JPH09227941A - Production of grain oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH09227941A
JPH09227941A JP8060365A JP6036596A JPH09227941A JP H09227941 A JPH09227941 A JP H09227941A JP 8060365 A JP8060365 A JP 8060365A JP 6036596 A JP6036596 A JP 6036596A JP H09227941 A JPH09227941 A JP H09227941A
Authority
JP
Japan
Prior art keywords
annealing
rolled sheet
hot rolled
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8060365A
Other languages
Japanese (ja)
Other versions
JP3389402B2 (en
Inventor
Takashi Mogi
尚 茂木
Hisakazu Kitagawa
久和 北河
Koji Yamazaki
幸司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06036596A priority Critical patent/JP3389402B2/en
Publication of JPH09227941A publication Critical patent/JPH09227941A/en
Application granted granted Critical
Publication of JP3389402B2 publication Critical patent/JP3389402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a grain oriented silicon steel sheet extremely excellent in magnetic properties by executing cooling by a specified method from hot rolled sheet annealing for a slab contg. specified weight ratios of specified components. SOLUTION: A slab contg., by weight, 0.021 to 0.O75% C, 2.5 to 4.5% Si, 0.010 to 0.060% acid soluble Al, 0.0010 to 0.0130% N, <=0.4% S+0.405Se, 0.05 to 0.8% Mn, and the balance Fe with inevitable impurities is heated at <1280 deg.C, is thereafter hot rolled and is subjected to hot rolled sheet annealing. Successively, it is subjected to final cold rolling, is next subjected to decarburizing annealing to regulate the grain size of primarily recrystallized grains to 18 to 35μm, and after that, finish annealing is executed. As for the above hot rolled sheet annealing, in the cooling stage, it is cooled at <=10 deg.C/sec from 900 to 700 deg.C and is cooled at >=10 deg.C/sec from 700 to 200 deg.C, by which AlN as an inhibitor is finely precipitated after the hot rolled sheet annealing to produce the grain oriented silicon steel sheet excellent in magnetic properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は一次再結晶平均粒径
を制御することにより磁気特性の優れた一方向性電磁鋼
板を製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties by controlling the average primary recrystallization grain size.

【0002】[0002]

【従来の技術】現在、実用化されている一方向性電磁鋼
板は、例外なく二次再結晶によって形成された尖鋭な集
合組織を持っている。二次再結晶集合組織は、鋼板が電
気機器として使われた際、最も優れた性能、効率を発揮
するような結晶方位に制御されている。従って、二次再
結晶集合組織の尖鋭度が高いほど、電気機器の性能は優
れる。二次再結晶集合組織の尖鋭度は、一般に磁束密度
8 (800AT/mの磁場中の磁束密度の強さ)に強く
反映する。磁束密度は、二次再結晶した集合組織によっ
て、極めて敏感に変化する。従って、適正な二次再結晶
成長は製造者、利用者にとって有益なものである。
2. Description of the Related Art The unidirectional electrical steel sheets that have been put into practical use at present have a sharp texture formed by secondary recrystallization without exception. The secondary recrystallization texture is controlled to a crystal orientation that gives the best performance and efficiency when the steel sheet is used as electrical equipment. Therefore, the higher the sharpness of the secondary recrystallization texture, the better the performance of the electric device. The sharpness of the secondary recrystallization texture generally strongly reflects on the magnetic flux density B 8 (the strength of the magnetic flux density in a magnetic field of 800 AT / m). The magnetic flux density changes very sensitively due to the secondary recrystallized texture. Therefore, proper secondary recrystallization growth is beneficial to manufacturers and users.

【0003】二次再結晶は、一次再結晶粒の、方位選択
性の極めて強い異常粒成長現象である。この二次再結晶
粒の{110}<001>方位集積度の指標である磁束
密度を支配する主要因子が一次再結晶組織の集合組織、
結晶粒径、およびインヒビター強度(析出物界偏析元素
による粒界移動に対する抵抗力)であることは、既によ
く認識されている。
The secondary recrystallization is an abnormal grain growth phenomenon of the primary recrystallized grains having extremely strong orientation selectivity. The main factor controlling the magnetic flux density, which is an index of the degree of {110} <001> orientation integration of the secondary recrystallized grains, is the texture of the primary recrystallized structure,
It is already well recognized that they are the crystal grain size and the inhibitor strength (resistance to the grain boundary migration due to the precipitate boundary segregation element).

【0004】熱延板焼鈍において、一次再結晶集合組織
を制御するため、一次均熱温度、二次均熱温度および冷
却温度を設定している。特開平5−125446号公報
では一次均熱T1を1150〜950℃の範囲になるよ
うに設定し、この温度で180秒以内均熱した後、低温
側750〜900℃に30秒以上300s以内停留さ
せ、ついで室温まで10℃/sec 以上の速度で冷却する
方法を提示している(図1a,表1A)。また特公平7
−74386号公報では一次均熱温度900〜1080
℃で180秒以内均熱した後、二次均熱温度750〜9
00℃に30秒以上300秒以内停留させ、次いで室温
まで10℃/sec 以上の速度で冷却する方法を提示して
いる(図1b,表1B)。以上示したように、今までの
冷却開始温度は700℃以上の二相共存域からが殆どで
あり、それ以下の温度からの冷却はなかった。
In hot-rolled sheet annealing, a primary soaking temperature, a secondary soaking temperature and a cooling temperature are set in order to control the primary recrystallization texture. In Japanese Unexamined Patent Publication (Kokai) No. 5-125446, the primary soaking temperature T1 is set to be in the range of 1150 to 950 ° C., and after soaking at this temperature for 180 seconds, it stays on the low temperature side at 750 to 900 ° C. for 30 seconds or more and 300 seconds or less. Then, a method of cooling to room temperature at a rate of 10 ° C./sec or more is presented (FIG. 1a, Table 1A). Also, fairness 7
-74386 gazette, primary soaking temperature 900-1080
After soaking within 180 seconds at ℃, secondary soaking temperature 750-9
It proposes a method of holding at 00 ° C for 30 seconds to 300 seconds and then cooling to room temperature at a rate of 10 ° C / sec or more (Fig. 1b, Table 1B). As described above, the cooling start temperature so far is mostly from the two-phase coexistence region of 700 ° C. or higher, and there is no cooling from the temperature of lower than that.

【0005】[0005]

【発明が解決しようとする課題】上述したように、今ま
での熱延板焼鈍後の冷却開始温度は700℃以上の二相
共存域からが殆どであり、そのためにAlNは微細化し
てはいるものの必ずしも均一化されているとはいえず、
その結果磁気特性の変動が起こって目的とする磁気特性
の高い一方向性電磁鋼板の製造が難しかった。
As described above, the cooling start temperature after the hot-rolled sheet annealing up to now is mostly from the two-phase coexistence region of 700 ° C. or higher, and therefore AlN is miniaturized. However, it cannot be said that they are always uniform,
As a result, the magnetic properties fluctuated, and it was difficult to manufacture the intended grain-oriented electrical steel sheet having high magnetic properties.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために熱延板焼鈍後の冷却過程で適切に冷却制御
を行うことにより均一化された微細なAlNを析出させ
るものであり、その要旨は以下の通りである。本発明
は、重量比でC:0.021〜0.075,Si:2.
5〜4.5%、酸可溶性Al:0.010〜0.060
%,N:0.0010〜0.0130%,S+0.40
5Se:0.4%以下、Mn:0.05〜0.8%、残
部がFeと不可避の不純物からなるスラブを1280℃
未満の温度で加熱した後、熱延し、熱延板焼鈍を施し、
引き続き圧下率80%以上の最終冷延を含み、必要に応
じて中間焼鈍を挟む1回以上の冷延を行い、ついで脱炭
焼鈍し、一次再結晶の粒径を18〜35μmにした後、
窒化を行い、焼鈍分離剤を塗布し、仕上焼鈍を施す一方
向性電磁鋼板の製造法において、上記熱延板焼鈍の冷却
過程での700〜200℃の間を10℃/sec 以上で冷
却し、熱延板焼鈍後でのインヒビターとしてのAlNを
微細析出させ、上記熱延板焼鈍の冷却過程の900〜7
00℃の間を10℃/sec 以下で冷却する磁気特性の優
れた一方向性電磁鋼板の製造方法を提供する。
In order to solve the above-mentioned problems, the present invention is to precipitate uniformed fine AlN by appropriately controlling the cooling in the cooling process after hot-rolled sheet annealing. , Its gist is as follows. In the present invention, the weight ratio of C: 0.021 to 0.075, Si: 2.
5 to 4.5%, acid-soluble Al: 0.010 to 0.060
%, N: 0.0010 to 0.0130%, S + 0.40
5Se: 0.4% or less, Mn: 0.05 to 0.8%, the balance slab consisting of Fe and unavoidable impurities at 1280 ° C.
After heating at a temperature of less than, hot rolled, subjected to hot rolled sheet annealing,
Subsequently, including final cold rolling with a rolling reduction of 80% or more, if necessary, cold rolling is performed once or more with intermediate annealing sandwiched, and then decarburization annealing, and the particle size of primary recrystallization is set to 18 to 35 μm,
In the method for producing a unidirectional electrical steel sheet in which nitriding is performed, an annealing separator is applied, and finish annealing is performed, cooling is performed at 10 ° C / sec or more between 700 and 200 ° C in the cooling process of the hot rolled sheet annealing. , AlN as an inhibitor after the hot rolled sheet annealing is finely precipitated, and 900 to 7 in the cooling process of the hot rolled sheet annealing.
Provided is a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises cooling between 00 ° C at 10 ° C / sec or less.

【0007】[0007]

【発明の実施の形態】以下本発明を詳細に説明する。本
発明において、出発材料とする電磁鋼スラブ成分組成の
限定理由を以下に記述する。Cは0.021%未満にな
ると二次再結晶が不安定になり、かつ二次再結晶した場
合でも製品の磁束密度(B8 値)が1.80Tに満たな
い低いものとなる。一方、Cの含有量が0.075%を
越えて多くなり過ぎると、脱炭焼鈍時間が長くなり、生
産性を著しく損なう。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In the present invention, the reasons for limiting the composition of the electrical steel slab as a starting material will be described below. When C is less than 0.021%, the secondary recrystallization becomes unstable, and the magnetic flux density (B 8 value) of the product becomes low even below 1.80 T even when the secondary recrystallization is performed. On the other hand, if the content of C exceeds 0.075% and becomes too large, the decarburization annealing time becomes long and the productivity is remarkably impaired.

【0008】Siは2.5%未満になると低鉄損の製品
を得難く、一方Siの含有量が4.5%を越えると材料
の冷間圧延時に、割れ、破断が多発し、安定した冷間圧
延作業が行えない。AlはNと結合してAlNを形成す
るが、本発明においては、後工程、即ち一次再結晶完了
後に鋼板を窒化することで、(Al,Si)Nを形成さ
せることを必須としているから、フリーのAlが一定以
上必要である。そのため、酸可溶性Alとして、0.0
10〜0.060%添加する。
If the Si content is less than 2.5%, it is difficult to obtain a product having a low iron loss. On the other hand, if the Si content exceeds 4.5%, cracks and fractures frequently occur during cold rolling of the material, which is stable. Cannot perform cold rolling work. Al combines with N to form AlN, but in the present invention, it is essential to form (Al, Si) N by nitriding the steel sheet in a subsequent step, that is, after completion of primary recrystallization. Free Al must be above a certain level. Therefore, as acid-soluble Al, 0.0
10 to 0.060% is added.

【0009】Nは0.013%以下にする必要がある。
これを越えるとプリスターと呼ばれる鋼板表面の膨れが
発生する。また一次再結晶組織の調整が困難になる。下
限は0.0010%がよい。この値未満になると二次再
結晶を発達させるのが困難になる。Mnは少な過ぎると
二次再結晶が不安定となり、多過ぎると高い磁束密度を
持つ製品が得られない。適正な含有量は、0.05〜
0.8%である。
N must be 0.013% or less.
If it exceeds this, swelling of the steel sheet surface called a plister occurs. Also, it becomes difficult to adjust the primary recrystallization structure. The lower limit is preferably 0.0010%. Below this value, it becomes difficult to develop secondary recrystallization. If Mn is too small, secondary recrystallization becomes unstable, and if it is too large, a product having a high magnetic flux density cannot be obtained. The proper content is 0.05-
0.8%.

【0010】なお、微量のCu,P,Ti,Biを鋼中
に含有させることは本発明の趣旨を損なうものでない。
次に、本発明の製造プロセスについて説明する。電磁鋼
スラブは転炉、電気炉などの溶解炉で鋼を溶製し、必要
に応じて真空脱ガス処理し、次いで連続鋳造、あるいは
造塊後、分塊圧延することによって得られる。
The inclusion of a trace amount of Cu, P, Ti, Bi in steel does not impair the gist of the present invention.
Next, the manufacturing process of the present invention will be described. The electromagnetic steel slab can be obtained by melting steel in a melting furnace such as a converter or an electric furnace, subjecting it to vacuum degassing treatment if necessary, and then performing continuous casting or ingot casting and slab rolling.

【0011】その後、熱延圧延に先立つスラブ加熱がな
される。本発明のプロセスにおいて、スラブの加熱温度
は1280℃以下にし、加熱エネルギーの消費量を少な
くするとともに、鋼中のAlNを完全に固溶させず、不
完全固溶状態とする。この温度において、更に固溶状態
の高いMnSは当然のことながら不完全固溶状態とな
る。
After that, slab heating is performed prior to hot rolling. In the process of the present invention, the heating temperature of the slab is set to 1280 ° C. or lower, the consumption of heating energy is reduced, and AlN in the steel is not completely solid-solved to be an incomplete solid solution state. At this temperature, MnS having a higher solid solution state is naturally in an incomplete solid solution state.

【0012】一次二次均熱時間について種々検討した結
果、一次均熱時間は180秒以内、二次均熱温度の滞留
時間は300秒以内がよい。また、二次均熱温度域から
の冷却速度は10℃/sec 以上であると高B8 が安定し
て得られる。冷却温度は速いほど炭化物、窒化物の微細
析出を促すため好ましいが、製造機器の機械的な能力が
あるためこの条件になっている。なお、これは熱延板を
酸洗し冷延した後に行う焼鈍にも適用可能である。
As a result of various studies on the primary and secondary soaking times, the primary soaking time is preferably 180 seconds or less, and the secondary soaking temperature residence time is preferably 300 seconds or less. Further, when the cooling rate from the secondary soaking temperature range is 10 ° C./sec or more, high B 8 can be stably obtained. A faster cooling temperature is preferable because it promotes fine precipitation of carbides and nitrides, but this condition is satisfied because of the mechanical capacity of the manufacturing equipment. In addition, this is applicable also to the annealing performed after a hot rolled sheet is pickled and cold rolled.

【0013】この焼鈍で高B8 が得られる理由について
はまだ明らかになっていないが現在のところ次のように
考えている。二次再結晶の方位を含めて二次再結晶現象
に影響する因子としては一次再結晶組織(平均粒径、粒
径分布)、集合組織、インヒビター強度などがある。一
次再結晶完了後、粒成長に伴って集合組織、粒径分布に
変化が生じる。二次再結晶の核生成、粒成長を容易にす
るためには一次再結晶の各々の粒径は均一であり一定の
大きさ以上であることが望ましい。
The reason why high B 8 can be obtained by this annealing has not been clarified yet, but at present it is considered as follows. Factors that influence the secondary recrystallization phenomenon, including the orientation of secondary recrystallization, include primary recrystallization texture (average grain size, grain size distribution), texture, and inhibitor strength. After the completion of primary recrystallization, the texture and the grain size distribution change with the grain growth. In order to facilitate the nucleation and grain growth of the secondary recrystallization, it is desirable that each grain size of the primary recrystallization be uniform and have a certain size or more.

【0014】一方、集合組織は二次再結晶する方位粒
({110}<001>方位等)と二次再結晶粒を粒成
長させ易い方位粒({111}<112>方位等)を適
当量得ることが必要である。これには圧延率を除くと冷
間圧延する前の結晶粒径(再結晶率)及び変態相の量、
固溶C等が影響する。本発明のプロセスにおいて、冷間
圧延以前にインヒビターが存在することは一次再結晶組
織の調整を困難にするため好ましくないが、素材成分に
Al,Nを用いる限りAlNの析出は避けられない。特
に粒成長に影響を及ぼす微細析出物の制御が重要であ
る。同一焼鈍条件ではAl(AlR)の低いものが、析
出サイズの微細化によって強い一次再結晶粒成長抑制力
をもつ。熱延板焼鈍において一次均熱温度をAlRによ
って変える理由は、AlR量の違いから生じるAlNの
析出サイズを熱延板焼鈍温度によって制御し、一次再結
晶粒成長の変動をなくし、均一でかつ一定の大きさ以上
の粒径の一次再結晶組織を得ることである。
On the other hand, the texture is preferably oriented grains that undergo secondary recrystallization ({110} <001> orientation, etc.) and oriented grains ({111} <112> orientation, etc.) that facilitate secondary recrystallized grain growth. It is necessary to get the amount. The crystal grain size (recrystallization rate) and the amount of transformation phase before cold rolling excluding the rolling rate,
Solid solution C and the like have an effect. In the process of the present invention, the presence of the inhibitor before cold rolling is not preferable because it makes it difficult to adjust the primary recrystallization structure, but precipitation of AlN is unavoidable as long as Al and N are used as the material components. In particular, it is important to control fine precipitates that affect grain growth. Under the same annealing condition, a material having a low Al (AlR) has a strong primary recrystallized grain growth suppressing power due to the refinement of the precipitation size. The reason why the primary soaking temperature in hot-rolled sheet annealing is changed by AlR is that the precipitation size of AlN caused by the difference in AlR amount is controlled by the hot-rolled sheet annealing temperature to eliminate the fluctuation of primary recrystallized grain growth and to make it uniform and constant. Is to obtain a primary recrystallized structure with a grain size equal to or larger than.

【0015】二次均熱温度および集合組織の適正化は冷
間圧延後に行う脱炭焼鈍温度との組み合わせで達成され
る。冷間圧延は高いB8 を得るために80%以上とす
る。脱炭焼鈍は脱炭を行うほかに、前述したごとく一次
再結晶組織の調整および被膜形成に必要な酸化層を生成
させる役割があり、これは通常800〜900℃の温度
域で湿水素、窒素ガスの混合ガス中で行う。雰囲気ガス
は水素と窒素の混合で露点は30℃以上がよい。
The optimization of the secondary soaking temperature and the texture can be achieved in combination with the decarburization annealing temperature performed after cold rolling. Cold rolling is 80% or more in order to obtain high B 8 . In addition to decarburization, decarburization annealing has a role of adjusting the primary recrystallization structure and forming an oxide layer necessary for forming a film as described above, which is normally wet hydrogen and nitrogen in the temperature range of 800 to 900 ° C. It is performed in a mixed gas of gases. The atmosphere gas is a mixture of hydrogen and nitrogen, and the dew point is preferably 30 ° C. or higher.

【0016】脱炭焼鈍後は窒化能のある薬剤、例えばM
nN,CrN等を添加したMgO,TiO2 を含む焼鈍
分離剤を塗布した後、1100℃以上の温度で仕上焼鈍
を行う。また仕上焼鈍の雰囲気ガスに窒化能のあるガス
を使用してもよい。その他の実施として脱炭焼鈍後にN
3 等の窒化能のあるガスを含んだ雰囲気中で700〜
800℃の温度で短時間焼鈍を行って窒化した後、公知
の焼鈍分離剤を塗布し仕上焼鈍を行うこともできる。
After decarburization annealing, a chemical agent having a nitriding ability, for example, M
After applying an annealing separator containing MgO and TiO 2 added with nN, CrN, etc., finish annealing is performed at a temperature of 1100 ° C. or higher. Further, a gas having a nitriding ability may be used as an atmosphere gas for the finish annealing. As another implementation, N after decarburization annealing
700 ~ in an atmosphere containing a gas with nitriding ability such as H 3
It is also possible to perform short-time annealing at a temperature of 800 ° C. for nitriding, and then apply a known annealing separator to finish annealing.

【0017】図2からわかるように、粒界近傍に形成さ
れる析出物が異なっている。この違いが良好な磁気特性
の原因であると考えている。つまり、本発明条件で熱延
板を焼鈍した場合、冷間圧延後の炭化物の形成が異な
り、その後のパス時間効により固溶C,Nが冷間圧延に
よって形成された転位など欠陥部に固着する作用、また
は微細炭化物、微細窒化物による転位運動の抑制作用に
よって変形機構に影響を与え、良好な磁気特性を与える
と考えている。
As can be seen from FIG. 2, the precipitates formed near the grain boundaries are different. We believe that this difference is the cause of good magnetic properties. That is, when the hot rolled sheet is annealed under the conditions of the present invention, the formation of carbides after cold rolling is different, and the solid solution C and N are fixed to defects such as dislocations formed by cold rolling due to the subsequent pass aging. It is considered that the deformation mechanism is influenced by the action of the action, or the action of suppressing the dislocation motion due to the fine carbide and the fine nitride, to give good magnetic properties.

【0018】以下実施例にて説明する。An example will be described below.

【0019】[0019]

【実施例】【Example】

<実施例1>C:0.053%,Si:3.25%,M
n:0.094%,P:0.025%,S:0.007
%,Al:0.029%,N:0.0078%,Cr:
0.12%,Sn:0.05%を含む鋼塊を造り、熱延
し、2.3mm厚の熱延板にした。この後熱延板焼鈍を温
度1120℃、時間30sで保持し、次いで温度900
℃,30sで保持した後、900−700℃の間を5℃
/sで徐冷し、700℃から0℃の水槽内で冷却するこ
とで400℃/sで急冷した(図1a,表1実施例
1)。
<Example 1> C: 0.053%, Si: 3.25%, M
n: 0.094%, P: 0.025%, S: 0.007
%, Al: 0.029%, N: 0.0078%, Cr:
A steel ingot containing 0.12% and Sn: 0.05% was produced and hot-rolled into a hot-rolled sheet having a thickness of 2.3 mm. After this, hot-rolled sheet annealing is held at a temperature of 1120 ° C. for a time of 30 s, and then a temperature of 900
After holding at 30 ℃ for 30s, 5 ℃ between 900-700 ℃
/ S, and then rapidly cooled at 400 ° C / s by cooling in a water bath at 700 ° C to 0 ° C (Fig. 1a, Table 1 Example 1).

【0020】この後酸洗してから0.22mmに冷延し、
ついで820〜840℃×90sの脱炭焼鈍を露点62
℃の湿水素、窒素雰囲気中で行った。引き続き窒化処理
を750℃×30s間、乾窒素、水素結混合ガスにアン
モニアを添加した雰囲気ガス中で行い、窒化後の鋼板の
〔N〕量を200ppm にした。この後MgOとTiO2
を主成分とするスラリーを塗布乾燥した後1200℃×
20hrの仕上焼鈍を行った。
After this, pickling and cold rolling to 0.22 mm,
Then, decarburization annealing at 820 to 840 ° C for 90 seconds is performed to a dew point of 62.
It was carried out in an atmosphere of wet hydrogen and nitrogen at ℃. Subsequently, the nitriding treatment was performed at 750 ° C. for 30 seconds in an atmosphere gas in which ammonia was added to a dry nitrogen / hydrogen mixture gas, and the [N] content of the steel sheet after nitriding was set to 200 ppm. After this, MgO and TiO 2
After applying and drying the slurry whose main component is 1200 ° C
A 20-hour finish annealing was performed.

【0021】この結果より700℃から急冷した条件で
高いB8 が得られた(図3、表2、表3)。これは本発
明の条件を満たすものである。 <実施例2>実施例1と同様の成分、同様の工程で、熱
延板焼鈍を以下の条件で行った。温度1120℃,30
sで保持した後1120−700℃間を5℃/sで徐冷
し、その後700℃以下を400℃/sで急冷した(図
1b,表1実施例2)。
From this result, high B 8 was obtained under the condition of being rapidly cooled from 700 ° C. (FIG. 3, Table 2 and Table 3). This satisfies the conditions of the present invention. <Example 2> Hot rolled sheet annealing was performed under the following conditions with the same components and the same steps as in Example 1. Temperature 1120 ℃, 30
After being held at s, it was gradually cooled at 5 ° C / s between 1120 and 700 ° C, and then rapidly cooled below 700 ° C at 400 ° C / s (Fig. 1b, Table 1 Example 2).

【0022】この結果から700℃から急冷した条件で
高いB8 が得られている(図4、表2、表3)。これは
本発明の条件を満たすものである。
From these results, high B 8 was obtained under the condition of being rapidly cooled from 700 ° C. (FIG. 4, Table 2 and Table 3). This satisfies the conditions of the present invention.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】以上説明したように、本発明に記載され
た熱延板焼鈍からの冷却を実施することで、極めて磁気
特性の優れた一方向性電磁鋼板を得ることができる。
As described above, by carrying out the cooling from the hot rolled sheet annealing described in the present invention, it is possible to obtain a unidirectional electrical steel sheet having extremely excellent magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱延板焼鈍サイクルと熱延板焼鈍後の冷却法を
示すもので、従来の冷却法と本発明の冷却制御法を示す
図である。
FIG. 1 shows a hot rolled sheet annealing cycle and a cooling method after hot rolled sheet annealing, and is a diagram showing a conventional cooling method and a cooling control method of the present invention.

【図2】熱延板焼鈍後の冷却法による結晶組織の写真で
あり、(a)は従来の冷却法による結晶組織の写真で、
(b)は本発明の冷却法による結晶組織の写真である。
FIG. 2 is a photograph of a crystal structure by a cooling method after hot-rolled sheet annealing, and (a) is a photograph of a crystal structure by a conventional cooling method.
(B) is a photograph of the crystal structure by the cooling method of the present invention.

【図3】熱延板焼鈍後の冷却法において、従来の冷却法
と本発明による冷却法による磁束密度の比較を示した図
である。
FIG. 3 is a diagram showing a comparison of magnetic flux density between a conventional cooling method and a cooling method according to the present invention in a cooling method after hot-rolled sheet annealing.

【図4】熱延板焼鈍後の冷却法において、従来の冷却法
と本発明による冷却法による磁束密度の比較を別の条件
で示した図である。
FIG. 4 is a diagram showing comparison of magnetic flux densities between a conventional cooling method and a cooling method according to the present invention under different conditions in a cooling method after annealing a hot rolled sheet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC:0.021〜0.075,
Si:2.5〜4.5%、酸可溶性Al:0.010〜
0.060%,N:0.0010〜0.0130%,S
+0.405Se:0.4%以下、Mn:0.05〜
0.8%、残部がFeと不可避の不純物からなるスラブ
を1280℃未満の温度で加熱した後、熱延し、熱延板
焼鈍を施し、引き続き圧下率80%以上の最終冷延を含
み、必要に応じて中間焼鈍を挟む1回以上の冷延を行
い、ついで脱炭焼鈍し、一次再結晶の粒径を18〜35
μmにした後、窒化を行い、焼鈍分離剤を塗布し、仕上
焼鈍を施す一方向性電磁鋼板の製造法において、上記熱
延板焼鈍での冷却過程の900〜700℃間を10℃/
sec 以下で冷却し、700〜200℃間を10℃/sec
以上で冷却することにより、熱延板焼鈍後のインヒビタ
ーとしてのAlNを微細析出させることを特徴とする磁
気特性の優れた一方向性電磁鋼板の製造方法。
1. A weight ratio of C: 0.021 to 0.075,
Si: 2.5-4.5%, acid-soluble Al: 0.010-
0.060%, N: 0.0010 to 0.0130%, S
+0.405 Se: 0.4% or less, Mn: 0.05 to
After heating a slab consisting of 0.8% and the balance being Fe and unavoidable impurities at a temperature of less than 1280 ° C., hot rolling, hot-rolled sheet annealing, and subsequent final cold rolling with a rolling reduction of 80% or more, If necessary, cold rolling is performed once or more with an intermediate anneal sandwiched between them, followed by decarburization anneal to obtain a primary recrystallization grain size of 18 to 35.
In the method for producing a unidirectional electrical steel sheet in which nitriding is performed, an annealing separator is applied, and finish annealing is performed after the thickness is adjusted to μm, a temperature of 900 ° C. to 700 ° C. in the cooling process of the hot rolled sheet annealing is 10 ° C. /
Cool at less than sec, 700 ℃ to 200 ℃, 10 ℃ / sec
A method for producing a grain-oriented electrical steel sheet having excellent magnetic characteristics, which comprises finely precipitating AlN as an inhibitor after hot-rolled sheet annealing by cooling as described above.
JP06036596A 1996-02-23 1996-02-23 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties Expired - Fee Related JP3389402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06036596A JP3389402B2 (en) 1996-02-23 1996-02-23 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06036596A JP3389402B2 (en) 1996-02-23 1996-02-23 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH09227941A true JPH09227941A (en) 1997-09-02
JP3389402B2 JP3389402B2 (en) 2003-03-24

Family

ID=13140052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06036596A Expired - Fee Related JP3389402B2 (en) 1996-02-23 1996-02-23 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3389402B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
JP2013544970A (en) * 2010-11-26 2013-12-19 宝山鋼鉄股▲分▼有限公司 Method for producing grain oriented silicon steel having good magnetic performance
KR20190077965A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Manufacturing method of oriented electrical steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
US8202374B2 (en) 2009-04-06 2012-06-19 Nippon Steel Corporation Method of treating steel for grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
JP2013544970A (en) * 2010-11-26 2013-12-19 宝山鋼鉄股▲分▼有限公司 Method for producing grain oriented silicon steel having good magnetic performance
KR101512090B1 (en) * 2010-11-26 2015-04-14 바오샨 아이론 앤 스틸 유한공사 Manufacture method of oriented silicon steel having good magnetic performance
KR20190077965A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Manufacturing method of oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3389402B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JPH06322443A (en) Production of grain-oriented magentic steel sheet reduced in iron loss
JP2620438B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH07122096B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
JP3389402B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2002212636A (en) Method for producing grain oriented silicon steel sheet having high magnetic flux density
JPH09256051A (en) Production of grain oriented silicon steel sheet
JP2003003215A (en) Method for producing grain-oriented silicon steel sheet having high magnetic flux density
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3390109B2 (en) Low iron loss high magnetic flux density
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPH06179917A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JPH0741860A (en) Production of grain-oriented silicon steel sheet
JPH11279642A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees