JPH09227764A - Epoxy resin composition for semiconductor sealing - Google Patents

Epoxy resin composition for semiconductor sealing

Info

Publication number
JPH09227764A
JPH09227764A JP3152396A JP3152396A JPH09227764A JP H09227764 A JPH09227764 A JP H09227764A JP 3152396 A JP3152396 A JP 3152396A JP 3152396 A JP3152396 A JP 3152396A JP H09227764 A JPH09227764 A JP H09227764A
Authority
JP
Japan
Prior art keywords
epoxy resin
density polyethylene
resin composition
mold
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3152396A
Other languages
Japanese (ja)
Other versions
JP3410894B2 (en
Inventor
Masaru Ota
賢 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP03152396A priority Critical patent/JP3410894B2/en
Publication of JPH09227764A publication Critical patent/JPH09227764A/en
Application granted granted Critical
Publication of JP3410894B2 publication Critical patent/JP3410894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an epoxy resin composition for sealing semiconductors having high mold releasability and reliability by adding a specific high-density polyethylene to an epoxy resin composition with improved productivity and reduced production costs. SOLUTION: This resin composition comprises (A) an epoxy resin (for example, o-cresol novolak type epoxy resin), (B) a phenolic resin curing agent (for example, a phenol-novolak resin, (C) a curing accelerator (for example, 1,8- diazabicyclo(5,4,0)undecene-7, (D) an inorganic filler (for example, spherical silica powder) and (E) fine particles of high-density polyethylene softening over 120 deg.C, having 80% and higher crystallinity and <=200μm average particle sizes as essential components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、成形性良好な半導
体封止樹脂用エポキシ樹脂組成物を得るためのものであ
る。
TECHNICAL FIELD The present invention is to obtain an epoxy resin composition for a semiconductor encapsulating resin having good moldability.

【0002】[0002]

【従来の技術】IC本体を機械的、化学的作用から保護
するために、エポキシ樹脂系半導体封止用樹脂組成物は
開発、生産されてきた。これに要求される項目は、封止
されるICパッケージの構造によって変化する。ここ1
0年、ICパッケージの表面実装対応が進み、耐半田ク
ラック性の高い封止樹脂組成物が要求されてきている。
耐半田クラック性を向上させるために、樹脂組成物は低
吸水化を余儀なくされる。低吸水化のためには無機充填
材の含有率を向上させる必要があり、そのためには低粘
度のエポキシ樹脂、硬化剤が要求される。ところが、低
粘度のエポキシ樹脂や硬化剤は硬化反応が遅いためにそ
れを用いた樹脂組成物は一般的に離型性が悪い。即ち成
形品が金型から剥がれないとか、離型時に金型に成形品
の一部が残るとかの離型不良が大きな問題となってい
た。硬化性の悪い樹脂組成物でも満足に離型できる離型
剤の開発が望まれていた。
2. Description of the Related Art Epoxy resin-based semiconductor encapsulating resin compositions have been developed and produced in order to protect IC bodies from mechanical and chemical effects. Items required for this change depending on the structure of the sealed IC package. Here 1
With the progress of surface mounting of IC packages in 0 years, a sealing resin composition having high solder crack resistance has been required.
In order to improve the solder crack resistance, the resin composition is forced to have a low water absorption. In order to reduce water absorption, it is necessary to improve the content rate of the inorganic filler, and for that purpose, low-viscosity epoxy resin and curing agent are required. However, since a low-viscosity epoxy resin or a curing agent has a slow curing reaction, a resin composition using the same generally has poor releasability. That is, there is a big problem that the molded product is not peeled from the mold, or that the mold is partially left on the mold at the time of mold release. It has been desired to develop a releasing agent that can release even a resin composition having poor curability.

【0003】[0003]

【発明が解決しようとする課題】本発明は、半導体封止
用エポキシ樹脂組成物の離型性を改善し、硬化性の悪い
樹脂組成物でも満足に成形/離型できる樹脂組成物を提
供することにある。
DISCLOSURE OF THE INVENTION The present invention provides a resin composition which improves the mold releasability of an epoxy resin composition for semiconductor encapsulation and is capable of satisfactorily molding / mold releasing even a resin composition having poor curability. Especially.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記課題を
達成するために鋭意検討を行った。その結果、下記組成
の樹脂組成物が成形性に優れ、かつ信頼性も問題がない
ことが判明した。即ち本発明は、エポキシ樹脂、フェノ
ール樹脂硬化剤、硬化促進剤、無機充填材及び軟化点1
20℃以上、結晶化度80%以上で、平均粒径200μ
m以下の微細化高密度ポリエチレンを必須成分とする半
導体封止用エポキシ樹脂組成物である。
Means for Solving the Problems The present inventor has made intensive studies to achieve the above object. As a result, it was found that the resin composition having the following composition was excellent in moldability and had no problem in reliability. That is, the present invention includes an epoxy resin, a phenol resin curing agent, a curing accelerator, an inorganic filler, and a softening point 1.
20 ° C or higher, crystallinity 80% or higher, average particle size 200μ
It is an epoxy resin composition for semiconductor encapsulation, which contains finely divided high-density polyethylene of m or less as an essential component.

【0005】[0005]

【発明の実施の形態】以下に各組成物について説明す
る。本発明で用いられるエポキシ樹脂は、分子中にエポ
キシ基を有する化合物を指す。例えば、オルソクレゾー
ルノボラック型エポキシ樹脂、ビスフェノールA型エポ
キシ樹脂、ビスフェノールF型エポキシ樹脂、トリフェ
ノールメタン型エポキシ樹脂、ナフタレン型エポキシ樹
脂、ビフェニル型エポキシ樹脂等が挙げられる。また、
これらの樹脂の重合度、エポキシ当量については特に限
定しない。ただし、表面実装対応の樹脂組成物の場合、
無機充填材の量を多くすることが必要であり、溶融時の
粘度が極力低いエポキシ樹脂が望まれている。耐湿信頼
性向上のために、これらのエポキシ樹脂中に含有される
塩素イオン、ナトリウムイオン、その他フリーのイオン
は極力少ないことが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Each composition will be described below. The epoxy resin used in the present invention refers to a compound having an epoxy group in the molecule. Examples thereof include orthocresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, triphenol methane type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin and the like. Also,
The degree of polymerization and epoxy equivalent of these resins are not particularly limited. However, in the case of surface mountable resin composition,
It is necessary to increase the amount of the inorganic filler, and an epoxy resin having a viscosity when melted as low as possible is desired. In order to improve the moisture resistance reliability, it is desirable that chlorine ions, sodium ions and other free ions contained in these epoxy resins be as small as possible.

【0006】本発明で用いられるフェノール樹脂硬化剤
は、分子中にフェノール性水酸基を含有する化合物を指
す。例えば、フェノールノボラック樹脂、パラキシリレ
ン変性フェノール樹脂、トリフェノールメタン型フェノ
ール樹脂、ビスフェノールA等が挙げられる。これらの
硬化剤はシリコーン変性されていても問題ない。更に水
酸基当量、重合度等については特に限定しない。エポキ
シ樹脂と同様に、硬化剤に関しても比較的低粘度のもの
が表面実装用封止樹脂組成物には望ましい傾向にある。
また、これらの樹脂は耐湿信頼性向上のため、不純物と
して含有される塩素イオン、ナトリウムイオン、その他
フリーのイオンは極力少ないことが望ましい。
The phenol resin curing agent used in the present invention refers to a compound having a phenolic hydroxyl group in the molecule. Examples thereof include phenol novolac resin, paraxylylene-modified phenol resin, triphenol methane type phenol resin, and bisphenol A. There is no problem if these curing agents are modified with silicone. Further, the hydroxyl equivalent, the degree of polymerization, etc. are not particularly limited. Similar to the epoxy resin, a curing agent having a relatively low viscosity tends to be desirable for the surface mounting sealing resin composition.
Further, in order to improve the moisture resistance reliability of these resins, it is desirable that chlorine ions, sodium ions and other free ions contained as impurities are as small as possible.

【0007】本発明で使用される硬化促進剤は、エポキ
シ基とフェノール性水酸基の化学反応を促進させるもの
であれば良い。例えば、1,8−ジアザビシクロ(5,
4,0)ウンデセン−7(DBU)、2−メチルイミダ
ゾール、トリフェニルホスフィン、テトラフェニルホス
フィン・テトラフェニルボレート等が挙げられる。低粘
度のエポキシ樹脂と硬化剤を配合した処方の場合、硬化
促進剤の反応性が高くなければ成形後の硬度が低く、離
型不良が発生するので成形条件において十分硬化反応を
進ませることができるような硬化促進剤種類と量を選択
することがより望ましい。
The curing accelerator used in the present invention may be any one that accelerates the chemical reaction between the epoxy group and the phenolic hydroxyl group. For example, 1,8-diazabicyclo (5,
4,0) undecene-7 (DBU), 2-methylimidazole, triphenylphosphine, tetraphenylphosphine / tetraphenylborate and the like can be mentioned. In the case of a formulation containing a low-viscosity epoxy resin and a curing agent, if the reactivity of the curing accelerator is not high, the hardness after molding will be low, and mold release will occur, so the curing reaction may proceed sufficiently under the molding conditions. It is more desirable to select the type and amount of the curing accelerator that can be used.

【0008】本発明で用いられる無機充填材としては、
溶融シリカ粉末、球状シリカ粉末、結晶シリカ粉末、2
次凝集シリカ粉末、アルミナ等が挙げられ、特に樹脂組
成物の流動性の向上という観点から、球状シリカ粉末が
望ましい。球状シリカ粉末の形状は、流動性改善のため
に、粒子自体の形状は限りなく真球状であることが望ま
しく、更に粒度分布がブロードで有ることが望ましい。
また、この無機充填材はシラン系、チタン系、その他の
表面処理剤によって予め表面処理されていてもなんら構
わない。無機充填材の配合量については特に限定しな
い。また、平均粒径、最大粒径に関しても特に限定しな
い。
The inorganic filler used in the present invention includes:
Fused silica powder, spherical silica powder, crystalline silica powder, 2
Examples of the secondary agglomerated silica powder, alumina, and the like are preferable, and spherical silica powder is preferable from the viewpoint of improving the fluidity of the resin composition. Regarding the shape of the spherical silica powder, in order to improve the fluidity, it is desirable that the shape of the particles themselves be infinitely spherical and that the particle size distribution be broad.
The inorganic filler may be surface-treated in advance with a silane-based, titanium-based or other surface-treating agent. The compounding amount of the inorganic filler is not particularly limited. Further, the average particle diameter and the maximum particle diameter are not particularly limited.

【0009】本発明において用いられる高密度ポリエチ
レンは、本発明における技術上の重要なポイントである
ので、詳細に説明する。ポリエチレンは表面エネルギー
が低いために、各種コンパウンド(半導体封止用樹脂組
成物に限らず)に練り込まれても成形時に成形品表面に
ブリードアウトし易いので、熱可塑性樹脂の分野では早
くから離型剤として利用してきた。
The high-density polyethylene used in the present invention is an important technical point in the present invention, and therefore will be described in detail. Since polyethylene has a low surface energy, it is easy to bleed out on the surface of the molded product during molding even if it is kneaded into various compounds (not limited to the resin composition for semiconductor encapsulation). It has been used as an agent.

【0010】本発明の高密度ポリエチレンを用いること
により、エポキシ樹脂組成物の特性について、以下の点
が改善される。高密度ポリエチレンの表面エネルギーは
低いので、少量の添加量で良好な離型性を発現できる。
この高密度ポリエチレンは軟化点が高く、成形時の粘度
が高いので、連続成形時に型汚れが少ない。更に長期の
熱安定性に優れ、金型のクリーニング回数が少なくな
る。高密度ポリエチレンの表面エネルギーが低いため
に、リードフレームの各種金属や、各種プラスチックに
も良好に接着し、接着強度が向上して耐湿性も向上す
る。
By using the high-density polyethylene of the present invention, the following points are improved in the characteristics of the epoxy resin composition. Since the surface energy of high-density polyethylene is low, good releasability can be exhibited with a small amount of addition.
Since this high-density polyethylene has a high softening point and a high viscosity during molding, there is little mold fouling during continuous molding. Further, it has excellent long-term thermal stability, and the number of times of cleaning the mold is reduced. Since the surface energy of high-density polyethylene is low, it adheres well to various metals of lead frames and various plastics, and the adhesive strength and moisture resistance are improved.

【0011】以下に特徴、使用法に関して詳細に説明す
る。本発明で用いられる使用される高密度ポリエチレン
の軟化点は120℃以上である。半導体封止用樹脂組成
物は通常100℃程度で混練されるので、軟化点が12
0℃以上にもなれば混練時の均一分散は不可能であると
考えられていたが、実験によると、問題なく混練できる
ことが判明した。理由は定かでないが恐らくは、混練時
の高い剪断力によって、エポキシ樹脂や硬化剤の溶媒効
果で混和し、均一分散ものと推測される。いくつかの実
験の結果から上記の軟化点の高密度ポリエチレンが離型
性の改善に有効であることが判明した。
The features and usage will be described in detail below. The softening point of the high density polyethylene used in the present invention is 120 ° C. or higher. Since the resin composition for semiconductor encapsulation is usually kneaded at about 100 ° C., the softening point is 12
It was thought that uniform dispersion at the time of kneading was impossible when the temperature was higher than 0 ° C, but experiments revealed that kneading could be performed without problems. Although the reason is not clear, it is presumed that the high shearing force at the time of kneading causes the epoxy resin and the curing agent to mix due to the solvent effect, resulting in uniform dispersion. From the results of some experiments, it was found that the high-density polyethylene having the above-mentioned softening point is effective in improving the releasability.

【0012】本発明における高密度ポリエチレンの軟化
点は、120℃以上が望ましい。120℃未満の軟化点
の高密度ポリエチレンでは、連続成形における金型汚れ
問題を引き起こしやすい。本発明における軟化点の測定
方法は、環球法であり、内径15.9mm、深さ6.4
mmの真鍮のリングに試験片を融解して流し込むか、成
形または打ち抜いたものをはめ込み、その中心上に直径
9.53mm、重量3.5gの鋼球を乗せて、これをオ
イルバスに入れ、液温を5℃/分で昇温させる。温度が
上昇するに従い、鋼球は下降する。鋼球が、真鍮のリン
グ下端から25.4mm下のプレートに接触するように
なったときのオイルバスの温度を軟化点とする。
The softening point of the high density polyethylene in the present invention is preferably 120 ° C. or higher. High-density polyethylene having a softening point of less than 120 ° C. tends to cause a problem of mold fouling in continuous molding. The method of measuring the softening point in the present invention is the ring and ball method, which has an inner diameter of 15.9 mm and a depth of 6.4.
Melt the test piece into a brass ring of mm and cast it, or fit the molded or punched one, put a steel ball with a diameter of 9.53 mm and a weight of 3.5 g on the center, put it in an oil bath, The liquid temperature is raised at 5 ° C / min. As the temperature rises, the steel balls fall. The softening point is the temperature of the oil bath when the steel ball comes into contact with the plate 25.4 mm below the lower end of the brass ring.

【0013】本発明に用いる高密度ポリエチレンは、結
晶化度80%以上の高密度ポリエチレンである。結晶化
度が80%未満であると、結晶性が低いために熱によっ
て酸化劣化を引き起こしやすく、高温、長時間での連続
成形では、成形金型表面に酸化したポリエチレンが厚く
張り付いて金型汚れの主原因になる。結晶化度の測定方
法は、密度法であり、25℃の水浴中で試験管内にポリ
エチレンの破片をいれ、水とエタノールの混合物を投入
する。水/エタノールの配合比を変えて、ポリエチレン
の破片が浮遊する状態にする。この状態の水/エタノー
ル溶液の比重をピクノメーターで測定し、ポリエチレン
の比重を計算する。ポリエチレンは非晶物、結晶物共に
比重が判明しているので、そのデータをもとに下記式を
もとに結晶化度を計算する。 結晶化度(%)=ρc(ρ−ρ2)/ρ(ρc−ρ2)×1
00 ただし、ρ :ポリエチレンの比重 ρc:ポリエチレンの結晶の比重 ρ2:ポリエチレンの非晶の比重 である。
The high-density polyethylene used in the present invention is a high-density polyethylene having a crystallinity of 80% or more. If the degree of crystallinity is less than 80%, the crystallinity is low, so that it is likely to cause oxidative deterioration due to heat, and in continuous molding at high temperature for a long time, the oxidized polyethylene sticks thickly to the mold surface It is the main cause of dirt. The crystallinity is measured by the density method, in which polyethylene fragments are placed in a test tube in a water bath at 25 ° C. and a mixture of water and ethanol is added. Change the blending ratio of water / ethanol to make the polyethylene fragments float. The specific gravity of the water / ethanol solution in this state is measured with a pycnometer to calculate the specific gravity of polyethylene. Since the specific gravity of polyethylene is known for both amorphous and crystalline substances, the crystallinity is calculated based on the data based on the following formula. Crystallinity (%) = ρ c (ρ−ρ 2 ) / ρ (ρ c −ρ 2 ) × 1
Where ρ is the specific gravity of polyethylene, ρ c is the specific gravity of the crystals of polyethylene, and ρ 2 is the non-crystalline specific gravity of polyethylene.

【0014】又、平均粒径が200μm以下に微細化さ
れている必要がある。軟化点が混練温度の100℃以上
であるために、基本的には混練しにくい。その為に、混
練前に予め微粉化されている必要がある。実験結果か
ら、平均粒径は200μm以下が望ましいことが判っ
た。平均粒径が200μmを越えると、ポリエチレンが
均一分散せず、型汚れの原因になる。本発明における平
均粒度の測定方法は、堀場製作所・製のレーザー粒度解
析計を利用して分析した。分散媒は水/エタノールの混
合物である。
Further, it is necessary that the average grain size is made finer to 200 μm or less. Since the softening point is 100 ° C. or higher, which is the kneading temperature, it is basically difficult to knead. Therefore, it must be pulverized in advance before kneading. From the experimental results, it was found that the average particle size is preferably 200 μm or less. When the average particle size exceeds 200 μm, polyethylene is not uniformly dispersed, which causes mold fouling. The method for measuring the average particle size in the present invention was analyzed using a laser particle size analyzer manufactured by Horiba Ltd. The dispersion medium is a water / ethanol mixture.

【0015】本発明に用いる高密度ポリエチレンの分子
量や分子量分布、分岐や直鎖状などの高分子の一次構造
は特に限定しない。軟化点と結晶化度、平均粒径が最も
重要なパラメーターである。本発明における高密度ポリ
エチレンの配合量は、全封止樹脂組成物中に0.02〜
1.00重量%が望ましい。0.02重量%未満である
と、離型剤として充分機能せず、離型不良が生じる。
1.00重量%を越えると、高密度ポリエチレンがブリ
ードアウトして型汚れ、ウスバリ、リードフレームへの
密着不良等の問題がある。
The molecular weight and molecular weight distribution of the high-density polyethylene used in the present invention, and the primary structure of the polymer such as branched or linear are not particularly limited. The softening point, crystallinity, and average particle size are the most important parameters. The compounding amount of the high-density polyethylene in the present invention is 0.02 to the total sealing resin composition.
1.00% by weight is desirable. If it is less than 0.02% by weight, it does not sufficiently function as a release agent, resulting in defective release.
If it exceeds 1.00% by weight, the high-density polyethylene will bleed out to cause problems such as mold fouling, burrs, and poor adhesion to the lead frame.

【0016】本発明における高密度ポリエチレンは、他
の種類の離型剤と併用しても、単独で使用しても問題は
ない。但し併用する場合のたの離型剤は、全離型剤中2
0重量%未満が望ましい。20重量%を越えると、金型
汚れ、離型性、各種基材に対する密着性の何れかが悪く
なり、樹脂組成物としての特性のバランスが崩れる。併
用する離型剤は、カルナバワックス等のエステル系ワッ
クスや、ステアリン酸ワックス、ステアリン酸鉛等の酸
系ワックスなどが望ましいが特に限定しない。本発明の
樹脂組成物は上述の成分以外に、必要に応じて、カーボ
ンブラック等の着色剤、ブロム化エポキシ樹脂、三酸化
アンチモン等の難燃剤、シランカップリング剤、シリコ
ーンオイル、ゴム等の低応力成分を添加することができ
る。本発明の樹脂組成物は、エポキシ樹脂、フェノール
樹脂硬化剤、硬化促進剤、無機充填材、その他添加剤を
ミキサーにて常温混合し、ロール、押し出し機等の一般
混練機にて混練し、冷却後粉砕し成形材料とすることが
できる。
The high-density polyethylene of the present invention may be used in combination with other types of release agents or may be used alone without any problem. However, the other release agent when used in combination is 2 out of all the release agents.
Less than 0% by weight is desirable. If it exceeds 20% by weight, any of the mold stains, mold releasability, and adhesion to various base materials is deteriorated, and the balance of properties as a resin composition is lost. The release agent used in combination is preferably an ester wax such as carnauba wax or an acid wax such as stearic acid wax or lead stearate, but is not particularly limited. In addition to the above-mentioned components, the resin composition of the present invention may optionally contain a coloring agent such as carbon black, a brominated epoxy resin, a flame retardant such as antimony trioxide, a silane coupling agent, a silicone oil, and a rubber. A stress component can be added. The resin composition of the present invention is an epoxy resin, a phenol resin curing agent, a curing accelerator, an inorganic filler, and other additives are mixed at room temperature with a mixer, kneaded with a general kneader such as a roll and an extruder, and cooled. It can be pulverized afterwards to obtain a molding material.

【0017】[0017]

【実施例】以下本発明を実施例にて具体的に説明する。
《実施例1》 下記組成物 ビフェニル型エポキシ樹脂(エポキシ当量:195) 5.8重量部 フェノールアラルキル型樹脂(水酸基当量:175) 5.7重量部 球状シリカ粉末 85.0重量部 高密度ポリエチレンA 0.5重量部 1.8−ジアザビシクロ(5,4,0)ウンデセン−7 0.2重量部 カーボンブラック(平均粒径18nm) 0.3重量部 臭素化フェノールノボラック型エポキシ樹脂 1.0重量部 三酸化アンチモン 1.3重量部 エポキシシランカップリング剤 0.5重量部 を、ミキサーにて常温混合し、100℃で二軸ロールに
て混練し、冷却後粉砕し成形材料とした。得られた成形
材料を以下の評価方法により評価した。
EXAMPLES The present invention will be specifically described below with reference to examples.
<< Example 1 >> The following composition Biphenyl type epoxy resin (epoxy equivalent: 195) 5.8 parts by weight Phenol aralkyl type resin (hydroxyl equivalent: 175) 5.7 parts by weight Spherical silica powder 85.0 parts by weight High density polyethylene A 0.5 parts by weight 1.8-diazabicyclo (5,4,0) undecene-7 0.2 parts by weight carbon black (average particle size 18 nm) 0.3 parts by weight Brominated phenol novolac type epoxy resin 1.0 parts by weight 1.3 parts by weight of antimony trioxide and 0.5 parts by weight of an epoxysilane coupling agent were mixed at room temperature with a mixer, kneaded with a biaxial roll at 100 ° C., cooled and pulverized to obtain a molding material. The obtained molding material was evaluated by the following evaluation methods.

【0018】《評価方法》 軟化点: 環球法 結晶化度:密度法 成形評価:低圧トランスファー成形の金型の160pQ
FP成形テストを行った。成形温度175℃、硬化時間
2分で成形した成形品の離型性を○、△、×の3段階で
官能評価する。更に、得られた成形品の表面の状態を目
視で観察し、型汚れの有無を○、△、×の3段階で判定
した。 耐半田評価:175℃、2分硬化で80pQFP(1.
5mm厚)の成形品を得、175℃8時間のポストキュ
アを行ってサンプルとした。各品番毎に6パッケージづ
つ得た。85℃、85%の恒温恒湿槽内に168時間投
入した後に240℃のIRリフロー処理を行った。処理
後のパッケージの内部の剥離を超音波探傷機にて観察
し、チップ表面の剥離、パッド裏面の剥離が有るパッケ
ージの個数で耐半田性(及び密着性)を判定した。
<< Evaluation Method >> Softening point: Ring and ball method Crystallinity: Density method Molding evaluation: 160 pQ of low pressure transfer molding die
An FP molding test was performed. The mold releasability of a molded product molded at a molding temperature of 175 ° C. and a curing time of 2 minutes is sensory-evaluated in three grades of ◯, Δ, and x. Further, the state of the surface of the obtained molded article was visually observed, and the presence or absence of mold contamination was determined in three stages of ○, Δ, and ×. Solder resistance evaluation: 80 pQFP (1.
A molded product (5 mm thick) was obtained and post-cured at 175 ° C. for 8 hours to obtain a sample. Six packages were obtained for each part number. After being placed in a constant temperature and humidity chamber at 85 ° C. and 85% for 168 hours, an IR reflow treatment at 240 ° C. was performed. The peeling inside the package after the treatment was observed with an ultrasonic flaw detector, and the solder resistance (and adhesion) was determined based on the number of packages having the chip surface peeling and the pad back surface peeling.

【0019】《実施例2〜6》実施例1の処方のうち離
型剤として、高密度ポリエチレンの種類のみを表1のよ
うに変えた処方(その他の配合は実施例1と同じ)に従
って配合し、実施例1と同様にして成形材料を得、同様
に評価した。ただし実施例6においてはカルナバワック
スを併用した。 《比較例1〜5》実施例1の処方のうち離型剤として高
密度ポリエチレンの種類又は離型剤と球状シリカの配合
量を表2のように変えた処方(その他の配合は実施例1
と同じ)に従って配合し、実施例1と同様にして成形材
料を得、同様に評価した。
<Examples 2 to 6> Formulated according to the formulation of Example 1 in which only the type of high-density polyethylene was changed as shown in Table 1 as the release agent (other formulations are the same as in Example 1). Then, a molding material was obtained in the same manner as in Example 1 and evaluated in the same manner. However, in Example 6, carnauba wax was used in combination. << Comparative Examples 1 to 5 >> Among the formulations of Example 1, formulations in which the type of high-density polyethylene as the release agent or the compounding amount of the release agent and spherical silica were changed as shown in Table 2 (other formulations are those of Example 1).
The same) as above, and a molding material was obtained in the same manner as in Example 1 and evaluated in the same manner.

【0020】 *使用した高密度ポリエチレンの特性 軟化点 結晶化度 平均粒径 (℃) (%) (μm) 高密度ポリエチレンA 142 96 105 高密度ポリエチレンB 125 95 105 高密度ポリエチレンC 140 85 105 高密度ポリエチレンD 143 97 195 高密度ポリエチレンE 162 98 53 高密度ポリエチレンF 111 81 103 高密度ポリエチレンG 124 79 102 高密度ポリエチレンH 142 96 266* Characteristics of high density polyethylene used Softening point Crystallinity Average particle size (° C) (%) (μm) High density polyethylene A 142 96 105 High density polyethylene B 125 95 105 High density polyethylene C 140 85 105 105 High Density Polyethylene D 143 97 195 High Density Polyethylene E 162 98 53 High Density Polyethylene F 111 81 103 High Density Polyethylene G 124 79 102 High Density Polyethylene H 142 96 96 266

【0021】 表 1 実 施 例 1 2 3 4 5 6 配合(重量部) ヒ゛フェニル型エホ°キシ樹脂 5.8 5.8 5.8 5.8 5.8 5.8 フェノールアラルキル型樹脂 5.7 5.7 5.7 5.7 5.7 5.7 球状シリカ 85.0 85.0 85.0 85.0 85.0 85.0 高密度ポリエチレンA 0.5 0.2 高密度ポリエチレンB 0.5 高密度ポリエチレンC 0.5 高密度ポリエチレンD 0.5 高密度ポリエチレンE 0.5 カルナバワックス 0.3 特性 離型性 ○ ○ ○ ○ ○ ○ 型汚れ性 ○ ○ ○ ○ ○ ○ 耐半田評価:チップ剥離 0 0 0 0 0 0 耐半田評価:パッド剥離 0 0 0 0 0 0 Table 1 Example 1 2 3 4 5 6 compounding (parts by weight) Biphenyl type epoxy resin 5.8 5.8 5.8 5.8 5.8 5.8 Phenol aralkyl type resin 5.7 5.7 5.7 5.7 5.7 5.7 Spherical silica 85.0 85.0 85.0 85.0 85.0 85.0 High density polyethylene A 0.5 0.2 High-density polyethylene B 0.5 High-density polyethylene C 0.5 High-density polyethylene D 0.5 High-density polyethylene E 0.5 Carnauba wax 0.3 Characteristic releasability ○ ○ ○ ○ ○ ○ Mold contamination ○ ○ ○ ○ ○ ○ Solder resistance evaluation: Chip peeling 0 0 0 0 0 0 Solder resistance evaluation: Pad peeling 0 0 0 0 0 0 0

【0022】 表 2 比 較 例 1 2 3 4 5 6 7 配合(重量部) ヒ゛フェニル型エホ°キシ樹脂 5.8 5.8 5.8 5.8 5.8 5.8 5.8 フェノールアラルキル型樹脂 5.7 5.7 5.7 5.7 5.7 5.7 5.7 球状シリカ 85.0 85.49 84.3 85.0 85.0 85.0 85.0 高密度ポリエチレンA 0.01 1.2 0.05 高密度ポリエチレンF 0.5 高密度ポリエチレンG 0.5 高密度ポリエチレンH 0.5 カルナバワックス 0.5 0.45 特性 離型性 △ × ○ △ ○ ○ ○ 型汚れ性 △ ○ × △ × × × 耐半田評価:チップ剥離 1 0 2 1 1 2 1 耐半田評価:パッド剥離 2 0 3 2 1 1 0 Table 2 Comparative Example 1 2 3 4 5 6 7 Compounding (parts by weight) Biphenyl type epoxy resin 5.8 5.8 5.8 5.8 5.8 5.8 5.8 Phenol aralkyl type resin 5.7 5.7 5.7 5.7 5.7 5.7 5.7 Spherical silica 85.0 85.49 84.3 85.0 85.0 85.0 85.0 High density Polyethylene A 0.01 1.2 0.05 High density polyethylene F 0.5 High density polyethylene G 0.5 High density polyethylene H 0.5 Carnauba wax 0.5 0.45 Characteristics Releasability △ × ○ △ ○ ○ ○ Mold stain resistance △ ○ × △ × × × Solder resistance evaluation: Chip Peeling 1 0 2 1 1 2 1 Solder resistance evaluation: Pad peeling 2 0 3 2 1 1 0

【0023】[0023]

【発明の効果】本発明に従うと、離型性良好で信頼性の
高い半導体封止用エポキシ樹脂組成物を得ることができ
るため、半導体メーカーにおいて生産性が向上し、半導
体メーカーでの生産コストを低減することができる。
EFFECTS OF THE INVENTION According to the present invention, a highly reliable epoxy resin composition for semiconductor encapsulation having good releasability can be obtained, so that the productivity of the semiconductor manufacturer is improved and the production cost of the semiconductor manufacturer is reduced. It can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂、フェノール樹脂硬化剤、
硬化促進剤、無機充填材及び軟化点120℃以上、結晶
化度80%以上で、平均粒径200μm以下の微細化高
密度ポリエチレンを必須成分とする半導体封止用エポキ
シ樹脂組成物。
An epoxy resin, a phenol resin curing agent,
An epoxy resin composition for semiconductor encapsulation, which comprises a curing accelerator, an inorganic filler, a softening point of 120 ° C. or higher, a crystallinity of 80% or higher, and a micronized high-density polyethylene having an average particle diameter of 200 μm or less as essential components.
JP03152396A 1996-02-20 1996-02-20 Epoxy resin composition for semiconductor encapsulation Expired - Fee Related JP3410894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03152396A JP3410894B2 (en) 1996-02-20 1996-02-20 Epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03152396A JP3410894B2 (en) 1996-02-20 1996-02-20 Epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH09227764A true JPH09227764A (en) 1997-09-02
JP3410894B2 JP3410894B2 (en) 2003-05-26

Family

ID=12333559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03152396A Expired - Fee Related JP3410894B2 (en) 1996-02-20 1996-02-20 Epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP3410894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068419A (en) * 1998-08-19 2000-03-03 Toray Ind Inc Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068419A (en) * 1998-08-19 2000-03-03 Toray Ind Inc Semiconductor device

Also Published As

Publication number Publication date
JP3410894B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
KR100251853B1 (en) Epoxy resin composition and semiconductor device encapsulated therewith
JP3729225B2 (en) Semiconductor device
JP4618056B2 (en) Epoxy resin composition for semiconductor encapsulation and method for producing the same
JP2008143950A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP3410894B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3568653B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2008045025A (en) Epoxy resin composition for sealing and semiconductor apparatus
JP2576713B2 (en) Epoxy resin composition and semiconductor device
JP3916783B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JPH09165499A (en) Epoxy resin composition for sealing of semiconductor
JP4014311B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP2001189407A (en) Manufacturing method for surface-treated inorganic filler, epoxy resin composition for sealing semiconductor, and semiconductor device
JPH08337635A (en) Epoxy resin composition for semiconductor sealing
JPH03140322A (en) Epoxy resin molding material for semiconductor-sealing and resin-sealed semiconductor device
JP6885519B2 (en) Resin compositions for molding materials, molded bodies and structures
JP2008184544A (en) Resin composition for sealing semiconductor and semiconductor device obtained using the same
JP3862381B2 (en) Epoxy resin composition for semiconductor encapsulation and method for producing the same
KR100479853B1 (en) Method for preparing epoxy resin composition for semiconductor encapsulant and the composition
JP5191072B2 (en) Epoxy resin composition and semiconductor device
WO2021070416A1 (en) Thermosetting resin composition, cured product thereof, and structural body including said cured product
JP2005139260A (en) Epoxy resin composition and semiconductor device
JPH1171442A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP2001139771A (en) Epoxy resin molding material and semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees