JPH09237632A - Plate for lead acid battery and manufacture thereof - Google Patents

Plate for lead acid battery and manufacture thereof

Info

Publication number
JPH09237632A
JPH09237632A JP8256800A JP25680096A JPH09237632A JP H09237632 A JPH09237632 A JP H09237632A JP 8256800 A JP8256800 A JP 8256800A JP 25680096 A JP25680096 A JP 25680096A JP H09237632 A JPH09237632 A JP H09237632A
Authority
JP
Japan
Prior art keywords
lead
active material
acid
plate
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8256800A
Other languages
Japanese (ja)
Inventor
Koji Hayashi
晃司 林
Masayuki Terada
正幸 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8256800A priority Critical patent/JPH09237632A/en
Publication of JPH09237632A publication Critical patent/JPH09237632A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a discharge capacity at high rate discharge time by reforming a negative electrode active material and/or a positive electrode active material of a lead acid battery. SOLUTION: First, a water solution (pH equal acid point or less SiO2 ) of 35wt.% sulfuric acid concentration saturating Na2 SO4 is prepared. In this solution, SiO2 of 10 to 20nm grain size is immersed for an hour. Lignin and barium sulfate are compounded in lead powder, to be kneaded by dilute sulfuric acid and the SiO2 contained sulfuric acid water solution, a paste state negative electrode active material is prepared. A collector formed by a lattice unit of lead alloy is charged with this paste state negative electode active material, to be left (ageing) as undried at 80 deg.C for 24 hours in the nitrogen atmosphere, an unformed negative plate is formed. NaHSO4 may be used in place of Na2 SO4 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池の高率放
電容量を大きくすることに寄与する陰極板及びその製造
法に関し、殊に、ペースト状活物質に配合する添加剤に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode plate that contributes to increasing the high rate discharge capacity of a lead storage battery and a method for producing the same, and more particularly to an additive to be added to a pasty active material.

【0002】[0002]

【従来の技術】鉛蓄電池活物質の添加剤として、リグニ
ンや硫酸バリウムが使用されている。鉛蓄電池の放電反
応の生成物である硫酸鉛が電子伝導性やイオン伝導性を
ほとんど示さないことから、放電時には、活物質と硫酸
イオンが反応する場を確保し、もしくは増加させる必要
がある。リグニンは活物質粒子の粗大化を防止する立場
から、また、硫酸バリウムは活物質粒子の表面積を増加
させる立場から、活物質と硫酸イオンの反応促進に寄与
している。また活物質の導電性を増加させる観点から
は、活物質に導電性の耐食材である炭化チタンや窒化チ
タンを含ませる方法が試みられている。これらは上記硫
酸鉛が電子伝導性を殆ど示さないことからその導電補助
として寄与している。
2. Description of the Related Art Lignin and barium sulfate are used as additives for lead-acid battery active materials. Since lead sulfate, which is a product of the discharge reaction of a lead storage battery, exhibits almost no electronic conductivity or ionic conductivity, it is necessary to secure or increase the place where the active material reacts with sulfate ions during discharge. Lignin contributes to the promotion of the reaction between the active material and sulfate ion from the standpoint of preventing coarsening of the active material particles, and barium sulfate from the viewpoint of increasing the surface area of the active material particles. Further, from the viewpoint of increasing the conductivity of the active material, a method has been attempted in which the active material contains conductive materials such as titanium carbide and titanium nitride which are resistant to corrosion. Since these lead sulfates have almost no electron conductivity, they contribute as a conduction aid.

【0003】[0003]

【発明が解決しようとする課題】上記活物質の添加剤
は、0.3C程度の低率放電においては有効に作用す
る。しかし、3C程度の高率放電になると、活物質と反
応する硫酸イオンの電解液からの供給が滞り、放電容量
の低下が大きくなるという問題があった。本発明が解決
しようとする課題は、鉛蓄電池の陰極活物質及び/又は
陽極活物質の添加剤を改良して、高率放電時の放電容量
を大きくすることである。
The additive of the above active material acts effectively in a low rate discharge of about 0.3C. However, at a high rate discharge of about 3 C, there was a problem that the supply of sulfate ions that react with the active material from the electrolytic solution was delayed and the discharge capacity was greatly reduced. The problem to be solved by the present invention is to improve the additive of the negative electrode active material and / or the positive electrode active material of the lead storage battery to increase the discharge capacity during high rate discharge.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る鉛蓄電池用極板は、放電反応に必要な
硫酸イオンの供給源を陰極活物質及び/又は陽極活物質
中に存在させ、電解液からだけでなく陰極活物質及び/
又は陽極活物質中からも硫酸イオンを供給できるように
する。すなわち、耐酸性の金属酸化物と硫酸イオンとを
含有し、電気化学的に結合した状態にある前記両者が活
物質中に存在していることを特徴とする。前記耐酸性の
金属酸化物としては、SiO2、TiO2、Al23、C
aO、SnO2、MnO2、Co23等を好適に用いるこ
とができる。これら金属酸化物はそれぞれを単独で使用
しても、2種以上を併用しても構わない。本発明に係る
鉛蓄電池用極板の製造法は、鉛鉛又は鉛合金からなる集
電体にペースト状活物質を充填して未乾燥状態で熟成す
る鉛蓄電池用極板の製造において、前記ペースト状活物
質に耐酸性の金属酸化物と硫酸イオンとを含有させ、電
気化学的に結合した状態にある前記両者をペースト状活
物質中に存在させることを特徴とする。このことによ
り、鉛蓄電池組立工程などの製造工程数を増やさずに製
造できる。
In order to solve the above-mentioned problems, a lead-acid battery electrode plate according to the present invention has a sulfate ion supply source necessary for a discharge reaction in a cathode active material and / or an anode active material. Not only from the electrolyte but also from the cathode active material and / or
Alternatively, the sulfate ion can be supplied also from the anode active material. That is, it is characterized in that both the acid-resistant metal oxide and the sulfate ion are present in the active material in the electrochemically bound state. Examples of the acid-resistant metal oxide include SiO 2 , TiO 2 , Al 2 O 3 and C.
aO, SnO 2, MnO 2, Co 2 O 3 or the like can be suitably used. These metal oxides may be used alone or in combination of two or more. The method for producing a lead-acid battery electrode plate according to the present invention is a method for producing a lead-acid battery electrode plate in which a current collector made of lead-lead or a lead alloy is filled with a paste-like active material and aged in an undried state, wherein the paste The paste-like active material is characterized in that an acid-resistant metal oxide and a sulfate ion are contained in the paste-like active material, and both of them in an electrochemically bound state are present in the paste-like active material. As a result, it is possible to manufacture without increasing the number of manufacturing steps such as a lead storage battery assembling step.

【0005】とりわけ、上記課題を解決するための陰極
板は、電気化学的に結合した状態にある耐酸性の金属酸
化物と硫酸イオンが、SiO2の等酸点以下のpHを示
す濃度でM2SO4又はMHSO4(M:アルカリ金属)
を含む硫酸水溶液に浸漬処理したSiO2とする。Si
2の粒子径は20nm以下であることがより好ましい。
SiO2等の耐酸性の金属酸化物は、その等酸点以下の
pHを示す濃度の水溶液中で正に帯電する。その結果、
SiO2等の耐酸性の金属酸化物粒子を電気的中性に保
とうとする力が作用し、SiO2等の耐酸性の金属酸化
物粒子表面にはアニオンが電気化学的に結合する。すな
わち、上記M2SO4又はMHSO4(M:アルカリ金
属)を含む硫酸水溶液中では、SiO2等の耐酸性の金
属酸化物粒子表面に硫酸イオンが結合する。このように
硫酸イオンと結合したSiO2等の耐酸性の金属酸化物
が陰極活物質及び/又は陽極活物質中で硫酸イオンの供
給源として働き、高率放電容量を増加させることができ
る。尚、等酸点とは、酸化物が溶液のpHに依存して酸
あるいは塩基としての挙動を示す境目のpHのことであ
る。
In particular, the cathode plate for solving the above-mentioned problems is characterized in that the acid-resistant metal oxide and the sulfate ion, which are electrochemically bound to each other, have a concentration of M at a pH below the isoacid point of SiO 2. 2 SO 4 or MHSO 4 (M: alkali metal)
SiO 2 is dipped in a sulfuric acid aqueous solution containing Si
The particle size of O 2 is more preferably 20 nm or less.
Acid-resistant metal oxides such as SiO 2 are positively charged in an aqueous solution having a concentration having a pH equal to or lower than its isoacid point. as a result,
A force acts to keep the acid-resistant metal oxide particles such as SiO 2 electrically neutral, and anions are electrochemically bound to the surfaces of the acid-resistant metal oxide particles such as SiO 2 . That is, in the sulfuric acid aqueous solution containing M 2 SO 4 or MHSO 4 (M: alkali metal), sulfate ions are bound to the surface of acid-resistant metal oxide particles such as SiO 2 . As described above, the acid-resistant metal oxide such as SiO 2 combined with sulfate ions acts as a source of sulfate ions in the cathode active material and / or the anode active material, so that the high rate discharge capacity can be increased. The isoacid point is the pH at the boundary where the oxide behaves as an acid or a base depending on the pH of the solution.

【0006】本発明に係る鉛蓄電池用陰極板の製造法
は、鉛又は鉛合金からなる集電体にペースト状活物質を
充填して未乾燥状態で熟成する製造において、前記ペー
スト状活物質にはSiO2を含有させ、当該SiO2を、
SiO2の等酸点以下のpHを示す濃度でM2SO4又は
MHSO4(M:アルカリ金属)を含む硫酸水溶液に予
め浸漬処理しておくことを特徴とする。SiO2を浸漬
処理する硫酸水溶液の硫酸濃度を30重量%以上とする
ことがより好ましい。
A method for manufacturing a cathode plate for a lead storage battery according to the present invention is a method in which a current collector made of lead or a lead alloy is filled with a paste active material and aged in an undried state. It is is contained SiO 2, the SiO 2,
It is characterized in that it is preliminarily immersed in a sulfuric acid aqueous solution containing M 2 SO 4 or MHSO 4 (M: alkali metal) at a concentration showing a pH not higher than the isoacid point of SiO 2 . It is more preferable that the sulfuric acid concentration of the sulfuric acid aqueous solution in which the SiO 2 is immersed is set to 30% by weight or more.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態の一例を以下
に記載する。(陰極板の製造) まず、Na2SO4を飽和させた硫酸濃度35重量%の硫
酸水溶液50gを調製する。この溶液に、粒子径10〜
20nmのSiO210gを1時間浸漬する。一酸化鉛を
70〜80重量%含有する鉛粉3Kgに対し、リグニン6
g、硫酸バリウム30gを配合し、これを濃度35重量
%の希硫酸300gと上記のSiO2入り硫酸水溶液で
混練してペースト状陰極活物質を調製する。上記ペース
ト状陰極活物質約25gを鉛合金の格子体(70mm×4
0mm×3mm)からなる集電体に充填し、未乾燥のまま窒
素雰囲気中で80℃−24時間放置(熟成)して、未化
成の陰極板とする。Na2SO4に代えてNaHSO4
使用したときにも上記と同様にして未化成の陰極板とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment of the present invention will be described below. (Production of Cathode Plate) First, 50 g of a sulfuric acid aqueous solution saturated with Na 2 SO 4 and having a sulfuric acid concentration of 35% by weight is prepared. In this solution, a particle size of 10
Soak 10 g of 20 nm SiO 2 for 1 hour. 6 kg of lignin for 3 kg of lead powder containing 70-80% by weight of lead monoxide
g, and 30 g of barium sulfate are mixed, and this is kneaded with 300 g of dilute sulfuric acid having a concentration of 35% by weight and the above-mentioned aqueous solution of sulfuric acid containing SiO 2 to prepare a pasty cathode active material. About 25 g of the above-mentioned paste-like cathode active material is used as a lead alloy grid (70 mm × 4
It is filled in a current collector made of 0 mm × 3 mm) and left unripened in a nitrogen atmosphere at 80 ° C. for 24 hours (aged) to obtain an unformed cathode plate. When NaHSO 4 is used instead of Na 2 SO 4 , the unformed cathode plate is obtained in the same manner as above.

【0008】本発明の実施の形態の別の一例を以下に記
載する。(陽極板の製造) まず、硫酸イオンを含んだ水溶液として濃度35%の希
硫酸を50g調製する。この希硫酸に、粒子径100nm
以下のSiO290gを0.5時間浸漬する。そして、
一酸化鉛を70〜80重量%含有する鉛粉3kgを、前記
希硫酸300gと前記SiO2入り希硫酸で混練してペー
スト状陽極活物質を調製する。次いで上記ペースト状陽
極活物質約25gを鉛合金製の格子体(40mm×70mm
×3mm)からなる集電体に充填して未乾燥極板を作っ
た。この未乾燥極板を窒素雰囲気下、80℃で24時間
放置し、未乾燥のまま窒素雰囲気中で80℃−24時間
放置(熟成)して、未化成の陽極板とする。
Another example of the embodiment of the present invention will be described below. (Production of Anode Plate) First, 50 g of dilute sulfuric acid having a concentration of 35% is prepared as an aqueous solution containing sulfate ions. This dilute sulfuric acid has a particle size of 100 nm
90 g of the following SiO 2 is immersed for 0.5 hours. And
3 kg of lead powder containing 70 to 80% by weight of lead monoxide is kneaded with 300 g of the dilute sulfuric acid and the dilute sulfuric acid containing SiO 2 to prepare a pasty anode active material. Next, about 25 g of the above-mentioned paste-like positive electrode active material was added to a lead alloy grid (40 mm × 70 mm).
A undried electrode plate was prepared by filling a collector made of (3 mm). This undried electrode plate is left to stand at 80 ° C. for 24 hours in a nitrogen atmosphere, and then left to stand (aged) in a nitrogen atmosphere at 80 ° C. for 24 hours to be an unformed anode plate.

【0009】[0009]

【実施例】上記発明の実施の形態で述べた製造法による
陰極板2枚と常法(上記発明の実施の形態で述べた製造
法によらない)により製造した陽極板(陰極板と同寸
法)3枚を組み合わせて定格容量4Ah−2Vの鉛蓄電
池(満充電状態から20時間率で放電したときの放電容
量が4Ah)を組み立てた(実施例1)。また、比較の
ために、上記SiO2無添加のペースト状陰極活物質を
調製し、そのほかは実施例1と同様にして未化成の陰極
板を用意した。この陰極板2枚と常法により製造した陽
極板(陰極板と同寸法)3枚を組み合わせて上記同様の
4Ah−2Vの鉛蓄電池を組み立てた(従来例)。ま
た、上記発明の実施の形態で述べた製造法による陽極板
2枚と常法(上記発明の実施の形態で述べた製造法によ
らない)により製造した陰極板(陽極板と同寸法)3枚
を組み合わせて4Ah−2Vの鉛蓄電池を組み立てた
(実施例2)。さらに、実施例2においてSiO2に代
えてTiO2を用いた以外は実施例2と同条件で電池を
作製した(実施例3)。また、実施例2においてSiO
2に代えてAl23を用いた以外は実施例2と同条件で
電池を作製した(実施例4)。各鉛蓄電池を40±5℃
において0.4Aの定電流で10時間充電した。そし
て、次の3種類の充放電試験を実施した。
EXAMPLES Two cathode plates manufactured by the manufacturing method described in the above embodiment of the invention and an anode plate manufactured by a conventional method (not by the manufacturing method described in the embodiment of the invention) (having the same dimensions as the cathode plate). ) A lead storage battery having a rated capacity of 4Ah-2V (discharging capacity of 4Ah when discharged at a rate of 20 hours from a fully charged state) was assembled by combining three sheets (Example 1). For comparison, an unformed cathode plate was prepared in the same manner as in Example 1 except that the above-mentioned SiO 2 -free paste-like cathode active material was prepared. The same 4Ah-2V lead-acid battery as above was assembled by combining two of these cathode plates and three anode plates (having the same dimensions as the cathode plate) manufactured by a conventional method (conventional example). Further, two anode plates manufactured by the manufacturing method described in the embodiment of the invention and a cathode plate (same size as the anode plate) manufactured by a conventional method (not by the manufacturing method described in the embodiment of the invention) 3 The sheets were combined to assemble a 4Ah-2V lead acid battery (Example 2). Further, a battery was manufactured under the same conditions as in Example 2 except that TiO 2 was used instead of SiO 2 in Example 2 (Example 3). Further, in Example 2, SiO
A battery was manufactured under the same conditions as in Example 2 except that Al 2 O 3 was used instead of 2 (Example 4). 40 ± 5 ℃ for each lead acid battery
Was charged at a constant current of 0.4 A for 10 hours. Then, the following three types of charge / discharge tests were carried out.

【0010】(1)各鉛蓄電池を25±2℃において1
2Aの定電流(3C)で終止電圧1.4Vまで放電し
た。放電時の電圧の経時変化を図1に示す。本発明にか
かる実施例1では、終止電圧に達するまでの時間が1
4.3分であり、従来例の13.3分に対して1分長く
なっている。また、実施例2の終止電圧に達するまでの
時間は15.3分、また、実施例3の終止電圧に達する
までの時間は14.9分、また、実施例2の終止電圧に
達するまでの時間は14.7分だった。従って本発明の
電池は従来に比して高率放電においても放電持続時間が
長く、放電容量が大きいことを理解できる。
(1) Each lead acid battery is set to 1 at 25 ± 2 ° C.
It was discharged to a final voltage of 1.4 V with a constant current of 2 A (3 C). FIG. 1 shows the change over time in the voltage during discharge. In Example 1 according to the present invention, it takes 1 time to reach the final voltage.
It is 4.3 minutes, which is one minute longer than 13.3 minutes of the conventional example. The time required to reach the final voltage of Example 2 was 15.3 minutes, the time required to reach the final voltage of Example 3 was 14.9 minutes, and the final voltage was reached to reach the final voltage of Example 2. The time was 14.7 minutes. Therefore, it can be understood that the battery of the present invention has a long discharge duration and a large discharge capacity even at a high rate discharge as compared with the conventional battery.

【0011】(2)各鉛蓄電池を、(25±2℃におい
て12Aの定電流(3C)で終止電圧1.4Vまで放
電)−(2.45Vの定電流(制限電流1.2A)で7
時間充電)−(1時間休止)を繰り返す充放電サイクル
試験に供し、充放電サイクルと放電容量の関係を調べ
た。図2に示すように、従来例では120〜130サイ
クルで寿命に達するのに対し、実施例では290サイク
ル以上の寿命を達成し、300サイクルを過ぎても寿命
に達していないものもある。高率放電を繰り返しても電
池寿命が長いことを理解できる。
(2) Each lead-acid battery is discharged at a constant current of 12 A (3 C at 25 ± 2 ° C. to a final voltage of 1.4 V)-(constant current of 2.45 V (limit current 1.2 A)).
The battery was subjected to a charge / discharge cycle test in which (time charge)-(1 hour rest) was repeated, and the relationship between the charge / discharge cycle and the discharge capacity was investigated. As shown in FIG. 2, in the conventional example, the life is reached at 120 to 130 cycles, whereas in the examples, a life of 290 cycles or more is achieved, and in some cases, the life is not reached even after 300 cycles. It can be understood that the battery life is long even if high-rate discharge is repeated.

【0012】(3)実施例1の電池の製造において、S
iO2を浸漬処理する硫酸水溶液の硫酸濃度を変えて上
記(2)と同様の充放電サイクル試験を実施し、硫酸濃
度と充放電サイクル寿命との関係を調べた。また、Si
2の粒子径を変えて同様の試験を実施した。図3に示
すように、SiO2の等酸点のpHを示す硫酸水溶液の
濃度(0.1重量%)以上において、硫酸水溶液の濃度
が高くなるにつれて高率放電における充放電サイクル寿
命が長くなり、濃度30重量%以上ではほぼ一定の長寿
命となることを理解できる。また、SiO2の粒子径が
20nm以下で一層長寿命になることを理解できる。
(3) In the manufacture of the battery of Example 1, S
The same charge / discharge cycle test as in (2) above was carried out by changing the sulfuric acid concentration of the sulfuric acid aqueous solution in which io 2 was immersed, and the relationship between the sulfuric acid concentration and the charge / discharge cycle life was investigated. In addition, Si
Similar tests were carried out by changing the particle size of O 2 . As shown in FIG. 3, when the concentration of the sulfuric acid aqueous solution showing the pH of the isoacid point of SiO 2 (0.1% by weight) or more, the charge / discharge cycle life at high rate discharge becomes longer as the concentration of the sulfuric acid aqueous solution becomes higher. It can be understood that, when the concentration is 30% by weight or more, the life becomes almost constant. Further, it can be understood that the life is further extended when the particle diameter of SiO 2 is 20 nm or less.

【0013】本実施例では、耐酸性の金属酸化物を陰
極、あるいは陽極の一方のみに含ませたが、双方に含ま
せてももちろん構わない。また本実施例では、耐酸性の
金属酸化物として陰極板についてはSiO2、陽極板に
ついてはSiO2、TiO2、Al23のみについてそれ
ぞれ単独に検証した。しかしその他の耐酸性の金属酸化
物、陰極板については例えばTiO2、Al23、Ca
O、SnO2、MnO2、Co23、陽極板については例
えばCaO、SnO2、MnO2、Co23等を用いても
本実施例とほぼ同様の効果が得られる。また、これら酸
化物を単独で使用するばかりでなく、2種以上を併用し
ても本実施例とほぼ同様の効果が得られる。
In this embodiment, the acid-resistant metal oxide is contained in only one of the cathode and the anode, but it may be contained in both. In addition, in this example, as the acid-resistant metal oxide, only SiO 2 was used for the cathode plate, and only SiO 2 , TiO 2 , and Al 2 O 3 were used for the anode plate. However, for other acid-resistant metal oxides and cathode plates, for example, TiO 2 , Al 2 O 3 , Ca
Even if O, SnO 2 , MnO 2 , Co 2 O 3 or CaO, SnO 2 , MnO 2 , Co 2 O 3 or the like is used for the anode plate, substantially the same effect as this embodiment can be obtained. Further, not only these oxides are used alone, but also when two or more kinds thereof are used in combination, substantially the same effect as in the present embodiment can be obtained.

【0014】[0014]

【発明の効果】上述のように、本発明に係る鉛蓄電池用
極板は、鉛蓄電池の高率放電における高容量化に寄与す
る。また、高率放電の繰り返しにおける鉛蓄電池の長寿
命化にも寄与する。陰極板の製造において、SiO2
浸漬処理する硫酸水溶液の硫酸濃度を30重量%以上に
した場合には、ほぼ一定の長寿命となる。また、SiO
2の粒子径を20nm以下の小径にした場合にも、長寿命
にすることができる。SiO2を浸漬処理する硫酸水溶
液の硫酸濃度を30重量%以上にし、かつ、SiO2
粒子径を20nm以下の小径にすると、一層長寿命にする
ことができる。
As described above, the electrode plate for a lead storage battery according to the present invention contributes to increase the capacity of the lead storage battery in high rate discharge. Further, it also contributes to the extension of the life of the lead storage battery in the repetition of high rate discharge. In the production of the cathode plate, when the sulfuric acid concentration of the sulfuric acid aqueous solution in which SiO 2 is immersed is set to 30% by weight or more, the life becomes almost constant. In addition, SiO
Even when the particle diameter of 2 is 20 nm or less, the life can be extended. If the sulfuric acid concentration of the sulfuric acid aqueous solution for dipping SiO 2 is 30% by weight or more and the particle size of SiO 2 is 20 nm or less, the life can be further extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】鉛蓄電池放電時の電圧の経時変化を示す曲線図
である。
FIG. 1 is a curve diagram showing a change over time in voltage when a lead storage battery is discharged.

【図2】鉛蓄電池の充放電サイクルと放電容量の関係を
示す曲線図である。
FIG. 2 is a curve diagram showing a relationship between a charge / discharge cycle and a discharge capacity of a lead storage battery.

【図3】陰極板の製造において、SiO2を浸漬処理す
る硫酸水溶液の硫酸濃度ならびにSiO2粒子径と充放
電サイクル寿命との関係を示す曲線図である。
FIG. 3 is a curve diagram showing the relationship between the sulfuric acid concentration of an aqueous sulfuric acid solution in which SiO 2 is dipped and the SiO 2 particle diameter and the charge / discharge cycle life in the production of a cathode plate.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年10月9日[Submission date] October 9, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る鉛蓄電池用極板は、放電反応に必要な
硫酸イオンの供給源を陰極活物質及び/又は陽極活物質
中に存在させ、電解液からだけでなく陰極活物質及び/
又は陽極活物質中からも硫酸イオンを供給できるように
する。すなわち、耐酸性の金属酸化物と硫酸イオンとを
含有し、電気化学的に結合した状態にある前記両者が活
物質中に存在していることを特徴とする。前記耐酸性の
金属酸化物としては、SiO2、TiO2、Al 23、S
2、MnO2、Co23等を好適に用いることができ
る。これら金属酸化物はそれぞれを単独で使用しても、
2種以上を併用しても構わない。本発明に係る鉛蓄電池
用極板の製造法は、鉛鉛又は鉛合金からなる集電体にペ
ースト状活物質を充填して未乾燥状態で熟成する鉛蓄電
池用極板の製造において、前記ペースト状活物質に耐酸
性の金属酸化物と硫酸イオンとを含有させ、電気化学的
に結合した状態にある前記両者をペースト状活物質中に
存在させることを特徴とする。このことにより、鉛蓄電
池組立工程などの製造工程数を増やさずに製造できる。
In order to solve the above-mentioned problems, a lead-acid battery electrode plate according to the present invention has a sulfate ion supply source necessary for a discharge reaction in a cathode active material and / or an anode active material. Not only from the electrolyte but also from the cathode active material and / or
Alternatively, the sulfate ion can be supplied also from the anode active material. That is, it is characterized in that both the acid-resistant metal oxide and the sulfate ion are present in the active material in the electrochemically bound state. Examples of the acid-resistant metal oxide include SiO 2 , TiO 2 , Al 2 O 3 and S.
n O 2, MnO 2, Co 2 O 3 or the like can be suitably used. Even if each of these metal oxides is used alone,
You may use together 2 or more types. The method for producing a lead-acid battery electrode plate according to the present invention is a method for producing a lead-acid battery electrode plate in which a current collector made of lead-lead or a lead alloy is filled with a paste-like active material and aged in an undried state, wherein the paste The paste-like active material is characterized in that an acid-resistant metal oxide and a sulfate ion are contained in the paste-like active material, and both of them in an electrochemically bound state are present in the paste-like active material. As a result, it is possible to manufacture without increasing the number of manufacturing steps such as a lead storage battery assembling step.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】本実施例では、耐酸性の金属酸化物を陰
極、あるいは陽極の一方のみに含ませたが、双方に含ま
せてももちろん構わない。また本実施例では、耐酸性の
金属酸化物として陰極板についてはSiO2、陽極板に
ついてはSiO2、TiO2、Al23のみについてそれ
ぞれ単独に検証した。しかしその他の耐酸性の金属酸化
物、陰極板については例えばTiO2、Al 23、Sn
2、MnO2、Co23、陽極板については例えばSn
2、MnO2、Co23等を用いても本実施例とほぼ同
様の効果が得られる。また、これら酸化物を単独で使用
するばかりでなく、2種以上を併用しても本実施例とほ
ぼ同様の効果が得られる。
In this embodiment, the acid-resistant metal oxide is contained in only one of the cathode and the anode, but it may be contained in both. In addition, in this example, as the acid-resistant metal oxide, only SiO 2 was used for the cathode plate, and only SiO 2 , TiO 2 , and Al 2 O 3 were used for the anode plate. However, for other acid-resistant metal oxides and cathode plates, for example, TiO 2 , Al 2 O 3 , Sn
O 2, MnO 2, Co 2 O 3, For example for the anode plate Sn
Even if O 2 , MnO 2 , Co 2 O 3 or the like is used, substantially the same effect as in this embodiment can be obtained. Further, not only these oxides are used alone, but also when two or more kinds thereof are used in combination, substantially the same effect as in the present embodiment can be obtained.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】耐酸性の金属酸化物と硫酸イオンとを含有
し、電気化学的に結合した状態にある前記両者が活物質
中に存在していることを特徴とする鉛蓄電池用極板。
1. An electrode plate for a lead storage battery, which comprises an acid-resistant metal oxide and a sulfate ion, and the both of which are in an electrochemically bound state are present in an active material.
【請求項2】耐酸性の金属酸化物がSiO2、TiO2
Al23、CaO、SnO2、MnO2、Co23から選
ばれる少なくとも1種である請求項1記載の鉛蓄電池用
極板。
2. An acid-resistant metal oxide is SiO 2 , TiO 2 ,
The electrode plate for a lead storage battery according to claim 1, which is at least one selected from Al 2 O 3 , CaO, SnO 2 , MnO 2 , and Co 2 O 3 .
【請求項3】電気化学的に結合した状態にある耐酸性の
金属酸化物と硫酸イオンが、SiO2の等酸点以下のp
Hを示す濃度でM2SO4又はMHSO4(M:アルカリ
金属)を含む硫酸水溶液に浸漬処理したSiO2であ
り、極板が陰極板である請求項1記載の鉛蓄電池用極
板。
3. An acid-resistant metal oxide and a sulfate ion, which are electrochemically bound to each other, have a p below the isoacid point of SiO 2.
The lead plate for a lead storage battery according to claim 1, wherein the lead plate is a cathode plate, which is SiO 2 immersed in an aqueous sulfuric acid solution containing M 2 SO 4 or MHSO 4 (M: alkali metal) at a concentration showing H, and the plate is a cathode plate.
【請求項4】SiO2の粒子径が20nm以下である請求
項3記載の鉛蓄電池用陰極板。
4. The cathode plate for a lead storage battery according to claim 3, wherein the particle size of SiO 2 is 20 nm or less.
【請求項5】鉛又は鉛合金からなる集電体にペースト状
活物質を充填して未乾燥状態で熟成する鉛蓄電池用極板
の製造において、 前記ペースト状活物質に耐酸性の金属酸化物と硫酸イオ
ンとを含有させ、電気化学的に結合した状態にある前記
両者をペースト状活物質中に存在させることを特徴とす
る鉛蓄電池用極板の製造法。
5. A method for producing an electrode plate for a lead storage battery, wherein a current collector made of lead or a lead alloy is filled with a paste-like active material and aged in a non-dried state. And a sulfate ion, both of which are present in an electrochemically bound state are present in the paste-like active material, a method for producing a lead storage battery electrode plate.
【請求項6】電気化学的に結合した状態にある耐酸性の
金属酸化物と硫酸イオンが、耐酸性の金属酸化物の等酸
点以下のpHを示す濃度で硫酸イオンを含む水溶液に浸
漬処理した当該金属酸化物であることを特徴とする請求
項5記載の鉛蓄電池用極板の製造法。
6. An immersion treatment in an aqueous solution containing a sulfate ion at a concentration at which the acid-resistant metal oxide and the sulfate ion in the electrochemically bound state have a pH below the isoacid point of the acid-resistant metal oxide. It is the said metal oxide which was said, The manufacturing method of the polar plate for lead acid batteries of Claim 5 characterized by the above-mentioned.
【請求項7】耐酸性の金属酸化物がSiO2であり、硫
酸イオンを含む水溶液がM2SO4又はMHSO4(M:
アルカリ金属)を含む硫酸水溶液であり、極板が陰極板
であることを特徴とする請求項6記載の鉛蓄電池用極板
の製造法。
7. The acid-resistant metal oxide is SiO 2 , and the aqueous solution containing sulfate ions is M 2 SO 4 or MHSO 4 (M:
The method for producing an electrode plate for a lead storage battery according to claim 6, wherein the electrode plate is a cathode plate, which is an aqueous solution of sulfuric acid containing an alkali metal).
【請求項8】硫酸水溶液の硫酸濃度が30重量%以上で
あることを特徴とする請求項7記載の鉛蓄電池用極板の
製造法。
8. The method for producing an electrode plate for a lead storage battery according to claim 7, wherein the sulfuric acid concentration of the sulfuric acid aqueous solution is 30% by weight or more.
JP8256800A 1995-12-26 1996-09-27 Plate for lead acid battery and manufacture thereof Pending JPH09237632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8256800A JPH09237632A (en) 1995-12-26 1996-09-27 Plate for lead acid battery and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-338370 1995-12-26
JP33837095 1995-12-26
JP8256800A JPH09237632A (en) 1995-12-26 1996-09-27 Plate for lead acid battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09237632A true JPH09237632A (en) 1997-09-09

Family

ID=26542900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8256800A Pending JPH09237632A (en) 1995-12-26 1996-09-27 Plate for lead acid battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09237632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011042A1 (en) * 2003-07-28 2005-02-03 Suzuki, Toshihiro Additive for electrolyte solution of lead acid battery and lead acid battery
JP2018198151A (en) * 2017-05-24 2018-12-13 古河電池株式会社 Lead storage battery
WO2021182364A1 (en) 2020-03-09 2021-09-16 日本製紙株式会社 Organic shrink-proofing agent for lead acid storage batteries, and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011042A1 (en) * 2003-07-28 2005-02-03 Suzuki, Toshihiro Additive for electrolyte solution of lead acid battery and lead acid battery
JP2018198151A (en) * 2017-05-24 2018-12-13 古河電池株式会社 Lead storage battery
WO2021182364A1 (en) 2020-03-09 2021-09-16 日本製紙株式会社 Organic shrink-proofing agent for lead acid storage batteries, and method for producing same

Similar Documents

Publication Publication Date Title
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JPH09237632A (en) Plate for lead acid battery and manufacture thereof
JP4224729B2 (en) Sealed lead-acid battery and method for manufacturing the same
JP2000048814A (en) Positive electrode plate for lead-acid battery
JP2002298862A (en) Aluminum battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
JP4411860B2 (en) Storage battery
JP2003317711A (en) Formation method of lead-acid battery
JP2000208148A (en) Lithium ion secondary battery
JPS60198066A (en) Alkaline storage battery
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP3475650B2 (en) Manufacturing method of current collector for lead-acid battery
JPH10189009A (en) Manufacture for organic electrolyte battery
JP4066487B2 (en) Method for producing lead-acid battery
JPH0620688A (en) Zinc alkaline battery
JPH11191405A (en) Sealed lead-acid battery
JPH11135117A (en) Lead-acid battery
JP2003109585A (en) Chemical treatment method of positive electrode plate and lead storage battery
JPH10134810A (en) Manufacture of lead-acid battery
JPH11162455A (en) Lead-acid battery
JP2000260425A (en) Positive electrode mix for alkaline battery and alkaline battery using it
JPH073785B2 (en) Non-aqueous electrolyte battery
JPH0589873A (en) Negative electrode plate for lead-acid storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPH11135111A (en) Lead-acid battery