JP3410894B2 - Epoxy resin composition for semiconductor encapsulation - Google Patents

Epoxy resin composition for semiconductor encapsulation

Info

Publication number
JP3410894B2
JP3410894B2 JP03152396A JP3152396A JP3410894B2 JP 3410894 B2 JP3410894 B2 JP 3410894B2 JP 03152396 A JP03152396 A JP 03152396A JP 3152396 A JP3152396 A JP 3152396A JP 3410894 B2 JP3410894 B2 JP 3410894B2
Authority
JP
Japan
Prior art keywords
density polyethylene
epoxy resin
resin composition
weight
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03152396A
Other languages
Japanese (ja)
Other versions
JPH09227764A (en
Inventor
賢 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP03152396A priority Critical patent/JP3410894B2/en
Publication of JPH09227764A publication Critical patent/JPH09227764A/en
Application granted granted Critical
Publication of JP3410894B2 publication Critical patent/JP3410894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、成形性良好な半導
体封止樹脂用エポキシ樹脂組成物を得るためのものであ
る。 【0002】 【従来の技術】IC本体を機械的、化学的作用から保護
するために、エポキシ樹脂系半導体封止用樹脂組成物は
開発、生産されてきた。これに要求される項目は、封止
されるICパッケージの構造によって変化する。ここ1
0年、ICパッケージの表面実装対応が進み、耐半田ク
ラック性の高い封止樹脂組成物が要求されてきている。
耐半田クラック性を向上させるために、樹脂組成物は低
吸水化を余儀なくされる。低吸水化のためには無機充填
材の含有率を向上させる必要があり、そのためには低粘
度のエポキシ樹脂、硬化剤が要求される。ところが、低
粘度のエポキシ樹脂や硬化剤は硬化反応が遅いためにそ
れを用いた樹脂組成物は一般的に離型性が悪い。即ち成
形品が金型から剥がれないとか、離型時に金型に成形品
の一部が残るとかの離型不良が大きな問題となってい
た。硬化性の悪い樹脂組成物でも満足に離型できる離型
剤の開発が望まれていた。 【0003】 【発明が解決しようとする課題】本発明は、半導体封止
用エポキシ樹脂組成物の離型性を改善し、硬化性の悪い
樹脂組成物でも満足に成形/離型できる樹脂組成物を提
供することにある。 【0004】 【課題を解決するための手段】本発明者は、上記課題を
達成するために鋭意検討を行った。その結果、下記組成
の樹脂組成物が成形性に優れ、かつ信頼性も問題がない
ことが判明した。即ち本発明は、エポキシ樹脂、フェノ
ール樹脂硬化剤、硬化促進剤、無機充填材及び軟化点1
20℃以上、結晶化度80%以上で、平均粒径200μ
m以下の微細化高密度ポリエチレンを必須成分とし、上
記微細化高密度ポリエチレンの配合量が全封止樹脂組成
物中に0.02〜1.00重量%であることを特徴と
る半導体封止用エポキシ樹脂組成物である。 【0005】 【発明の実施の形態】以下に各組成物について説明す
る。本発明で用いられるエポキシ樹脂は、分子中にエポ
キシ基を有する化合物を指す。例えば、オルソクレゾー
ルノボラック型エポキシ樹脂、ビスフェノールA型エポ
キシ樹脂、ビスフェノールF型エポキシ樹脂、トリフェ
ノールメタン型エポキシ樹脂、ナフタレン型エポキシ樹
脂、ビフェニル型エポキシ樹脂等が挙げられる。また、
これらの樹脂の重合度、エポキシ当量については特に限
定しない。ただし、表面実装対応の樹脂組成物の場合、
無機充填材の量を多くすることが必要であり、溶融時の
粘度が極力低いエポキシ樹脂が望まれている。耐湿信頼
性向上のために、これらのエポキシ樹脂中に含有される
塩素イオン、ナトリウムイオン、その他フリーのイオン
は極力少ないことが望ましい。 【0006】本発明で用いられるフェノール樹脂硬化剤
は、分子中にフェノール性水酸基を含有する化合物を指
す。例えば、フェノールノボラック樹脂、パラキシリレ
ン変性フェノール樹脂、トリフェノールメタン型フェノ
ール樹脂、ビスフェノールA等が挙げられる。これらの
硬化剤はシリコーン変性されていても問題ない。更に水
酸基当量、重合度等については特に限定しない。エポキ
シ樹脂と同様に、硬化剤に関しても比較的低粘度のもの
が表面実装用封止樹脂組成物には望ましい傾向にある。
また、これらの樹脂は耐湿信頼性向上のため、不純物と
して含有される塩素イオン、ナトリウムイオン、その他
フリーのイオンは極力少ないことが望ましい。 【0007】本発明で使用される硬化促進剤は、エポキ
シ基とフェノール性水酸基の化学反応を促進させるもの
であれば良い。例えば、1,8−ジアザビシクロ(5,
4,0)ウンデセン−7(DBU)、2−メチルイミダ
ゾール、トリフェニルホスフィン、テトラフェニルホス
フィン・テトラフェニルボレート等が挙げられる。低粘
度のエポキシ樹脂と硬化剤を配合した処方の場合、硬化
促進剤の反応性が高くなければ成形後の硬度が低く、離
型不良が発生するので成形条件において十分硬化反応を
進ませることができるような硬化促進剤種類と量を選択
することがより望ましい。 【0008】本発明で用いられる無機充填材としては、
溶融シリカ粉末、球状シリカ粉末、結晶シリカ粉末、2
次凝集シリカ粉末、アルミナ等が挙げられ、特に樹脂組
成物の流動性の向上という観点から、球状シリカ粉末が
望ましい。球状シリカ粉末の形状は、流動性改善のため
に、粒子自体の形状は限りなく真球状であることが望ま
しく、更に粒度分布がブロードで有ることが望ましい。
また、この無機充填材はシラン系、チタン系、その他の
表面処理剤によって予め表面処理されていてもなんら構
わない。無機充填材の配合量については特に限定しな
い。また、平均粒径、最大粒径に関しても特に限定しな
い。 【0009】本発明において用いられる高密度ポリエチ
レンは、本発明における技術上の重要なポイントである
ので、詳細に説明する。ポリエチレンは表面エネルギー
が低いために、各種コンパウンド(半導体封止用樹脂組
成物に限らず)に練り込まれても成形時に成形品表面に
ブリードアウトし易いので、熱可塑性樹脂の分野では早
くから離型剤として利用してきた。 【0010】本発明の高密度ポリエチレンを用いること
により、エポキシ樹脂組成物の特性について、以下の点
が改善される。高密度ポリエチレンの表面エネルギーは
低いので、少量の添加量で良好な離型性を発現できる。
この高密度ポリエチレンは軟化点が高く、成形時の粘度
が高いので、連続成形時に型汚れが少ない。更に長期の
熱安定性に優れ、金型のクリーニング回数が少なくな
る。高密度ポリエチレンの表面エネルギーが低いため
に、リードフレームの各種金属や、各種プラスチックに
も良好に接着し、接着強度が向上して耐湿性も向上す
る。 【0011】以下に特徴、使用法に関して詳細に説明す
る。本発明で用いられる使用される高密度ポリエチレン
の軟化点は120℃以上である。半導体封止用樹脂組成
物は通常100℃程度で混練されるので、軟化点が12
0℃以上にもなれば混練時の均一分散は不可能であると
考えられていたが、実験によると、問題なく混練できる
ことが判明した。理由は定かでないが恐らくは、混練時
の高い剪断力によって、エポキシ樹脂や硬化剤の溶媒効
果で混和し、均一分散ものと推測される。いくつかの実
験の結果から上記の軟化点の高密度ポリエチレンが離型
性の改善に有効であることが判明した。 【0012】本発明における高密度ポリエチレンの軟化
点は、120℃以上が望ましい。120℃未満の軟化点
の高密度ポリエチレンでは、連続成形における金型汚れ
問題を引き起こしやすい。本発明における軟化点の測定
方法は、環球法であり、内径15.9mm、深さ6.4
mmの真鍮のリングに試験片を融解して流し込むか、成
形または打ち抜いたものをはめ込み、その中心上に直径
9.53mm、重量3.5gの鋼球を乗せて、これをオ
イルバスに入れ、液温を5℃/分で昇温させる。温度が
上昇するに従い、鋼球は下降する。鋼球が、真鍮のリン
グ下端から25.4mm下のプレートに接触するように
なったときのオイルバスの温度を軟化点とする。 【0013】本発明に用いる高密度ポリエチレンは、結
晶化度80%以上の高密度ポリエチレンである。結晶化
度が80%未満であると、結晶性が低いために熱によっ
て酸化劣化を引き起こしやすく、高温、長時間での連続
成形では、成形金型表面に酸化したポリエチレンが厚く
張り付いて金型汚れの主原因になる。結晶化度の測定方
法は、密度法であり、25℃の水浴中で試験管内にポリ
エチレンの破片をいれ、水とエタノールの混合物を投入
する。水/エタノールの配合比を変えて、ポリエチレン
の破片が浮遊する状態にする。この状態の水/エタノー
ル溶液の比重をピクノメーターで測定し、ポリエチレン
の比重を計算する。ポリエチレンは非晶物、結晶物共に
比重が判明しているので、そのデータをもとに下記式を
もとに結晶化度を計算する。 結晶化度(%)=ρc(ρ−ρ2)/ρ(ρc−ρ2)×1
00 ただし、ρ :ポリエチレンの比重 ρc:ポリエチレンの結晶の比重 ρ2:ポリエチレンの非晶の比重 である。 【0014】又、平均粒径が200μm以下に微細化さ
れている必要がある。軟化点が混練温度の100℃以上
であるために、基本的には混練しにくい。その為に、混
練前に予め微粉化されている必要がある。実験結果か
ら、平均粒径は200μm以下が望ましいことが判っ
た。平均粒径が200μmを越えると、ポリエチレンが
均一分散せず、型汚れの原因になる。本発明における平
均粒度の測定方法は、堀場製作所・製のレーザー粒度解
析計を利用して分析した。分散媒は水/エタノールの混
合物である。 【0015】本発明に用いる高密度ポリエチレンの分子
量や分子量分布、分岐や直鎖状などの高分子の一次構造
は特に限定しない。軟化点と結晶化度、平均粒径が最も
重要なパラメーターである。本発明における高密度ポリ
エチレンの配合量は、全封止樹脂組成物中に0.02〜
1.00重量%が望ましい。0.02重量%未満である
と、離型剤として充分機能せず、離型不良が生じる。
1.00重量%を越えると、高密度ポリエチレンがブリ
ードアウトして型汚れ、ウスバリ、リードフレームへの
密着不良等の問題がある。 【0016】本発明における高密度ポリエチレンは、他
の種類の離型剤と併用しても、単独で使用しても問題は
ない。但し併用する場合のたの離型剤は、全離型剤中2
0重量%未満が望ましい。20重量%を越えると、金型
汚れ、離型性、各種基材に対する密着性の何れかが悪く
なり、樹脂組成物としての特性のバランスが崩れる。併
用する離型剤は、カルナバワックス等のエステル系ワッ
クスや、ステアリン酸ワックス、ステアリン酸鉛等の酸
系ワックスなどが望ましいが特に限定しない。本発明の
樹脂組成物は上述の成分以外に、必要に応じて、カーボ
ンブラック等の着色剤、ブロム化エポキシ樹脂、三酸化
アンチモン等の難燃剤、シランカップリング剤、シリコ
ーンオイル、ゴム等の低応力成分を添加することができ
る。本発明の樹脂組成物は、エポキシ樹脂、フェノール
樹脂硬化剤、硬化促進剤、無機充填材、その他添加剤を
ミキサーにて常温混合し、ロール、押し出し機等の一般
混練機にて混練し、冷却後粉砕し成形材料とすることが
できる。 【0017】 【実施例】以下本発明を実施例にて具体的に説明する。
《実施例1》 下記組成物 ビフェニル型エポキシ樹脂(エポキシ当量:195) 5.8重量部 フェノールアラルキル型樹脂(水酸基当量:175) 5.7重量部 球状シリカ粉末 85.0重量部 高密度ポリエチレンA 0.5重量部 1.8−ジアザビシクロ(5,4,0)ウンデセン−7 0.2重量部 カーボンブラック(平均粒径18nm) 0.3重量部 臭素化フェノールノボラック型エポキシ樹脂 1.0重量部 三酸化アンチモン 1.3重量部 エポキシシランカップリング剤 0.5重量部 を、ミキサーにて常温混合し、100℃で二軸ロールに
て混練し、冷却後粉砕し成形材料とした。得られた成形
材料を以下の評価方法により評価した。 【0018】《評価方法》 軟化点: 環球法 結晶化度:密度法 成形評価:低圧トランスファー成形の金型の160pQ
FP成形テストを行った。成形温度175℃、硬化時間
2分で成形した成形品の離型性を○、△、×の3段階で
官能評価する。更に、得られた成形品の表面の状態を目
視で観察し、型汚れの有無を○、△、×の3段階で判定
した。 耐半田評価:175℃、2分硬化で80pQFP(1.
5mm厚)の成形品を得、175℃8時間のポストキュ
アを行ってサンプルとした。各品番毎に6パッケージづ
つ得た。85℃、85%の恒温恒湿槽内に168時間投
入した後に240℃のIRリフロー処理を行った。処理
後のパッケージの内部の剥離を超音波探傷機にて観察
し、チップ表面の剥離、パッド裏面の剥離が有るパッケ
ージの個数で耐半田性(及び密着性)を判定した。 【0019】《実施例2〜6》 実施例1の処方のうち離型剤として、高密度ポリエチレ
ンの種類のみを表1のように変えた処方(その他の配合
は実施例1と同じ)に従って配合し、実施例1と同様に
して成形材料を得、同様に評価した。ただし実施例6に
おいてはカルナバワックスを併用した。 《比較例1〜》 実施例1の処方のうち離型剤として高密度ポリエチレン
の種類又は離型剤と球状シリカの配合量を表2のように
変えた処方(その他の配合は実施例1と同じ)に従って
配合し、実施例1と同様にして成形材料を得、同様に評
価した。 【0020】 *使用した高密度ポリエチレンの特性 軟化点 結晶化度 平均粒径 (℃) (%) (μm) 高密度ポリエチレンA 142 96 105 高密度ポリエチレンB 125 95 105 高密度ポリエチレンC 140 85 105 高密度ポリエチレンD 143 97 195 高密度ポリエチレンE 162 98 53 高密度ポリエチレンF 111 81 103 高密度ポリエチレンG 124 79 102 高密度ポリエチレンH 142 96 266 【0021】 表 1 実 施 例 1 2 3 4 5 6 配合(重量部) ヒ゛フェニル型エホ°キシ樹脂 5.8 5.8 5.8 5.8 5.8 5.8 フェノールアラルキル型樹脂 5.7 5.7 5.7 5.7 5.7 5.7 球状シリカ 85.0 85.0 85.0 85.0 85.0 85.0 高密度ポリエチレンA 0.5 0.2 高密度ポリエチレンB 0.5 高密度ポリエチレンC 0.5 高密度ポリエチレンD 0.5 高密度ポリエチレンE 0.5 カルナバワックス 0.3 特性 離型性 ○ ○ ○ ○ ○ ○ 型汚れ性 ○ ○ ○ ○ ○ ○ 耐半田評価:チップ剥離 0 0 0 0 0 0 耐半田評価:パッド剥離 0 0 0 0 0 0 【0022】 表 2 ──────────────────────────────────── 比 較 例 1 2 3 ──────────────────────────────────── 配合(重量部) ヒ゛フェニル型エホ゜キシ樹脂 5.8 5.8 5.8 5.8 5.8 5.8フェノールアラルキル型樹脂 5.7 5.7 5.7 5.7 5.7 5.7 球状シリカ 85.0 85.49 84.3 85.0 85.0 85.0 高密度ポリエチレンA 0.01 1.2 高密度ポリエチレンF 0.5 高密度ポリエチレンG 0.5 高密度ポリエチレンH 0.5 カルナバワックス 0.5 ──────────────────────────────────── 特性 離型性 △ × ○ ○ ○ ○ 型汚れ性 △ ○ × × × × 耐半田評価:チップ剥離 1 0 2 1 2 1 耐半田評価:パッド剥離 2 0 3 1 1 0 ──────────────────────────────────── 【0023】 【発明の効果】本発明に従うと、離型性良好で信頼性の
高い半導体封止用エポキシ樹脂組成物を得ることができ
るため、半導体メーカーにおいて生産性が向上し、半導
体メーカーでの生産コストを低減することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to obtain an epoxy resin composition for a semiconductor encapsulating resin having good moldability. [0002] Epoxy resin-based resin compositions for semiconductor encapsulation have been developed and manufactured to protect the IC body from mechanical and chemical actions. Items required for this vary depending on the structure of the IC package to be sealed. Here 1
In 0 years, the surface mounting of IC packages has progressed, and a sealing resin composition having high solder crack resistance has been required.
In order to improve the solder crack resistance, the resin composition must be made low in water absorption. In order to reduce water absorption, it is necessary to increase the content of the inorganic filler, and for that purpose, a low-viscosity epoxy resin and a curing agent are required. However, since a low-viscosity epoxy resin or a curing agent has a slow curing reaction, a resin composition using the same generally has poor releasability. In other words, there has been a serious problem in that the molded product is not peeled off from the mold, or a part of the molded product remains in the mold at the time of mold release. It has been desired to develop a release agent that can satisfactorily release a resin composition having poor curability. DISCLOSURE OF THE INVENTION [0003] The present invention is directed to a resin composition which improves the releasability of an epoxy resin composition for semiconductor encapsulation, and which can satisfactorily mold / release a resin composition having poor curability. Is to provide. [0004] The present inventor has made intensive studies to achieve the above object. As a result, it was found that the resin composition having the following composition was excellent in moldability and had no problem in reliability. That is, the present invention provides an epoxy resin, a phenol resin curing agent, a curing accelerator, an inorganic filler and a softening point of 1
20 ° C. or higher, crystallinity 80% or higher, average particle size 200 μm
m the following fine high density polyethylene as an essential component, the upper
The amount of the finely divided high-density polyethylene is the total sealing resin composition
An epoxy resin composition for encapsulating a semiconductor, wherein the content is 0.02 to 1.00% by weight in the product. [0005] Each composition will be described below. The epoxy resin used in the present invention refers to a compound having an epoxy group in a molecule. For example, orthocresol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, triphenolmethane type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin and the like can be mentioned. Also,
The degree of polymerization and epoxy equivalent of these resins are not particularly limited. However, in the case of a resin composition for surface mounting,
It is necessary to increase the amount of the inorganic filler, and an epoxy resin having a viscosity as low as possible upon melting is desired. In order to improve the moisture resistance reliability, it is desirable that chlorine ions, sodium ions and other free ions contained in these epoxy resins are as small as possible. The phenolic resin curing agent used in the present invention refers to a compound containing a phenolic hydroxyl group in the molecule. For example, a phenol novolak resin, a paraxylylene-modified phenol resin, a triphenolmethane-type phenol resin, bisphenol A and the like can be mentioned. There is no problem even if these curing agents are modified with silicone. Further, the hydroxyl equivalent, the degree of polymerization, and the like are not particularly limited. As with the epoxy resin, a curing agent having a relatively low viscosity tends to be desirable for the sealing resin composition for surface mounting.
In order to improve the moisture resistance reliability of these resins, it is desirable that chlorine ions, sodium ions and other free ions contained as impurities be as small as possible. The curing accelerator used in the present invention may be any one which promotes a chemical reaction between an epoxy group and a phenolic hydroxyl group. For example, 1,8-diazabicyclo (5,
4,0) undecene-7 (DBU), 2-methylimidazole, triphenylphosphine, tetraphenylphosphine / tetraphenylborate and the like. In the case of a formulation containing a low-viscosity epoxy resin and a curing agent, if the reactivity of the curing accelerator is not high, the hardness after molding is low and mold release failure occurs, so the curing reaction can proceed sufficiently under molding conditions. It is more desirable to select the kind and amount of the curing accelerator that can be obtained. The inorganic filler used in the present invention includes:
Fused silica powder, spherical silica powder, crystalline silica powder, 2
Sub-agglomerated silica powder, alumina and the like are mentioned, and spherical silica powder is particularly preferable from the viewpoint of improving the fluidity of the resin composition. Regarding the shape of the spherical silica powder, in order to improve the fluidity, it is desirable that the shape of the particles themselves be infinitely spherical and that the particle size distribution be broad.
The inorganic filler may be previously surface-treated with a silane-based, titanium-based, or other surface treatment agent. The amount of the inorganic filler is not particularly limited. The average particle size and the maximum particle size are not particularly limited. The high-density polyethylene used in the present invention is an important technical point in the present invention, and will be described in detail. Because polyethylene has low surface energy, it easily bleeds out on the surface of molded products during molding even when kneaded into various compounds (not limited to resin compositions for semiconductor encapsulation). It has been used as an agent. By using the high-density polyethylene of the present invention, the following characteristics of the epoxy resin composition are improved. Since the surface energy of high-density polyethylene is low, good releasability can be exhibited with a small amount of addition.
Since this high-density polyethylene has a high softening point and a high viscosity at the time of molding, there is little mold contamination during continuous molding. Further, it has excellent long-term thermal stability and reduces the number of cleaning times of the mold. Since the surface energy of the high-density polyethylene is low, it adheres well to various metals and various plastics of the lead frame, and the adhesive strength is improved and the moisture resistance is also improved. Hereinafter, the features and usage will be described in detail. The softening point of the high-density polyethylene used in the present invention is 120 ° C. or higher. The resin composition for semiconductor encapsulation is usually kneaded at about 100 ° C.
It was thought that uniform dispersion during kneading was not possible if the temperature was 0 ° C. or higher, but experiments have shown that kneading can be performed without any problem. Although the reason is not clear, it is presumed that, due to the high shearing force at the time of kneading, the epoxy resin and the curing agent are mixed due to the solvent effect and are uniformly dispersed. From the results of several experiments, it was found that high-density polyethylene having the above softening point was effective for improving the releasability. The softening point of the high-density polyethylene in the present invention is desirably 120 ° C. or higher. High-density polyethylene having a softening point of less than 120 ° C. tends to cause mold contamination in continuous molding. The method for measuring the softening point in the present invention is the ring and ball method, and has an inner diameter of 15.9 mm and a depth of 6.4.
The test piece was melted and poured into a brass ring of mm or a molded or punched one was fitted. A steel ball with a diameter of 9.53 mm and a weight of 3.5 g was placed on the center of the test piece, and this was put into an oil bath. The liquid temperature is raised at 5 ° C./min. As the temperature rises, the steel ball falls. The softening point is the temperature of the oil bath when the steel ball comes into contact with the plate 25.4 mm below the lower end of the brass ring. The high-density polyethylene used in the present invention is a high-density polyethylene having a crystallinity of 80% or more. When the degree of crystallinity is less than 80%, the crystallinity is low, so that it is liable to cause oxidative deterioration due to heat. In continuous molding at high temperature and for a long time, the oxidized polyethylene is stuck to the surface of the molding die thickly, and the die becomes thick. The main cause of dirt. The crystallinity is measured by a density method, in which a piece of polyethylene is placed in a test tube in a water bath at 25 ° C., and a mixture of water and ethanol is charged. Change the mixing ratio of water / ethanol so that the polyethylene fragments float. The specific gravity of the water / ethanol solution in this state is measured with a pycnometer, and the specific gravity of polyethylene is calculated. Since the specific gravity of both amorphous and crystalline polyethylene is known, the degree of crystallinity is calculated from the data based on the following equation. Crystallinity (%) = ρ c (ρ−ρ 2 ) / ρ (ρ c −ρ 2 ) × 1
Where ρ: specific gravity of polyethylene ρ c : specific gravity of polyethylene crystal ρ 2 : specific gravity of polyethylene amorphous Further, it is necessary that the average particle size is reduced to 200 μm or less. Since the softening point is equal to or higher than the kneading temperature of 100 ° C., kneading is basically difficult. For this purpose, it is necessary that the powder be pulverized before kneading. From the experimental results, it was found that the average particle size was desirably 200 μm or less. If the average particle size exceeds 200 μm, the polyethylene will not be uniformly dispersed, causing mold staining. The method of measuring the average particle size in the present invention was analyzed using a laser particle size analyzer manufactured by Horiba, Ltd. The dispersion medium is a mixture of water / ethanol. The molecular weight and molecular weight distribution of the high-density polyethylene used in the present invention, and the primary structure of the polymer, such as branched or linear, are not particularly limited. Softening point, crystallinity and average particle size are the most important parameters. The compounding amount of the high-density polyethylene in the present invention is 0.02 to
1.00% by weight is desirable. If it is less than 0.02% by weight, it does not function sufficiently as a mold release agent, resulting in mold release failure.
If the content exceeds 1.00% by weight, the high-density polyethylene bleeds out, causing problems such as mold stains, burrs, and poor adhesion to the lead frame. The high-density polyethylene of the present invention can be used in combination with other types of release agents, or used alone. However, when used together, the release agent is 2/2 of all release agents.
Less than 0% by weight is desirable. If the amount exceeds 20% by weight, any of mold stains, mold releasability, and adhesion to various substrates deteriorates, and the balance of characteristics as a resin composition is lost. The release agent used in combination is preferably an ester wax such as carnauba wax or an acid wax such as stearic acid wax or lead stearate, but is not particularly limited. The resin composition of the present invention may contain, if necessary, a coloring agent such as carbon black, a brominated epoxy resin, a flame retardant such as antimony trioxide, a silane coupling agent, a silicone oil, a rubber, and the like, if necessary. Stress components can be added. The resin composition of the present invention is prepared by mixing an epoxy resin, a phenolic resin curing agent, a curing accelerator, an inorganic filler, and other additives at room temperature with a mixer, kneading with a general kneading machine such as a roll, an extruder, and cooling. It can be pulverized to obtain a molding material. The present invention will be specifically described below with reference to examples.
Example 1 The following composition Biphenyl type epoxy resin (epoxy equivalent: 195) 5.8 parts by weight Phenol aralkyl type resin (hydroxyl equivalent: 175) 5.7 parts by weight Spherical silica powder 85.0 parts by weight High density polyethylene A 0.5 parts by weight 1.8-diazabicyclo (5,4,0) undecene-7 0.2 parts by weight Carbon black (average particle diameter 18 nm) 0.3 parts by weight Brominated phenol novolak type epoxy resin 1.0 part by weight 1.3 parts by weight of antimony trioxide 0.5 part by weight of an epoxysilane coupling agent was mixed at room temperature with a mixer, kneaded at 100 ° C. with a biaxial roll, cooled and pulverized to obtain a molding material. The obtained molding material was evaluated by the following evaluation method. << Evaluation Method >> Softening point: Ring and ball method Crystallinity: Density method molding Evaluation: 160 pQ of low pressure transfer molding mold
An FP molding test was performed. The releasability of a molded product molded at a molding temperature of 175 ° C. and a curing time of 2 minutes is organoleptically evaluated in three stages of ○, Δ and ×. Further, the state of the surface of the obtained molded article was visually observed, and the presence or absence of mold contamination was determined in three stages of ○, Δ, and ×. Solder resistance evaluation: 80 pQFP (1.
(5 mm thickness) was obtained, and post-cured at 175 ° C. for 8 hours to obtain a sample. Six packages were obtained for each part number. After being charged in an 85 ° C., 85% constant temperature / humidity chamber for 168 hours, an IR reflow treatment at 240 ° C. was performed. The peeling inside the package after the treatment was observed with an ultrasonic flaw detector, and the solder resistance (and adhesion) was determined based on the number of packages having the chip surface peeling and the pad back surface peeling. << Examples 2 to 6 >> Of the formulations of Example 1, only the type of high-density polyethylene was changed as shown in Table 1 as the release agent (other formulations were the same as in Example 1). Then, a molding material was obtained in the same manner as in Example 1 and evaluated in the same manner. However, in Example 6, carnauba wax was used in combination. << Comparative Examples 1 to 6 >> Among the formulations of Example 1, a formulation in which the kind of high-density polyethylene as a mold release agent or the blending amount of the mold release agent and spherical silica was changed as shown in Table 2 (other formulations were the same as in Example 1) In the same manner as in Example 1 to obtain a molding material, which was evaluated in the same manner. * Characteristics of high density polyethylene used Softening point Crystallinity Average particle size (° C) (%) (μm) High density polyethylene A 142 96 105 High density polyethylene B 125 95 105 High density polyethylene C 140 85 105 High Density polyethylene D 143 97 195 High density polyethylene E 162 98 53 High density polyethylene F 111 81 103 High density polyethylene G 124 79 102 High density polyethylene H 142 96 266 Table 1 Example 1 2 3 4 5 6 blending (parts by weight) Diphenyl ethoxy resin 5.8 5.8 5.8 5.8 5.8 5.8 Phenol aralkyl type resin 5.7 5.7 5.7 5.7 5.7 5.7 5.7 Spherical silica 85.0 85.0 85.0 85.0 85.0 85.0 High density polyethylene A 0.5 0.2 High-density polyethylene B 0.5 High-density polyethylene C 0.5 High-density polyethylene D 0.5 High-density polyethylene E 0.5 Carnauba wax 0.3 Characteristics Releasability ○ ○ ○ ○ ○ ○ Mold stainability ○ ○ ○ ○ ○ ○ Solder resistance evaluation: chip peeling 0 0 0 000 0 Soldering resistance evaluation: Pad peeling 0 0 0 0 0 0 ─────── Comparative example 1 2 3 4 5 6 ──────────────────────────────────配合 Formulation (parts by weight) Diphenyl ethoxy resin 5.8 5.8 5.8 5.8 5.8 5.8 5.8 Phenol aralkyl type resin 5.7 5.7 5.7 5.7 5.7 5.7 5.7 Spherical silica 85.0 85.49 84.3 85.0 85.0 85.0 High density polyethylene A 0.01 1.2 High density polyethylene F 0.5 High density polyethylene G 0.5 High density polyethylene H 0.5 Carnauba wax 0.5 ──────── ──────────────────────────── Characteristics Releasability △ × ○ ○ ○ ○ Mold contamination △ ○ × × × × Solder resistance evaluation : Chip peeling 102 1 2 1 Solder resistance evaluation: Pad peeling 2 0 3 1 1 1 0 According to the present invention, it is possible to obtain a highly reliable epoxy resin composition for semiconductor encapsulation with good releasability. And reduce production costs at semiconductor manufacturers. That.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C08L 23:06) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C08L 23:06)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 エポキシ樹脂、フェノール樹脂硬化剤、
硬化促進剤、無機充填材及び軟化点120℃以上、結晶
化度80%以上で、平均粒径200μm以下の微細化高
密度ポリエチレンを必須成分とし、上記微細化高密度ポ
リエチレンの配合量が全封止樹脂組成物中に0.02〜
1.00重量%であることを特徴とする半導体封止用エ
ポキシ樹脂組成物。
(57) [Claims] [Claim 1] Epoxy resin, phenol resin curing agent,
Curing accelerator, an inorganic filler and a softening point of 120 ° C. or higher, crystallization of 80% or more, an average particle size 200μm or less finer high-density polyethylene as an essential component, the fine dense potentiation
The amount of ethylene in the total sealing resin composition is 0.02 to
An epoxy resin composition for semiconductor encapsulation, which is 1.00% by weight .
JP03152396A 1996-02-20 1996-02-20 Epoxy resin composition for semiconductor encapsulation Expired - Fee Related JP3410894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03152396A JP3410894B2 (en) 1996-02-20 1996-02-20 Epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03152396A JP3410894B2 (en) 1996-02-20 1996-02-20 Epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH09227764A JPH09227764A (en) 1997-09-02
JP3410894B2 true JP3410894B2 (en) 2003-05-26

Family

ID=12333559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03152396A Expired - Fee Related JP3410894B2 (en) 1996-02-20 1996-02-20 Epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP3410894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068419A (en) * 1998-08-19 2000-03-03 Toray Ind Inc Semiconductor device

Also Published As

Publication number Publication date
JPH09227764A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
WO2006049156A1 (en) Epoxy resin composition and semiconductor device
JP2008143950A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
CN101107290A (en) Curable encapsulant composition and its preparing method
JP4525139B2 (en) The manufacturing method of the epoxy resin composition for semiconductor sealing.
JP3410894B2 (en) Epoxy resin composition for semiconductor encapsulation
JP5298310B2 (en) Resin composition for sealing electronic components and electronic component device using the same
JP3568653B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2008045025A (en) Epoxy resin composition for sealing and semiconductor apparatus
JP4654475B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2000044774A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP4014311B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2000273277A (en) Epoxy resin composition and semiconductor device
JP2003041096A (en) Method for manufacturing epoxy resin molding material and semiconductor device
JP3739065B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4538972B2 (en) Epoxy resin composition and semiconductor device
JPH03140322A (en) Epoxy resin molding material for semiconductor-sealing and resin-sealed semiconductor device
JPH09165499A (en) Epoxy resin composition for sealing of semiconductor
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP2008184544A (en) Resin composition for sealing semiconductor and semiconductor device obtained using the same
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
JPH1171442A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP5191072B2 (en) Epoxy resin composition and semiconductor device
JP2001106872A (en) Epoxy resin composition and semiconductor device
JP2001226463A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees