithium ion batteries, etc., utilize the property of shutting down pores at a specific temperature (shutdown function), and resin porous membranes are widely used for consumer devices such as personal computers and mobile phones. It came to be. In the future, lithium-ion batteries are expected to be widely used as power sources for hybrid vehicles (HEV) and electric vehicles (EV), but cost reduction is a major issue.

ポリオレフィン系多孔質膜に代表される樹脂多孔質膜の製造方法には、大別すると、抽出工程で多孔質化する湿式法と延伸工程で多孔質化する乾式法との二つの方法が挙げられる。前者の方法としては、例えば特許文献1に記載の方法が挙げられる。特許文献1では、可塑剤等を樹脂と共に練り込んで溶融押し出しした後、抽出槽で可塑剤等を抽出して多孔質化する製造方法が開示されている。   The method for producing a resin porous membrane typified by a polyolefin-based porous membrane can be broadly classified into two methods: a wet method for making a porous layer in an extraction step and a dry method for making a porous layer in a stretching step. . Examples of the former method include the method described in Patent Document 1. Patent Document 1 discloses a manufacturing method in which a plasticizer or the like is kneaded with a resin and melt-extruded, and then the plasticizer or the like is extracted and made porous in an extraction tank.

一方、後者の方法としては、例えば、特許文献2に記載の方法が挙げられる。特許文献2では、溶融押し出しした原反にラメラ晶を形成させ、縦一軸延伸によりラメラ晶の間を開裂させて多孔質化する製造方法が開示されている。この方法によれば、湿式法とは異なり抽出工程が不要となり、工程が簡素化できる。また、乾式法を用いた二軸延伸多孔質膜の製造方法として、特許文献3に記載の方法が挙げられる。特許文献3には、公知の縦一軸延伸で得た多孔質膜を熱間で縦方向に緩和しながら横延伸する技術が開示されている。   On the other hand, examples of the latter method include the method described in Patent Document 2. Patent Document 2 discloses a production method in which a lamellar crystal is formed on a melt-extruded original fabric, and the lamellar crystal is cleaved by longitudinal uniaxial stretching to make it porous. According to this method, unlike the wet method, an extraction step is unnecessary, and the process can be simplified. Moreover, the method of patent document 3 is mentioned as a manufacturing method of the biaxially-stretched porous membrane using a dry method. Patent Document 3 discloses a technique in which a porous film obtained by known longitudinal uniaxial stretching is laterally stretched while relaxing in the longitudinal direction with heat.

特開昭58−59072号公報JP 58-59072 A 特開昭62−121737号公報JP-A-62-1121737 国際公開第2007/098339号International Publication No. 2007/098339

しかしながら、特許文献1に記載の方法は、抽出工程において用いられる溶媒のコストが高くなったり、抽出に時間を要して生産性に劣ったりするなどの欠点を有する。また、特許文献2に記載の方法は、多孔質膜の透気性などの主要特性が、縦一軸延伸の高速化(すなわち歪み速度の増大)に伴って低下することから、その高速化を実現することが困難である。さらに、特許文献3に記載の方法は、横延伸時に縦緩和(収縮)を同時に行うため、更に生産性が低下する他、横延伸に特殊な同時二軸延伸機が必要となるため、過大な設備コストを伴うなどの欠点を有する。   However, the method described in Patent Document 1 has drawbacks such as an increase in the cost of the solvent used in the extraction process, and the time required for extraction and poor productivity. In addition, the method described in Patent Document 2 realizes a high speed because the main characteristics such as air permeability of the porous film are reduced as the speed of the longitudinal uniaxial stretching is increased (that is, the strain rate is increased). Is difficult. Furthermore, since the method described in Patent Document 3 simultaneously performs longitudinal relaxation (shrinkage) at the time of transverse stretching, the productivity is further reduced, and a special simultaneous biaxial stretching machine is required for transverse stretching. It has drawbacks such as equipment costs.

上述のように、特許文献1〜3に記載の技術は、いずれも生産性に劣っていることから、より安価な多孔質膜を得ることが困難となっており、特に、車載用途のバッテリーに備えられるセパレータとして用いる場合、より安価に製造できる新たな生産技術が望まれている。   As described above, since the techniques described in Patent Documents 1 to 3 are all inferior in productivity, it is difficult to obtain a cheaper porous film. When used as a separator provided, a new production technique that can be manufactured at a lower cost is desired.

そこで、本発明は、上記事情にかんがみてなされたものであり、多孔質膜を高い生産性により製造できるポリオレフィン系二軸延伸多孔質膜の製造方法及びポリオレフィン系二軸延伸多孔質膜を提供することを目的とする。   Accordingly, the present invention has been made in view of the above circumstances, and provides a method for producing a polyolefin biaxially stretched porous membrane and a polyolefin biaxially stretched porous membrane capable of producing a porous membrane with high productivity. For the purpose.

本発明者らは、上記課題を解決するために鋭意検討した結果、少なくとも二軸延伸により樹脂多孔質膜を得る必要があるものの、更に検討の余地があることを知見した。具体的には、乾式法の縦一軸延伸で得られた膜は、異方性が大きく、かつ結晶化度も高くなる。このような膜に対して、通常考えられる熱延伸を採用して横方向に延伸すると、破断や延伸ムラなどの問題があることが判明した。そこで、どのようにすれば、均一かつ安定的に横延伸できるか更に検討した。その結果、結晶相の融解に起因して、上記破断や延伸ムラが発生することを突き止めた。そして、横延伸を結晶相の融解が始まる温度よりも低温(ゴム状領域)で行うことにより、上述の目的を達成することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that there is room for further study although it is necessary to obtain a resin porous membrane by at least biaxial stretching. Specifically, a film obtained by longitudinal uniaxial stretching by a dry method has a large anisotropy and a high crystallinity. It has been found that when such a film is stretched in the transverse direction by adopting heat stretching that is usually considered, there are problems such as breakage and stretching unevenness. Therefore, it was further examined how the lateral stretching can be performed uniformly and stably. As a result, it was ascertained that the above breakage and stretching unevenness occur due to melting of the crystal phase. And it discovered that the above-mentioned purpose was achieved by performing transverse stretching at a temperature lower than the temperature at which the melting of the crystal phase starts (rubbery region), and completed the present invention.

すなわち、本発明は以下のとおりである。
[1]乾式法により延伸された多孔質膜を製造する方法であって、ポリオレフィン系樹脂から構成される膜をMDに冷延伸するMD冷延伸工程と、下記式(1)で表される条件を満足する延伸温度において、前記膜を、そのTDに冷延伸するTD冷延伸工程を含む、ポリオレフィン系二軸延伸多孔質膜の製造方法。
(Tg+20)≦T≦(Tm−30) (1)
(式中、Tは前記延伸温度(単位:℃)を示し、Tgは前記膜のガラス転移温度(単位:℃)を示し、Tmは前記膜の融点(単位:℃)を示す。)
[2]前記TD冷延伸工程における延伸倍率が1.01倍〜3.0倍である、[1]のポリオレフィン系二軸延伸多孔質膜の製造方法。
[3]前記ポリオレフィン系樹脂がポリチレン系樹脂及びポリプロピレン系樹脂からなる群より選ばれる1種以上である、[1]又は[2]の多孔質膜の製造方法。
[4][1]〜[3]のいずれか一つの製造方法により得られるポリオレフィン系二軸延伸多孔質膜。
That is, the present invention is as follows.
[1] A method for producing a porous membrane stretched by a dry method, which comprises a MD cold stretching step in which a membrane composed of a polyolefin-based resin is cold-stretched into MD, and a condition represented by the following formula (1) A method for producing a polyolefin-based biaxially stretched porous membrane, comprising a TD cold stretching step of cold stretching the membrane to its TD at a stretching temperature satisfying
(Tg + 20) ≦ T ≦ (Tm−30) (1)
(In the formula, T represents the stretching temperature (unit: ° C), Tg represents the glass transition temperature (unit: ° C) of the film, and Tm represents the melting point (unit: ° C) of the film.)
[2] The method for producing a polyolefin biaxially stretched porous membrane according to [1], wherein a draw ratio in the TD cold drawing step is 1.01 to 3.0 times.
[3] The method for producing a porous membrane according to [1] or [2], wherein the polyolefin resin is at least one selected from the group consisting of a polyethylene resin and a polypropylene resin.
[4] A polyolefin-based biaxially stretched porous membrane obtained by the production method of any one of [1] to [3].

本発明のポリオレフィン系二軸延伸多孔質膜の製造方法によれば、多孔質膜を高い生産性により製造することが可能となる。また、本発明のポリオレフィン系二軸延伸多孔質膜は、セパレータ用途に適用可能で安価なものとなる。   According to the method for producing a polyolefin-based biaxially stretched porous membrane of the present invention, the porous membrane can be produced with high productivity. The polyolefin biaxially stretched porous membrane of the present invention can be applied to a separator and is inexpensive.

本発明における各工程の順番について変形例を示すチャートである。It is a chart which shows a modification about the order of each process in the present invention.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。   Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.

本実施形態のポリオレフィン系二軸延伸多孔質膜(以下、単に「多孔質膜」という。)の製造方法は、乾式法により延伸された多孔質膜を製造する方法であって、ポリオレフィン系樹脂から構成される膜をMDに冷延伸するMD冷延伸工程と、下記式(1)で表される条件を満足する延伸温度において、上記膜を、そのTDに冷延伸するTD冷延伸工程を含むものである。
(Tg+20)≦T≦(Tm−30) (1)
ここで、式(1)中、TはTD冷延伸工程における延伸温度(単位:℃)を示す。Tgは上記膜のガラス転移温度(単位:℃)を示し、粘弾性特性を測定した時の損失弾性率のピーク温度から求められる温度である。Tmは上記膜の融点(単位:℃)を示し、DSC(示差走査熱量計)を用いて10℃/分で昇温して得られる融解ピークトップ温度であり、Tgよりも50℃以上高い温度である。また、「TD」は孔を設ける前の膜(以下、「無孔原反」ともいう。)を得る際に、その膜の流れ方向に対して垂直な方向(Transverse Direction)を示す。一方、後述の「MD」は無孔原反の流れ方向(Machine Direction)を示す。
The method for producing a polyolefin-based biaxially stretched porous membrane (hereinafter simply referred to as “porous membrane”) of the present embodiment is a method for producing a porous membrane stretched by a dry method, and includes a polyolefin-based resin. The MD cold-stretching step of cold-stretching the formed film into MD and the TD cold-stretching step of cold-stretching the film to its TD at a stretching temperature satisfying the condition represented by the following formula (1) .
(Tg + 20) ≦ T ≦ (Tm−30) (1)
Here, in the formula (1), T represents a stretching temperature (unit: ° C.) in the TD cold stretching step. Tg represents the glass transition temperature (unit: ° C.) of the film, and is a temperature determined from the peak temperature of the loss modulus when the viscoelastic properties are measured. Tm represents the melting point (unit: ° C.) of the film, and is a melting peak top temperature obtained by heating at 10 ° C./min using a DSC (differential scanning calorimeter), and is a temperature higher by 50 ° C. than Tg. It is. In addition, “TD” indicates a direction (Transverse Direction) perpendicular to the flow direction of the film when a film before being provided with a hole (hereinafter also referred to as “non-porous original fabric”) is obtained. On the other hand, “MD” to be described later indicates the machine direction of the non-porous raw fabric.

本実施形態の製造方法に用いられる樹脂としては、結晶化速度及び結晶化度を適度に調整できる観点より、ポリオレフィン系樹脂がより好ましい。   As the resin used in the production method of the present embodiment, a polyolefin-based resin is more preferable from the viewpoint that the crystallization speed and the crystallization degree can be appropriately adjusted.

(ポリオレフィン系樹脂)
本実施形態に係る「ポリオレフィン系樹脂」は、多孔質膜を構成する成分としてポリエチレン又はポリプロピレンを50質量%以上有する樹脂を意味する。以下、ポリエチレン系樹脂及びポリプロピレン系樹脂について説明する。
(Polyolefin resin)
The “polyolefin resin” according to this embodiment means a resin having 50% by mass or more of polyethylene or polypropylene as a component constituting the porous membrane. Hereinafter, the polyethylene resin and the polypropylene resin will be described.

(ポリエチレン系樹脂)
ポリエチレン系樹脂とは、主成分としてポリエチレンを50質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上含む樹脂である。透気性及びその用途で求められる要求特性に応じて、上述の範囲でポリエチレン系樹脂におけるポリエチレンの配合量を調整することができる。
主成分として用いられるポリエチレンは、より結晶化度の高い無孔原反を得る観点、並びに延伸性の観点から、その密度が、好ましくは0.940〜0.970g/cm3、より好ましくは0.950〜0.967g/cm3、更に好ましくは0.960〜0.964g/cm3の高密度ポリエチレンが特に好適に用いられる。この高密度ポリエチレンは、ホモポリマーポリエチレンであっても、コポリマーポリエチレンであってもよい。コポリマーポリエチレンの場合、コモノマー成分として、例えば、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン又は1−デセンが挙げられる。コモノマー成分の含有量は、結晶化度の観点から、好ましくは2モル%以下であり、コポリマーポリエチレンはランダム又はブロック共重合体のいずれであってもよい。
(Polyethylene resin)
The polyethylene resin is a resin containing 50% by mass or more of polyethylene as a main component, more preferably 80% by mass or more, and still more preferably 90% by mass or more. The blending amount of polyethylene in the polyethylene-based resin can be adjusted within the above-mentioned range depending on the air permeability and the required characteristics required for its use.
The polyethylene used as the main component has a density of preferably 0.940 to 0.970 g / cm 3 , more preferably 0 from the viewpoint of obtaining a non-porous raw fabric having a higher degree of crystallinity and stretchability. A high density polyethylene of 950 to 0.967 g / cm 3 , more preferably 0.960 to 0.964 g / cm 3 is particularly preferably used. The high density polyethylene may be a homopolymer polyethylene or a copolymer polyethylene. In the case of copolymer polyethylene, examples of the comonomer component include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, and 1-decene. The content of the comonomer component is preferably 2 mol% or less from the viewpoint of crystallinity, and the copolymer polyethylene may be a random or block copolymer.

また、高密度ポリエチレンの重量平均分子量(Mw)は、機械的強度や成形性などを勘案し、好ましくは5万〜50万、より好ましくは10万〜45万、更に好ましくは20万〜40万である。さらに、Mwと数平均分子量(Mn)とにより求められる分子量分布(Mw/Mn)は特に制限されず、例えば、3〜15程度の範囲であってもよい。なお、本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、ポリスチレンを標準物質としたGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる(以下同様。)。   The weight average molecular weight (Mw) of the high-density polyethylene is preferably 50,000 to 500,000, more preferably 100,000 to 450,000, and still more preferably 200,000 to 400,000 in consideration of mechanical strength and moldability. It is. Furthermore, the molecular weight distribution (Mw / Mn) determined by Mw and the number average molecular weight (Mn) is not particularly limited, and may be, for example, in the range of about 3 to 15. In the present specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are obtained by a GPC (gel permeation chromatography) method using polystyrene as a standard substance (the same applies hereinafter).

ポリオレフィン系樹脂の主成分として高密度ポリエチレンを用いる場合、その高密度ポリエチレンに加えて、他のポリオレフィン系樹脂、各種エラストマー類をブレンドすることも可能である。他のポリオレフィン系樹脂としては、例えば、直鎖状低密度ポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、エチレン−αポリオレフィン共重合体が挙げられる。また、各種エラストマー類としては、例えば、SEBS、SEPSなどのスチレン系エラストマーの他、エチレン−αポリオレフィン共重合エラストマーが挙げられる。これらは1種を単独で又は2種以上をブレンドして用いられる。この場合、各樹脂の添加量は、透気性を阻害しない範囲で、目的にあった添加量とすればよい。   When high-density polyethylene is used as the main component of the polyolefin-based resin, other polyolefin-based resins and various elastomers can be blended in addition to the high-density polyethylene. Examples of other polyolefin resins include linear low density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, and ethylene-α polyolefin copolymers. Moreover, as various elastomers, ethylene-alpha polyolefin copolymer elastomer other than styrene-type elastomers, such as SEBS and SEPS, is mentioned, for example. These may be used alone or in combination of two or more. In this case, the addition amount of each resin may be an addition amount suitable for the purpose as long as air permeability is not impaired.

(ポリプロピレン系樹脂)
ポリプロピレン系樹脂とは、ポリプロピレンを50質量%以上含む樹脂であり、より結晶化度の高い無孔原反を得る観点から、ポリプロピレンを好ましくは80質量%以上、より好ましくは90質量%以上含むものである。
(Polypropylene resin)
The polypropylene-based resin is a resin containing 50% by mass or more of polypropylene, and preferably contains 80% by mass or more, more preferably 90% by mass or more of polypropylene from the viewpoint of obtaining a non-porous raw material having a higher crystallinity. .

主成分となるポリプロピレンは、その密度が好ましくは0.905g/cm3以上、より好ましくは0.910g/cm3以上、更に好ましくは0.915g/cm3以上である。ポリプロピレン系樹脂としては、ホモポリマーポリプロピレンであっても、コポリマーポリプロピレンであってもよい。 Polypropylene as a main component, the density is preferably 0.905 g / cm 3 or more, more preferably 0.910 g / cm 3 or more, further preferably 0.915 g / cm 3 or more. The polypropylene resin may be a homopolymer polypropylene or a copolymer polypropylene.

コポリマーポリプロピレンの場合、コモノマー成分としては、例えば、エチレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン又は1−デセン等のα−オレフィンが挙げられる。コモノマー成分の含有量は、好ましくは5モル%以下であり、コポリマーポリプロピレンは、ブロック又はランダム共重合体のいずれであってもよい。これらの中でも、より高い透気性が得られる観点から、ホモポリプロピレンを好適に用いることができる。   In the case of copolymer polypropylene, examples of the comonomer component include α-olefins such as ethylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, and 1-decene. The content of the comonomer component is preferably 5 mol% or less, and the copolymer polypropylene may be either a block or a random copolymer. Among these, homopolypropylene can be preferably used from the viewpoint of obtaining higher air permeability.

また、ポリプロピレン系樹脂の重量平均分子量(Mw)は、機械的強度や成形性などを勘案し、好ましくは5万〜70万、より好ましくは10万〜60万、更に好ましくは20万〜50万である。さらに、Mwと数平均分子量(Mn)とにより求められる分子量分布(Mw/Mn)は特に制限されず、例えば、3〜15程度の範囲であってもよい。   The weight-average molecular weight (Mw) of the polypropylene resin is preferably 50,000 to 700,000, more preferably 100,000 to 600,000, still more preferably 200,000 to 500,000, taking into account mechanical strength and moldability. It is. Furthermore, the molecular weight distribution (Mw / Mn) determined by Mw and the number average molecular weight (Mn) is not particularly limited, and may be, for example, in the range of about 3 to 15.

主成分としてホモポリプロピレンを用いる場合、そのホモポリプロピレンに加えて、他のポリオレフィン系樹脂、各種エラストマー類をブレンドすることも可能である。他のポリオレフィン系樹脂としては、例えば、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、エチレン−αポリオレフィン共重合体が挙げられる。また、各種エラストマー類としては、例えば、SEBS、SEPSなどのスチレン系エラストマーが挙げられる。これらは1種以上を単独で又は2種以上をブレンドして用いられる。この場合、各樹脂の添加量は、高密度ポリエチレンに加えて添加する場合と同様、透気性を阻害しない範囲で、目的にあった添加量とすればよい。   When homopolypropylene is used as the main component, in addition to the homopolypropylene, other polyolefin resins and various elastomers can be blended. Examples of other polyolefin resins include high-density polyethylene, linear low-density polyethylene, poly-1-butene, poly-4-methyl-1-pentene, and ethylene-α polyolefin copolymer. Examples of the various elastomers include styrene elastomers such as SEBS and SEPS. These may be used alone or in combination of two or more. In this case, the addition amount of each resin may be an addition amount suitable for the purpose within the range not impairing the air permeability, as in the case of adding in addition to the high density polyethylene.

上記ポリオレフィン系樹脂には、樹脂多孔質膜に含まれ得る公知の各種添加剤として、例えば、滑剤、アンチブロッキング剤、帯電防止剤、酸化防止剤、光安定剤、結晶核剤、充填剤等を添加することも可能である。   Examples of known additives that can be contained in the porous resin membrane include, for example, lubricants, antiblocking agents, antistatic agents, antioxidants, light stabilizers, crystal nucleating agents, fillers, and the like. It is also possible to add.

[製造方法]
本実施形態の多孔質膜の製造方法は、上述のMD冷延伸工程に加えて、上記TD冷延伸工程を含むことで、透気性に優れた多孔質膜をより高速で製造することができる。また、本実施形態の多孔質膜の製造方法は、無孔原反を製造する原反製造工程、無孔原反をアニールするアニール工程、膜をMDに熱延伸するMD熱延伸工程及び膜をMDに熱固定するMD熱固定工程からなる群より選ばれる1種以上の工程を有してもよい。また、本実施形態の多孔質膜の製造方法は、膜をTDに熱固定するTD熱固定工程及び/又は膜に表面処理を施す表面処理工程を有してもよい。
[Production method]
The porous membrane manufacturing method of the present embodiment includes the TD cold stretching step in addition to the MD cold stretching step described above, whereby a porous membrane having excellent air permeability can be manufactured at a higher speed. Moreover, the manufacturing method of the porous film of this embodiment includes a raw fabric manufacturing process for manufacturing a non-porous raw fabric, an annealing process for annealing the non-porous raw fabric, an MD thermal stretching process for thermally stretching the film into MD, and a film. You may have 1 or more types of processes chosen from the group which consists of MD heat setting process heat-fixed to MD. Moreover, the manufacturing method of the porous membrane of this embodiment may have a TD heat setting process which heat-sets a film | membrane to TD, and / or a surface treatment process which surface-treats to a film | membrane.

(原反製造工程)
原反製造工程は、無孔原反を得る工程であれば特に限定されない。例えば、原反製造工程において、原料となるポリオレフィン系樹脂を押出機にて溶融し、Tダイ又はサーキュラーダイ等のダイを用い、そこから流出した溶融樹脂をキャストロール又はロール引取機等のロールで引き取る。この際、溶融段階の樹脂をエアナイフ又はエアリング装置を用い、急冷固化することが望ましい。これによって、ポリオレフィン系樹脂中に、孔形成に重要なラメラ晶を規則的に且つ緻密に配列することができる。
(Raw fabric manufacturing process)
A raw fabric manufacturing process will not be specifically limited if it is a process of obtaining a non-porous raw fabric. For example, in a raw fabric manufacturing process, a polyolefin resin as a raw material is melted with an extruder, and a die such as a T die or a circular die is used, and the molten resin flowing out from the die is cast using a roll such as a cast roll or a roll take-up machine. Take over. At this time, it is desirable to rapidly cool and solidify the resin in the melting stage using an air knife or an air ring device. Thereby, lamellar crystals important for pore formation can be regularly and densely arranged in the polyolefin resin.

ダイから流出した溶融樹脂をロールで引き取る時のドラフト比((ロールの引き取り速度)/(密度から換算されるダイリップから流出する樹脂の流速))は、好ましくは10〜600倍、より好ましく20〜500倍、更に好ましくは30〜400倍である。ドラフト比は、透気性や成形性の観点から上記範囲であると好ましい。すなわち、ドラフト比が10倍以上であると、透気性に優れ、600倍以下であると、ダイから流出した溶融樹脂を安定的に引き取ることが容易となる。   The draft ratio ((roll take-up speed) / (flow rate of the resin flowing out from the die lip converted from the density)) when the molten resin flowing out from the die is taken up with a roll is preferably 10 to 600 times, more preferably 20 to 500 times, more preferably 30 to 400 times. The draft ratio is preferably in the above range from the viewpoint of air permeability and moldability. That is, when the draft ratio is 10 times or more, the air permeability is excellent, and when it is 600 times or less, it becomes easy to stably take out the molten resin flowing out from the die.

(アニール工程)
MD延伸工程の前に、アニール工程において無孔原反にアニール処理を施すことより、無孔原反の結晶化度を高めることができ、より透気性の良好な多孔質膜を得ることができるので、本実施形態の製造方法はアニール工程を有すると好ましい。アニール処理の温度範囲は、無孔原反の結晶化度を更に高める観点から、好ましくは(Tm−3℃)〜(Tm−30℃)であり、より好ましくは(Tm−5℃)〜(Tm−20℃)である。
(Annealing process)
Prior to the MD stretching step, the non-porous raw fabric is annealed in the annealing step, whereby the crystallinity of the non-porous raw fabric can be increased and a porous film having better air permeability can be obtained. Therefore, it is preferable that the manufacturing method of this embodiment includes an annealing step. The temperature range of the annealing treatment is preferably (Tm-3 ° C) to (Tm-30 ° C), more preferably (Tm-5 ° C) to (Tm-3 ° C) from the viewpoint of further increasing the crystallinity of the non-porous raw fabric. Tm-20 ° C).

また、アニール処理は、連続方式であってもバッチ方式であってもよい。連続的に行う場合、アニール処理による効果を有効に発揮する観点から、処理時間は好ましくは0.5分以上、より好ましくは1分以上、更に好ましくは2分以上である。また、バッチ方式であって、無孔原反をロールに巻き取った状態でアニール処理を施す場合、巻き取った時の直径により、処理時間を適宜変更すると好ましい。最終的には、巻き取った無孔原反のロールの厚み方向両側における透気性などの主要特性が近くなるような処理時間を求めて、アニール処理を施すことが好ましい。   The annealing treatment may be a continuous method or a batch method. When performing continuously, from the viewpoint of effectively exhibiting the effect of the annealing treatment, the treatment time is preferably 0.5 minutes or more, more preferably 1 minute or more, and further preferably 2 minutes or more. In addition, in the case of a batch method, when the annealing treatment is performed in a state in which the non-porous raw fabric is wound on a roll, it is preferable to appropriately change the processing time depending on the diameter at the time of winding. Finally, it is preferable to perform an annealing treatment by obtaining a treatment time such that main characteristics such as air permeability on both sides in the thickness direction of the wound non-porous raw roll are close.

(MD冷延伸工程)
MD冷延伸工程は、公知のものであれば特に限定されないが、MD冷延伸工程では、好ましくはアニール工程を経た無孔原反に対して、MDに冷延伸を施す。これにより、開孔のきっかけとなるクラックを無孔原反に形成させることができるので、本実施形態の製造方法はMD冷延伸工程を有することが好ましい。その冷延伸には複数のロールを用いることが好ましい。この時の延伸倍率は、好ましくは1.05〜3倍、より好ましくは1.1〜2.5倍、更に好ましくは1.2〜2倍である。延伸倍率をこの範囲にすることにより、透気性、得られた多孔質膜の外観(ピンホール等)、及び延伸の安定性が良好となる。
(MD cold drawing process)
The MD cold drawing step is not particularly limited as long as it is a known one, but in the MD cold drawing step, the MD is preferably cold drawn with respect to the non-porous raw fabric that has undergone the annealing step. Thereby, since the crack used as a trigger of opening can be formed in a non-porous original fabric, it is preferable that the manufacturing method of this embodiment has MD cold drawing process. It is preferable to use a plurality of rolls for the cold drawing. The draw ratio at this time is preferably 1.05 to 3 times, more preferably 1.1 to 2.5 times, and still more preferably 1.2 to 2 times. By setting the draw ratio within this range, the air permeability, the appearance of the obtained porous film (pinholes, etc.), and the stability of the drawing are improved.

MD冷延伸工程における延伸温度は、好ましくは−20℃〜(Tm−50℃)、より好ましくは0℃〜(Tm−60℃)、更に好ましくは10℃〜(Tm−70℃)である。その延伸温度が−20℃以上であることにより膜の破断をより効果的に防止でき、(Tm−50℃)以下であることにより、一層透気性に優れた多孔質膜が得られる。   The stretching temperature in the MD cold stretching step is preferably -20 ° C to (Tm-50 ° C), more preferably 0 ° C to (Tm-60 ° C), and further preferably 10 ° C to (Tm-70 ° C). When the stretching temperature is −20 ° C. or higher, the membrane can be more effectively prevented from being broken, and when it is (Tm−50 ° C.) or lower, a porous membrane having further excellent air permeability can be obtained.

複数のロールを用いてMDに冷延伸を施す場合、ロール間での歪み速度(多段延伸する場合は最大値)は、好ましくは20〜10000%/分、より好ましくは50〜5000%/分、更に好ましくは80〜3000%/分の範囲である。この歪み速度が20%/分以上であることにより、多孔質膜の生産性が更に向上し、10000%/分以下であることにより、透気性に更に優れた多孔質膜が得られる。なお、本明細書において、歪み速度は、下記式(2)により求められる。
歪み速度(延伸速度)=S/{2・L/(V1+V2)} (2)
ここで、Sは延伸倍率(%)を示し、V1は低速側のロール速度(m/分)を示し、V2は高速側のロール速度(m/分)を示し、Lはロール間の延伸距離(m)を示す。
When cold-drawing MD using a plurality of rolls, the strain rate between rolls (maximum value in the case of multi-stage stretching) is preferably 20 to 10,000% / min, more preferably 50 to 5000% / min, More preferably, it is in the range of 80 to 3000% / min. When the strain rate is 20% / min or more, the productivity of the porous film is further improved, and when it is 10,000% / min or less, a porous film having further excellent air permeability can be obtained. In the present specification, the strain rate is obtained by the following formula (2).
Strain rate (stretching rate) = S / {2 · L / (V1 + V2)} (2)
Here, S represents the draw ratio (%), V1 represents the low-speed roll speed (m / min), V2 represents the high-speed roll speed (m / min), and L represents the stretch distance between the rolls. (M) is shown.

(MD熱延伸工程)
MD熱延伸工程では、好ましくはMD冷延伸工程の後、クラックを形成した無孔原反に対してMDに熱延伸を施すことで、そのMDの孔径を拡大し、固定化することができる。したがって、本実施形態の製造方法は、MD熱延伸工程を有することが好ましい。この時の延伸倍率は、MD熱延伸前の速度を基準に、好ましくは1.1〜4倍、より好ましくは1.2〜3.5倍、更に好ましくは1.3〜3倍の範囲である。その熱延伸倍率を1.1倍以上にすることにより、透気性を向上することができ、4倍以下にすることにより、ピンホール及び破断などの発生を更に抑制できる。
(MD heat stretching process)
In the MD hot stretching step, preferably, after the MD cold stretching step, the pore diameter of the MD can be expanded and fixed by subjecting the non-porous raw fabric having cracks to hot stretching. Therefore, it is preferable that the manufacturing method of this embodiment has a MD hot drawing process. The draw ratio at this time is preferably 1.1 to 4 times, more preferably 1.2 to 3.5 times, and still more preferably 1.3 to 3 times, based on the speed before MD heat drawing. is there. By setting the thermal draw ratio to 1.1 times or more, the air permeability can be improved, and by making it 4 times or less, the occurrence of pinholes and breakage can be further suppressed.

また、MD熱延伸工程における延伸温度は、好ましくは(Tm−30℃)〜(Tm−5℃)、より好ましくは(Tm−25℃)〜(Tm−5℃)、更に好ましくは(Tm−20℃)〜(Tm−5℃)である。その延伸温度が(Tm−30℃)以上であると透気性が更に良好となる。また、その延伸温度が(Tm−5℃)以下であることにより、ピンホール、破断及びロール融着などの問題の発生をより抑制することができる。   The stretching temperature in the MD thermal stretching step is preferably (Tm-30 ° C) to (Tm-5 ° C), more preferably (Tm-25 ° C) to (Tm-5 ° C), and still more preferably (Tm- 20 ° C.) to (Tm−5 ° C.). If the stretching temperature is (Tm-30 ° C.) or higher, the air permeability is further improved. Moreover, generation | occurrence | production of problems, such as a pinhole, a fracture | rupture, and roll melt | fusion, can be suppressed more because the extending | stretching temperature is (Tm-5 degreeC) or less.

また、複数のロールを用いてMDに熱延伸を施す場合、ロール間での歪み速度(多段延伸する場合は最大値)は、好ましくは20〜10000%/分、より好ましくは50〜5000%/分、更に好ましくは80〜3000%/分の範囲である。MD冷延伸工程と同様に、歪み速度が20%/分以上であることにより、多孔質膜の生産性が更に向上し、10000%/分以下であることにより、透気性に更に優れた多孔質膜が得られる。   When MD is stretched using a plurality of rolls, the strain rate between rolls (maximum value in the case of multi-stage stretching) is preferably 20 to 10,000% / min, more preferably 50 to 5000% / min. Min, more preferably in the range of 80-3000% / min. Similar to the MD cold drawing process, the strain rate is 20% / min or more, so that the productivity of the porous membrane is further improved, and the porosity is 10000% / min or less. A membrane is obtained.

(MD熱固定工程)
本実施形態の製造方法は、MDの熱収縮、及び後述のTD冷延伸工程においてテンター内で発生するボーイング現象(延伸時に起こる歪み)を低減するなどの目的で、MD熱延伸工程における延伸温度以上の温度で、MD熱延伸工程を経た膜に対して、実質的に延伸することなく、加熱処理を行い熱固定を施すMD熱固定工程を有することが望ましい。このMD熱固定工程において、複数のロールを用いて、その間に速度差を設け、シワ等の外観不良が発生しない範囲で膜をMDに緩和(収縮)させることも、多孔質膜のMDへの熱収縮を抑制する観点から効果的である。
(MD heat setting process)
The manufacturing method of the present embodiment is not less than the stretching temperature in the MD hot stretching step for the purpose of reducing the thermal shrinkage of MD and the bowing phenomenon (distortion occurring during stretching) that occurs in the tenter in the TD cold stretching step described later. It is desirable to have the MD heat setting process which heat-processes and heat-sets without substantially extending | stretching with respect to the film | membrane which passed MD heat-stretching process at this temperature. In this MD heat setting step, a plurality of rolls are used, a speed difference is provided between them, and the film can be relaxed (shrinked) to MD within a range where appearance defects such as wrinkles do not occur. This is effective from the viewpoint of suppressing heat shrinkage.

(TD冷延伸工程)
本実施形態の製造方法は、好ましくは上述の各工程を経た膜に対して、テンター等のTDへの延伸設備を用いて冷延伸を施すTD冷延伸工程を有する。これにより、膜のTDの孔径が拡大し、縦一軸延伸により得られる多孔質膜よりも平均孔径を大きくすることが可能となる。その結果、優れた透気性を多孔質膜に付与することができると共に突刺強度も改善される。
(TD cold drawing process)
The production method of the present embodiment preferably includes a TD cold stretching process in which the film that has undergone each of the above-described processes is cold-stretched using stretching equipment to TD such as a tenter. Thereby, the pore diameter of TD of a film | membrane expands and it becomes possible to make an average pore diameter larger than the porous film obtained by vertical uniaxial stretching. As a result, excellent air permeability can be imparted to the porous membrane and the puncture strength is also improved.

TD冷延伸工程におけるTDへの延伸倍率は、好ましくは1.01倍〜3.0倍、より好ましくは1.05倍〜2倍、更に好ましくは1.1倍〜1.5倍である。その延伸倍率を1.01倍以上にすることにより多孔質膜の透気性が更に良好となり、3.0倍以下とすることにより突刺強度が一層向上するので、上記数値範囲に調整することにより、それらの特性のバランスに優れた多孔質膜が得られる。   The draw ratio to TD in the TD cold drawing step is preferably 1.01 to 3.0 times, more preferably 1.05 to 2 times, and still more preferably 1.1 to 1.5 times. By making the draw ratio 1.01 times or more, the air permeability of the porous membrane is further improved, and by setting the draw ratio to 3.0 times or less, the puncture strength is further improved. A porous membrane having an excellent balance of these characteristics can be obtained.

一般的にTDへの延伸倍率を大きくすれば、TDの配向度の増加に伴って異方性も小さくなる結果、膜の突刺強度のような機械的強度は増加挙動を示すと考えられる。しかしながら、多孔質膜については、TDへの特定の延伸倍率までは一般論に従った挙動を示すものの、TDへの特定の延伸倍率よりも大きくなると、気孔率(又は空孔率)が増大する影響により、実質的に機械的強度を支えるネットワークが減少する結果、機械的強度は低下する。そこで、TDへの延伸倍率を決定するにあたっては、その用途で要求される透気性と機械的強度とを勘案して決定することが望ましく、上記数値範囲が好ましい。   In general, if the draw ratio to TD is increased, the anisotropy decreases as the degree of orientation of TD increases, so that it is considered that the mechanical strength such as the puncture strength of the film shows an increasing behavior. However, the porous membrane shows a general behavior up to a specific draw ratio to TD, but the porosity (or porosity) increases when it exceeds the specific draw ratio to TD. The effect results in a decrease in the mechanical strength as a result of a decrease in the network that supports the mechanical strength. Therefore, when determining the draw ratio to TD, it is desirable to determine the permeability and mechanical strength required for the application, and the above numerical range is preferable.

また、TDへの延伸を安定的に行うためには、冷間で延伸処理を施すことが重要であり、その延伸を安定的に行う観点から、TD冷延伸工程における延伸温度は、上記式(1)を満足する温度Tである。その延伸温度Tは、好ましくは(Tg+40℃)〜(Tm−40℃)である。   Moreover, in order to perform the extending | stretching to TD stably, it is important to perform a extending | stretching process in cold, From the viewpoint of performing the extending | stretching stably, the extending | stretching temperature in a TD cold extending process is the said Formula ( The temperature T satisfies 1). The stretching temperature T is preferably (Tg + 40 ° C.) to (Tm−40 ° C.).

本実施形態において、TDに冷延伸を施す時の延伸速度は、特に透気性に対して影響はなく、生産性を重視する観点から速い方が好ましい。ただし、延伸速度が速過ぎた場合、テンタークリップの近傍などで膜破断が発生し得る。したがって、延伸速度は、好ましくは10〜5000%/分、より好ましくは50〜4000%/分、更に好ましくは100〜3000%/分である。   In the present embodiment, the stretching speed when cold stretching is performed on the TD does not particularly affect the air permeability, and is preferably faster from the viewpoint of emphasizing productivity. However, if the stretching speed is too high, film breakage may occur near the tenter clip. Therefore, the stretching speed is preferably 10 to 5000% / min, more preferably 50 to 4000% / min, and still more preferably 100 to 3000% / min.

(TD熱固定工程)
本実施形態の製造方法は、TDの熱収縮を抑制するために、好ましくはTD冷延伸工程を経た膜に対して、実質的に延伸することなく、加熱処理を行って熱固定を施すTD熱固定工程を有することが好ましい。このときの処理温度は、TDの熱収縮の抑制及び膜破断の抑制の観点から、TD冷延伸工程における延伸温度以上、かつ(Tm−5℃)以下の範囲が好ましい。このTD熱固定工程において、TDの熱収縮をより効果的に抑制する観点から、膜をTDに緩和することも可能である。
(TD heat setting process)
In the manufacturing method of the present embodiment, in order to suppress thermal shrinkage of TD, TD heat is preferably applied to the film that has undergone the TD cold stretching process by performing heat treatment without substantially stretching the film. It is preferable to have a fixing step. The treatment temperature at this time is preferably in the range of not less than the stretching temperature in the TD cold stretching step and not more than (Tm−5 ° C.) from the viewpoint of suppression of thermal shrinkage of TD and suppression of film breakage. In this TD heat setting step, the film can be relaxed to TD from the viewpoint of more effectively suppressing the thermal shrinkage of TD.

(表面処理工程)
本実施形態の製造方法は、多孔質膜のコーティング剤又は溶媒との親和性などを改良する目的で、コロナ処理機、プラズマ処理機、オゾン処理機、火炎処理機などの公知技術を用いて、好ましくはTD熱固定工程を経た膜に、表面処理を施すことも可能である。
(Surface treatment process)
The production method of the present embodiment uses a known technique such as a corona treatment machine, a plasma treatment machine, an ozone treatment machine, a flame treatment machine, etc., for the purpose of improving the affinity with a coating agent or a solvent for the porous membrane. It is also possible to subject the membrane that has undergone the TD heat setting step to surface treatment.

上述の各工程を経て、本実施形態の多孔質膜が得られる。   The porous film of this embodiment is obtained through the above-described steps.

(厚さ)
こうして得られたポリオレフィン系多孔質膜の厚さは特に制限はなく、その用途において求められる厚さであればよいが、一般的には、5〜50μm、より好ましくは8〜40μm、更に好ましくは10〜30μmである。
(thickness)
The thickness of the polyolefin-based porous membrane thus obtained is not particularly limited and may be any thickness required for its use, but is generally 5 to 50 μm, more preferably 8 to 40 μm, still more preferably. 10-30 μm.

(透気度)
本実施形態のポリオレフィン系多孔質膜の透気度は特に制限はないが、透気性及び突刺強度のバランスを勘案して、膜の厚さ20μm換算で、10〜600sec/100ccであると好ましく、30〜500sec/100ccであるとより好ましく、50〜400sec/100ccであると更に好ましい。透気度は、下記実施例に記載の方法に準じて測定される。
(Air permeability)
The air permeability of the polyolefin-based porous membrane of the present embodiment is not particularly limited, but it is preferably 10 to 600 sec / 100 cc in terms of a membrane thickness of 20 μm in consideration of the balance between air permeability and puncture strength. It is more preferably 30 to 500 sec / 100 cc, and further preferably 50 to 400 sec / 100 cc. The air permeability is measured according to the method described in the following examples.

(突刺強度)
本実施形態のポリオレフィン系多孔質膜の突刺強度は特に制限はなく、その用途において求められるものであればよいが、一般的には、膜の厚さ20μm換算で、1mN以上であると好ましく、2mN以上であるとより好ましく、3mN以上であると更に好ましい。突刺強度は、下記実施例に記載の方法に準じて測定される。
(Puncture strength)
The puncture strength of the polyolefin-based porous membrane of the present embodiment is not particularly limited and may be any as long as it is required for its use, but in general, the membrane thickness is preferably 1 mN or more in terms of 20 μm, It is more preferably 2 mN or more, and further preferably 3 mN or more. The puncture strength is measured according to the method described in the following examples.

本実施形態の多孔質膜の製造方法により、従来の公知技術よりも高い多孔質膜の生産性が得られ、多孔質膜の透気性及び強度特性も改善される。また、本実施形態によれば、TDへの延伸を施して多孔質膜を得ることにより、その孔径を大きくすることができる。その結果、各用途で要求される多孔質膜の透気性を確保すると共に、公知の縦一軸延伸法よりも高速且つ安定的に多孔質膜を生産することが可能である。また、本実施形態の多孔質膜は、透気性と強度特性とのバランスに優れた安価な多孔質膜となる。   By the porous membrane manufacturing method of the present embodiment, productivity of the porous membrane higher than the conventional known technology can be obtained, and the air permeability and strength characteristics of the porous membrane are also improved. Further, according to the present embodiment, the pore diameter can be increased by obtaining a porous film by stretching to TD. As a result, the air permeability of the porous membrane required for each application can be ensured, and the porous membrane can be produced at a higher speed and more stably than the known longitudinal uniaxial stretching method. Moreover, the porous membrane of this embodiment turns into an inexpensive porous membrane excellent in balance with air permeability and an intensity | strength characteristic.

以上、本発明を実施するための形態について説明したが、本発明は上記本実施形態に限定されるものではない。例えば、本発明の別の実施形態において、各工程の順番が図1に示すような順番であってもよい。なお、図中、一重線に囲まれた工程は省略してもよい。これらによっても、多孔質膜を高い生産性により製造することができる。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said this embodiment. For example, in another embodiment of the present invention, the order of the steps may be as shown in FIG. In the figure, the steps surrounded by single lines may be omitted. Also by these, a porous membrane can be manufactured with high productivity.

以下、実施例及び比較例を挙げて、本実施形態をより具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、各種の物性の測定方法及び縦一軸延伸により膜を製造する方法は、下記のとおりである。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this embodiment is described more concretely, this embodiment is not limited to a following example, unless the summary is exceeded. In addition, the measuring method of various physical properties and the method of producing a film by longitudinal uniaxial stretching are as follows.

(厚さ)
多孔質膜の厚さは、JIS K 7130(1992)A−2法に準拠し、ダイヤルゲージにて測定した。
(thickness)
The thickness of the porous membrane was measured with a dial gauge in accordance with JIS K 7130 (1992) A-2 method.

(ガラス転移温度Tg)
膜のガラス転移温度Tgは、粘弾性スペクトロメータ(製品名「EXSTAR DMS6100」、SIIナノテクノロジー社製)を用いて測定した。引張モード(昇温速度=2℃/分、周波数=1Hz)にて縦一軸延伸(MDへ延伸)された膜についてTDの測定を行い、損失弾性率E”のピークトップ温度を求め、それをガラス転移温度Tgとした。
(Glass transition temperature Tg)
The glass transition temperature Tg of the film was measured using a viscoelastic spectrometer (product name “EXSTAR DMS6100”, manufactured by SII Nanotechnology). TD is measured for the film stretched in the longitudinal uniaxial direction (stretched to MD) in the tensile mode (temperature increase rate = 2 ° C./min, frequency = 1 Hz), and the peak top temperature of the loss elastic modulus E ″ is obtained. The glass transition temperature Tg was used.

(融点Tm)
アニール処理を施した無孔原反の融点を、示差走査熱量計(製品名「EXSTAR6000」、SIIナノテクノロジー社製)を用いて測定した。昇温速度10℃/分で加熱したときの融解ピークのトップ温度を測定して、融点Tmとした。
(Melting point Tm)
The melting point of the non-porous raw fabric subjected to the annealing treatment was measured using a differential scanning calorimeter (product name “EXSTAR6000”, manufactured by SII Nanotechnology). The top temperature of the melting peak when heated at a rate of temperature increase of 10 ° C./min was measured and determined as the melting point Tm.

(透気度)
JIS P―8117に準拠し、ガーレー透気度計(東洋精機社製)を用いて、多孔質膜の透気度を測定し、膜の厚さ20μm換算での透気度を求めた。その透気度の測定結果から、下記の基準に従って、多孔質膜の透気性を評価した。
300sec/100cc以下:◎
301〜600sec/100cc:○
601〜800sec/100cc:△
801sec/100cc以上:×
(Air permeability)
Based on JIS P-8117, the air permeability of the porous membrane was measured using a Gurley air permeability meter (manufactured by Toyo Seiki Co., Ltd.), and the air permeability in terms of 20 μm thickness of the membrane was determined. From the measurement result of the air permeability, the air permeability of the porous membrane was evaluated according to the following criteria.
300 sec / 100 cc or less: ◎
301-600sec / 100cc: ○
601-800sec / 100cc: △
801 sec / 100cc or more: ×

(突刺強度)
カトーテック社製のハンディー圧縮試験機(製品名「KES−G5」)を用い、針先端の曲率半径0.5mm、突刺速度=2mm/secの条件にて、多孔質膜の突刺強度を測定し、膜の厚さ20μm換算での突刺強度を求めた。その突刺強度の測定結果から、下記の基準に従って、多孔質膜の機械的強度特性を評価した。
4.00mN以上:◎
3.00〜3.99mN:○
2.00〜2.99mN:△
1.99mN以下:×
(Puncture strength)
Using a handy compression tester (product name “KES-G5”) manufactured by Kato Tech Co., Ltd., the puncture strength of the porous membrane was measured under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed = 2 mm / sec. The puncture strength in terms of 20 μm thickness of the film was determined. From the measurement results of the puncture strength, the mechanical strength characteristics of the porous membrane were evaluated according to the following criteria.
4.00mN or more: ◎
3.00 to 3.99 mN: ○
2.00-2.99mN: △
1.99 mN or less: ×

(生産性の評価)
MD熱延伸工程の延伸速度(歪み速度)の結果から、下記の基準に従って、多孔質膜の生産性を評価した。
300%/分以上:◎
200〜299%/分:○
100〜199%/分:△
99%/分以下:×
(Productivity evaluation)
From the results of the stretching rate (strain rate) in the MD hot stretching step, the productivity of the porous membrane was evaluated according to the following criteria.
300% / min or more: ◎
200-299% / min: ○
100-199% / min: △
99% / min or less: ×

(TD延伸性の評価)
TDに延伸した後の膜の外観を目視にて確認し、TD延伸性を評価した。破膜や延伸斑が認められない場合を「○」、延伸斑のみが認められ破膜が認められない場合を「△」、破膜が認められる場合を「×」と評価した。
(Evaluation of TD stretchability)
The appearance of the film after being stretched to TD was visually confirmed to evaluate TD stretchability. The case where no film breakage or stretched spots was observed was evaluated as “◯”, the case where only stretched spots were observed but no film breakage was evaluated as “Δ”, and the case where film breakage was observed was evaluated as “x”.

(ポリエチレン系縦一軸延伸多孔質膜の製造方法)
ポリエチレン系樹脂として、製品名「サンテックHD S160S」(MI=0.8g/10分、密度=0.960g/cm3、旭化成ケミカルズ(株)社製)を用いた。そのポリエチレン系樹脂を、φ40mmの単軸押出機(プラスチック工学研究所製、L/D=32)にて200℃の設定温度で溶融させ、190℃のTダイ(リップクリアランス=7mm)より押し出した。その溶融樹脂をエアナイフで冷却しながら115℃に設定されたキャストロールで引き取った。この時のドラフト比は300倍であり、厚さが23μmの無孔原反を得た。
(Method for producing a polyethylene-based longitudinally uniaxially stretched porous membrane)
The product name “Suntech HD S160S” (MI = 0.8 g / 10 min, density = 0.960 g / cm 3 , manufactured by Asahi Kasei Chemicals Corporation) was used as the polyethylene resin. The polyethylene resin was melted at a set temperature of 200 ° C. with a φ40 mm single screw extruder (P / D = 32, manufactured by Plastics Engineering Laboratory) and extruded from a 190 ° C. T die (lip clearance = 7 mm). . The molten resin was taken up with a cast roll set at 115 ° C. while being cooled with an air knife. The draft ratio at this time was 300 times, and a non-porous raw fabric having a thickness of 23 μm was obtained.

次に、この無孔原反に対して、120℃の熱風乾燥機で3時間のアニール処理を施した後、MDへの冷延伸、MDへの熱延伸、MDへの熱固定(熱緩和)を更に施して、3種類の多孔性のポリエチレン系縦一軸延伸多孔質膜PE−1、PE−2及びPE−3を得た。なお、各膜の製造条件並びに厚さ、Tg及びTmは、表1に示すとおりであった。   Next, this non-porous raw fabric is annealed for 3 hours with a hot air dryer at 120 ° C., then cold stretched to MD, hot stretched to MD, and heat fixed to MD (thermal relaxation) Were further obtained to obtain three types of porous polyethylene-based longitudinally uniaxially stretched porous films PE-1, PE-2 and PE-3. The production conditions, thickness, Tg, and Tm of each film were as shown in Table 1.

(ポリプロピレン系縦一軸延伸多孔質膜の製造方法)
ポリプロピレン系樹脂として、製品名「プライムポリプロ E111G」(MI=0.5g/10分、密度=0.910g/cm3、プライムポリマー(株)社製)を用いた。そのポリプロピレン系樹脂を、φ40mmの単軸押出機(プラスチック工学研究所製、L/D=32)にて260℃の設定温度で溶融させ、260℃のTダイ(リップクリアランス=5mm)より押し出した。その溶融樹脂をエアナイフで冷却しながら130℃に設定されたキャストロールで引き取った。この時のドラフト比は150倍であり、厚さが23μmの無孔原反を得た。
(Method for producing a polypropylene-based longitudinally uniaxially stretched porous membrane)
The product name “Prime Polypro E111G” (MI = 0.5 g / 10 min, density = 0.910 g / cm 3 , manufactured by Prime Polymer Co., Ltd.) was used as the polypropylene resin. The polypropylene resin was melted at a set temperature of 260 ° C. with a φ40 mm single-screw extruder (manufactured by Plastics Engineering Laboratory, L / D = 32) and extruded from a 260 ° C. T-die (lip clearance = 5 mm). . The molten resin was taken up with a cast roll set at 130 ° C. while being cooled with an air knife. The draft ratio at this time was 150 times, and a non-porous original fabric having a thickness of 23 μm was obtained.

次に、この無孔原反に対して、150℃の熱風乾燥機で3時間のアニール処理を施した後、MDへの冷延伸を一段で、次いでMDへの熱延伸を三段(等歪み速度)で施した。その後、MDへの熱固定(熱緩和)を更に施して、1種類のポリプロピレン系縦一軸延伸多孔質膜PP−1を得た。なお、その膜の製造条件並びに厚さ、Tg及びTmは、表1に示すとおりであった。   Next, this non-porous raw fabric was annealed for 3 hours in a hot air dryer at 150 ° C., then cold-drawn to MD in one step, and then hot-drawn into MD in three steps (equal strain) Speed). Thereafter, heat setting (thermal relaxation) on the MD was further performed to obtain one type of polypropylene-based longitudinally uniaxially stretched porous membrane PP-1. In addition, the manufacturing conditions, thickness, Tg, and Tm of the film were as shown in Table 1.

Figure 2011246539
Figure 2011246539

(実施例1)
ポリエチレン系縦一軸延伸多孔質膜PE−2をテンター延伸機にて、60℃の温度、1.03倍の条件でTDに冷延伸し、更に、TDに熱固定(熱緩和)して、ポリエチレン系二軸延伸多孔質膜を得た。TDへの冷延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。
Example 1
The polyethylene-based longitudinally uniaxially stretched porous membrane PE-2 is cold-drawn to TD at a temperature of 60 ° C. and a condition of 1.03 times with a tenter stretching machine, and is further heat-set (heat relaxed) to TD. A biaxially stretched porous membrane was obtained. Table 2 shows the conditions for cold stretching to TD and thermal relaxation, and the results of various evaluations.

(実施例2)
ポリエチレン系縦一軸延伸多孔質膜PE−2をテンター延伸機にて、60℃の温度、1.1倍の条件で、TDに冷延伸し、更に、TDに熱固定(熱緩和)して、ポリエチレン系二軸延伸多孔質膜を得た。TDへの冷延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。
(Example 2)
The polyethylene-based longitudinally uniaxially stretched porous membrane PE-2 is cold-stretched to TD at a temperature of 60 ° C. and a condition of 1.1 times with a tenter stretching machine, and further heat-fixed (thermal relaxation) to TD, A polyethylene biaxially stretched porous membrane was obtained. Table 2 shows the conditions for cold stretching to TD and thermal relaxation, and the results of various evaluations.

(実施例3)
ポリエチレン系縦一軸延伸多孔質膜PE−2をテンター延伸機にて、60℃の温度、1.18倍の条件でTDに冷延伸し、更に、TDに熱固定(熱緩和)して、ポリエチレン系二軸延伸多孔質膜を得た。TDへの冷延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。
(Example 3)
The polyethylene-based longitudinally uniaxially stretched porous membrane PE-2 is cold-drawn to TD at a temperature of 60 ° C. and a condition of 1.18 times with a tenter stretcher, and is further heat-set (heat relaxed) to TD, and then polyethylene A biaxially stretched porous membrane was obtained. Table 2 shows the conditions for cold stretching to TD and thermal relaxation, and the results of various evaluations.

(実施例4)
ポリエチレン系縦一軸延伸多孔質膜PE−2をテンター延伸機にて、60℃の温度、1.38倍の条件でTDに冷延伸し、更に、TDに熱固定(熱緩和)して、ポリエチレン系二軸延伸多孔質膜を得た。TDへの冷延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。
(Example 4)
A polyethylene-based longitudinally uniaxially stretched porous membrane PE-2 is cold-drawn to TD at a temperature of 60 ° C. and a condition of 1.38 times with a tenter stretching machine, and further heat-set (heat relaxed) to TD, and then polyethylene A biaxially stretched porous membrane was obtained. Table 2 shows the conditions for cold stretching to TD and thermal relaxation, and the results of various evaluations.

(実施例5)
ポリエチレン系縦一軸延伸多孔質膜PE−2をテンター延伸機にて、25℃の温度、1.18倍の条件でTDに冷延伸し、更に、TDに熱固定(熱緩和)して、ポリエチレン系二軸延伸多孔質膜を得た。TDへの冷延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。
(Example 5)
The polyethylene-based longitudinally uniaxially stretched porous membrane PE-2 is cold-drawn to TD at a temperature of 25 ° C. and a condition of 1.18 times with a tenter stretching machine, and is further heat-set (heat relaxed) to TD to obtain polyethylene. A biaxially stretched porous membrane was obtained. Table 2 shows the conditions for cold stretching to TD and thermal relaxation, and the results of various evaluations.

(実施例6)
ポリエチレン系縦一軸延伸多孔質膜PE−2をテンター延伸機にて、100℃の温度、1.18倍の条件でTDに冷延伸し、更に、TDに熱固定(熱緩和)して、ポリエチレン系二軸延伸多孔質膜を得た。TDへの冷延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。
(Example 6)
A polyethylene-based longitudinally uniaxially stretched porous membrane PE-2 is cold-drawn to TD at a temperature of 100 ° C. and a condition of 1.18 times with a tenter stretching machine, and is further heat-set (heat relaxed) to TD, and then polyethylene A biaxially stretched porous membrane was obtained. Table 2 shows the conditions for cold stretching to TD and thermal relaxation, and the results of various evaluations.

(実施例7)
MDへの冷延伸からTDへの熱固定までの各工程における延伸速度を、実施例4におけるものに対して2.5倍に増速した以外は実施例4と同様にして、ポリエチレン系二軸延伸多孔質膜を得た。TDへの冷延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。
(Example 7)
Polyethylene biaxial in the same manner as in Example 4 except that the stretching speed in each step from cold stretching to MD to heat fixation to TD was increased 2.5 times that in Example 4. A stretched porous membrane was obtained. Table 2 shows the conditions for cold stretching to TD and thermal relaxation, and the results of various evaluations.

(実施例8)
ポリプロピレン系縦一軸延伸多孔質膜PP−1をテンター延伸機にて、90℃の温度、1.2倍の条件でTDに冷延伸し、更に、TDに熱固定(熱緩和)して、ポリプロピレン系二軸延伸多孔質膜を得た。TDへの冷延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。
(Example 8)
Polypropylene-based longitudinally uniaxially stretched porous membrane PP-1 is cold-stretched to TD at a temperature of 90 ° C. and 1.2 times in a tenter stretching machine, and further heat-set (heat relaxed) to TD, A biaxially stretched porous membrane was obtained. Table 2 shows the conditions for cold stretching to TD and thermal relaxation, and the results of various evaluations.

(比較例1)
ポリエチレン系縦一軸延伸多孔質膜PE−1を比較例1の膜とした。各種評価の結果を表2に示す。
(Comparative Example 1)
The polyethylene-based longitudinally uniaxially stretched porous membrane PE-1 was used as the membrane of Comparative Example 1. Table 2 shows the results of various evaluations.

(比較例2)
ポリエチレン系縦一軸延伸多孔質膜PE−2を比較例2の膜とした。各種評価の結果を表2に示す。
(Comparative Example 2)
The polyethylene-based longitudinally uniaxially stretched porous membrane PE-2 was used as the membrane of Comparative Example 2. Table 2 shows the results of various evaluations.

(比較例3)
ポリエチレン系縦一軸延伸多孔質膜PE−3を比較例3の膜とした。各種評価の結果を表2に示す。
(Comparative Example 3)
A polyethylene-based longitudinally uniaxially stretched porous membrane PE-3 was used as the membrane of Comparative Example 3. Table 2 shows the results of various evaluations.

(比較例4)
ポリエチレン系縦一軸延伸多孔質膜PE−2を、その融点Tm近傍の温度である120℃でTDに熱延伸し、更に、TDに熱固定(熱緩和)して、ポリエチレン系二軸延伸多孔質膜を得た。TDへの熱延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。
(Comparative Example 4)
The polyethylene-based longitudinally uniaxially stretched porous membrane PE-2 is heat-stretched to TD at 120 ° C., which is a temperature in the vicinity of the melting point Tm, and further heat-set (heat relaxed) to TD. A membrane was obtained. Table 2 shows the conditions of thermal stretching to TD and thermal relaxation, and the results of various evaluations.

(比較例5)
ポリプロピレン系縦一軸延伸多孔質膜PP−1を比較例5の膜とした。各種評価の結果を表2に示す。
(Comparative Example 5)
The polypropylene-based longitudinally uniaxially stretched porous membrane PP-1 was used as the membrane of Comparative Example 5. Table 2 shows the results of various evaluations.

(比較例6)
ポリプロピレン系縦一軸延伸多孔質膜PP−1を、その融点Tm近傍の温度である140℃でTDに熱延伸し、更に、TDに熱固定(熱緩和)して、多孔性のポリプロピレン系の膜を得た。TDへの熱延伸及び熱緩和の条件、並びに各種評価の結果を表2に示す。なお、この比較例6において、各種物性はバラツキが大きく、信頼性のあるデータを採取できなかった。
(Comparative Example 6)
The polypropylene-based longitudinally uniaxially stretched porous membrane PP-1 is heat-stretched to TD at 140 ° C., which is a temperature in the vicinity of the melting point Tm, and further heat-set (heat relaxed) to TD, so that a porous polypropylene-based membrane Got. Table 2 shows the conditions of thermal stretching to TD and thermal relaxation, and the results of various evaluations. In Comparative Example 6, various physical properties varied widely, and reliable data could not be collected.

Figure 2011246539
Figure 2011246539

表2に示す結果からも明らかなように、融点近傍の熱間でTDに延伸した場合、膜に破膜や延伸ムラが発生し、良好な二軸延伸の多孔質膜を得ることはできなかった。一方、上記式(1)を満足する温度でTDに冷延伸することで、均一な二軸延伸の多孔質膜を得ることができた。   As is clear from the results shown in Table 2, when the film is stretched to TD in the vicinity of the melting point, film breakage or uneven stretching occurs, and a good biaxially stretched porous film cannot be obtained. It was. On the other hand, a uniform biaxially stretched porous membrane could be obtained by cold stretching to TD at a temperature satisfying the above formula (1).

また、表2の比較例1、2及び3に示したように、MDの延伸速度(歪み速度)を増大して生産性を高くするにつれて、多孔性の縦一軸延伸膜は、透気度が悪化し、比較例3では1914sec/100ccまで顕著に悪化した。ところが、この膜に対して、更にTDへの冷延伸を施すことによって、実施例7に示すように透気度を231sec/100ccまで下げることが可能となった。このように、高速化で悪化した多孔性の縦一軸延伸膜の透気性を、TDに冷延伸することにより改善することができ、その結果、従来の縦一軸延伸では到達困難であった、良好な特性を有する多孔質膜の高速領域での生産が可能となった。   Further, as shown in Comparative Examples 1, 2, and 3 in Table 2, as the MD stretching rate (strain rate) is increased to increase productivity, the porous longitudinally uniaxially stretched membrane has an air permeability. In the comparative example 3, it deteriorated to 1914 sec / 100 cc. However, it was possible to lower the air permeability to 231 sec / 100 cc as shown in Example 7 by further subjecting this membrane to cold stretching to TD. Thus, the air permeability of the porous longitudinal uniaxially stretched film deteriorated due to high speed can be improved by cold stretching to TD, and as a result, it was difficult to reach by conventional longitudinal uniaxial stretching, good It was possible to produce a porous membrane with excellent characteristics in a high-speed region.

更に多孔性の縦一軸延伸膜と本発明による二軸延伸多孔質膜とを、それらの突刺強度について比較すると、比較例1(179sec/100cc)と実施例3(170sec/100cc)とでは同等の透気性を有するが、比較例1では突刺強度が2.77mNであるのに対し、実施例3では3.84mNであり、本発明の多孔質膜の方が突刺強度に優れ、透気性との物性バランスが良好であった。   Further, when comparing the porous longitudinal uniaxially stretched membrane and the biaxially stretched porous membrane according to the present invention with respect to their puncture strength, Comparative Example 1 (179 sec / 100 cc) and Example 3 (170 sec / 100 cc) are equivalent. Although it has air permeability, the puncture strength in Comparative Example 1 is 2.77 mN, whereas it is 3.84 mN in Example 3, and the porous membrane of the present invention has superior puncture strength, and air permeability. The physical property balance was good.

本発明は、透気性と強度バランスとに優れた多孔質膜を高い生産性で提供できることから、医療用分離膜用途、食品包装用途、バッテリー用途、生理用品用途、光反射フィルムなどの光学用途などの分野で好適に利用できる。   Since the present invention can provide a porous membrane excellent in air permeability and strength balance with high productivity, it can be used for medical separation membranes, food packaging, batteries, sanitary products, optical reflection films, etc. It can be suitably used in the field.

Claims (4)

乾式法により延伸された多孔質膜を製造する方法であって、
ポリオレフィン系樹脂から構成される膜をMDに冷延伸するMD冷延伸工程と、下記式(1)で表される条件を満足する延伸温度において、前記膜を、そのTDに冷延伸するTD冷延伸工程を含む、ポリオレフィン系二軸延伸多孔質膜の製造方法。
(Tg+20)≦T≦(Tm−30) (1)
(式中、Tは前記延伸温度(単位:℃)を示し、Tgは前記膜のガラス転移温度(単位:℃)を示し、Tmは前記膜の融点(単位:℃)を示す。)
A method for producing a porous membrane stretched by a dry method,
In the MD cold-stretching step of cold-stretching a film composed of a polyolefin-based resin into MD, and in the stretching temperature satisfying the condition represented by the following formula (1), the film is cold-stretched in TD to the TD A method for producing a polyolefin-based biaxially stretched porous membrane, comprising a step.
(Tg + 20) ≦ T ≦ (Tm−30) (1)
(In the formula, T represents the stretching temperature (unit: ° C), Tg represents the glass transition temperature (unit: ° C) of the film, and Tm represents the melting point (unit: ° C) of the film.)
前記TD冷延伸工程における延伸倍率が1.01倍〜3.0倍である、請求項1に記載のポリオレフィン系二軸延伸多孔質膜の製造方法。   The method for producing a polyolefin-based biaxially stretched porous membrane according to claim 1, wherein a draw ratio in the TD cold drawing step is 1.01 to 3.0 times. 前記ポリオレフィン系樹脂がポリチレン系樹脂及びポリプロピレン系樹脂からなる群より選ばれる1種以上である、請求項1又は2に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 1 or 2, wherein the polyolefin resin is at least one selected from the group consisting of a polyethylene resin and a polypropylene resin. 請求項1〜3のいずれか一項に記載の製造方法により得られるポリオレフィン系二軸延伸多孔質膜。   A polyolefin-based biaxially stretched porous membrane obtained by the production method according to claim 1.
JP2010119108A 2010-05-25 2010-05-25 Method for producing polyolefin biaxially stretched porous membrane and polyolefin biaxially stretched porous membrane Active JP5594873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119108A JP5594873B2 (en) 2010-05-25 2010-05-25 Method for producing polyolefin biaxially stretched porous membrane and polyolefin biaxially stretched porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010119108A JP5594873B2 (en) 2010-05-25 2010-05-25 Method for producing polyolefin biaxially stretched porous membrane and polyolefin biaxially stretched porous membrane

Publications (2)

Publication Number Publication Date
JP2011246539A true JP2011246539A (en) 2011-12-08
JP5594873B2 JP5594873B2 (en) 2014-09-24

Family

ID=45412221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119108A Active JP5594873B2 (en) 2010-05-25 2010-05-25 Method for producing polyolefin biaxially stretched porous membrane and polyolefin biaxially stretched porous membrane

Country Status (1)

Country Link
JP (1) JP5594873B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092288A (en) * 2010-09-30 2012-05-17 Sekisui Chem Co Ltd Propylene-based resin micropore film and method of manufacturing the same, and separator for lithium ion battery and lithium ion battery
JP2012092287A (en) * 2010-09-30 2012-05-17 Sekisui Chem Co Ltd Propylene-based resin micropore film and method of manufacturing the same, and separator for lithium ion battery and lithium ion battery
JP2012092286A (en) * 2010-09-30 2012-05-17 Sekisui Chem Co Ltd Propylene-based resin micropore film and method of manufacturing the same, and separator for lithium ion battery and lithium ion battery
US20130337311A1 (en) * 2010-12-28 2013-12-19 Asahi Kasei E-Materials Corporation Polyolefin-Based Porous Film and Method for Producing the Same
JP2016121327A (en) * 2014-12-24 2016-07-07 旭化成株式会社 Method of producing polyolefin microporous film
JP2017075311A (en) * 2015-10-13 2017-04-20 三菱樹脂株式会社 Porous film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331306A (en) * 1992-03-30 1993-12-14 Nitto Denko Corp Porous film, production thereof, and use thereof
JPH09241411A (en) * 1996-03-13 1997-09-16 Nitto Denko Corp Porous membrane, its production, and lithium ion secondary cell
JPH11297297A (en) * 1998-04-10 1999-10-29 Ube Ind Ltd Manufacture of porous film and porous film
JP2002273787A (en) * 2001-03-16 2002-09-25 Asahi Kasei Corp Method for manufacturing porous film
WO2005103127A1 (en) * 2004-04-22 2005-11-03 Toray Industries, Inc. Microporous polypropylene film and process for producing the same
JP2009211946A (en) * 2008-03-04 2009-09-17 Asahi Kasei E-Materials Corp Porous film for battery separator, and battery equipped with the film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331306A (en) * 1992-03-30 1993-12-14 Nitto Denko Corp Porous film, production thereof, and use thereof
JPH09241411A (en) * 1996-03-13 1997-09-16 Nitto Denko Corp Porous membrane, its production, and lithium ion secondary cell
JPH11297297A (en) * 1998-04-10 1999-10-29 Ube Ind Ltd Manufacture of porous film and porous film
JP2002273787A (en) * 2001-03-16 2002-09-25 Asahi Kasei Corp Method for manufacturing porous film
WO2005103127A1 (en) * 2004-04-22 2005-11-03 Toray Industries, Inc. Microporous polypropylene film and process for producing the same
JP2009211946A (en) * 2008-03-04 2009-09-17 Asahi Kasei E-Materials Corp Porous film for battery separator, and battery equipped with the film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092288A (en) * 2010-09-30 2012-05-17 Sekisui Chem Co Ltd Propylene-based resin micropore film and method of manufacturing the same, and separator for lithium ion battery and lithium ion battery
JP2012092287A (en) * 2010-09-30 2012-05-17 Sekisui Chem Co Ltd Propylene-based resin micropore film and method of manufacturing the same, and separator for lithium ion battery and lithium ion battery
JP2012092286A (en) * 2010-09-30 2012-05-17 Sekisui Chem Co Ltd Propylene-based resin micropore film and method of manufacturing the same, and separator for lithium ion battery and lithium ion battery
US20130337311A1 (en) * 2010-12-28 2013-12-19 Asahi Kasei E-Materials Corporation Polyolefin-Based Porous Film and Method for Producing the Same
US9941498B2 (en) * 2010-12-28 2018-04-10 Asahi Kasei E-Materials Corporation Polyolefin-based porous film and method for producing the same
US9991488B2 (en) 2010-12-28 2018-06-05 Asahi Kasei E-Materials Corporation Polyolefin-based porous film and method for producing the same
US10693114B2 (en) 2010-12-28 2020-06-23 Asahi Kasei E-Materials Corporation Polyolefin-based porous film and method for producing the same
JP2016121327A (en) * 2014-12-24 2016-07-07 旭化成株式会社 Method of producing polyolefin microporous film
JP2017075311A (en) * 2015-10-13 2017-04-20 三菱樹脂株式会社 Porous film
WO2017065192A1 (en) * 2015-10-13 2017-04-20 三菱樹脂株式会社 Porous film

Also Published As

Publication number Publication date
JP5594873B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
US10693114B2 (en) Polyolefin-based porous film and method for producing the same
JP5427469B2 (en) Microporous film, method for producing the same, and battery separator
JP5807388B2 (en) Porous polypropylene film
JP5604898B2 (en) Porous polypropylene film roll
JP5594873B2 (en) Method for producing polyolefin biaxially stretched porous membrane and polyolefin biaxially stretched porous membrane
US11242440B2 (en) Polyolefin microporous membrane and production method thereof
WO2015190487A1 (en) Polyolefin microporous film, method for producing same and separator for batteries
JP5731762B2 (en) Microporous film, method for producing the same, and battery separator
KR101852803B1 (en) Method of manufacturing a microporous polyethylene film
JP5692917B2 (en) Microporous film and battery separator
KR20180018696A (en) Microporous membrane, battery separator and battery
JP6682942B2 (en) Polypropylene resin porous film and method for producing the same
JP6034635B2 (en) Microporous film and battery separator
JP2012015073A (en) Microporous film, method for producing the same, and battery separator
JP5765960B2 (en) Method for producing microporous film and battery separator
JPWO2014103713A1 (en) Porous polyolefin film, method for producing the same, and separator for power storage device using the same
WO2013035381A1 (en) Separator for lithium-ion battery
JP5924263B2 (en) Porous polypropylene film and method for producing the same
JP2010215901A (en) Porous polypropylene film
JP6888642B2 (en) Porous film wound body and its manufacturing method
JPWO2013187326A1 (en) Porous polypropylene film, separator for electricity storage device, and electricity storage device
WO2024077927A1 (en) Polyolefin porous membrane and preparation method therefor, battery separator, and electrochemical device
JP2016013661A (en) Laminated microporous film and production method of the same
JP2012209033A (en) Separator film for power storage device and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5594873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350