WO2021070416A1 - Thermosetting resin composition, cured product thereof, and structural body including said cured product - Google Patents

Thermosetting resin composition, cured product thereof, and structural body including said cured product Download PDF

Info

Publication number
WO2021070416A1
WO2021070416A1 PCT/JP2020/023639 JP2020023639W WO2021070416A1 WO 2021070416 A1 WO2021070416 A1 WO 2021070416A1 JP 2020023639 W JP2020023639 W JP 2020023639W WO 2021070416 A1 WO2021070416 A1 WO 2021070416A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
resin composition
thermosetting resin
carbon atoms
Prior art date
Application number
PCT/JP2020/023639
Other languages
French (fr)
Japanese (ja)
Inventor
千佳 峯崎
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2021551143A priority Critical patent/JP7367766B2/en
Publication of WO2021070416A1 publication Critical patent/WO2021070416A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring

Definitions

  • the present invention relates to a thermosetting resin composition, a cured product thereof, a method for producing a structure using the thermosetting resin composition, and a structure containing the cured product.
  • the encapsulant which is a plastic material, is also required to have high heat resistance.
  • transfer molding the material is heated and softened in the plunger, and the heated and softened material is pushed into the heated mold cavity through the flow path in the mold such as a gate, sprue, and runner, and inside the mold cavity. It is a method of curing with. Since the material is injected into the cavity in a highly fluid state, it can be molded at low pressure. Transfer molding is characterized in that it is less likely to damage the insert than other molding methods that require high pressure. Transfer molding is known as a typical molding method in sealing molding of power semiconductors and ICs because it can be miniaturized and microfabricated and has high productivity.
  • thermosetting resin compositions containing a large amount of polyfunctional epoxy resin, bismaleimide, triazine skeleton, benzoxazine skeleton, and silsesquioki Thermosetting resin compositions and the like containing a highly heat-resistant structure such as a sun skeleton have been proposed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 11-14277 describes (A) a phenol resin containing 30 to 100 parts by mass of a novolak-structured phenol resin containing a biphenyl derivative and / or a naphthalene derivative in the molecule. (B) An epoxy resin containing 30 to 100 parts by mass of a novolak-structured epoxy resin containing a biphenyl derivative and / or a naphthalene derivative in the molecule, (C) an inorganic filler, and (D) a curing accelerator. Describes an epoxy resin composition for encapsulating a semiconductor, which is characterized by being an essential component.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 5-43630 describes an aromatic bismaleimide containing N, N'-(alkyl-substituted diphenylmethane) bismaleimide and polyallylphenol from condensed polyphenol of salicylaldehyde and phenol. Describes the resin composition.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 5-6869 describes (A) a maleimide compound having two or more maleimide groups in one molecule, (B) an allylated phenol resin having a specific repeating unit, and (C). A semiconductor device in which a semiconductor element is sealed using a resin composition containing a curing catalyst is described.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 6-93047 describes a curable resin composition in which a maleimide compound, an alkenylphenol compound having a specific structure, and an epoxy group-containing organic silane compound are blended in a specific ratio.
  • Japanese Unexamined Patent Publication No. 11-14277 Japanese Unexamined Patent Publication No. 5-43630 Japanese Unexamined Patent Publication No. 5-6869 Japanese Unexamined Patent Publication No. 6-93047
  • the heat resistance of the molded product is improved by using the bismaleimide resin as compared with the epoxy-phenolic thermosetting resin material which has been conventionally used (Patent Documents 2 to 4).
  • the conventional encapsulant using bismaleimide resin has a drawback that the adhesion to other members, particularly metal materials, is very low as compared with the epoxy-phenolic thermosetting resin material.
  • the electronic device contains metal parts such as a conductor and copper that is responsible for cooling, and if peeling occurs between the metal and the sealing material, there is a problem in terms of internal protection. Therefore, it is an issue to improve the adhesion between the metal and the sealing material.
  • thermosetting resin composition having excellent adhesion to a metal and adhesiveness without impairing moldability is described.
  • thermosetting resin composition containing a polyalkenylphenol compound (A), a polymaleimide compound (B), a compound (C) having the structure according to the formula (1), and a radical initiator (D).
  • R 1 and R 2 are hydrogen atoms, halogen atoms, alkyl groups having 1 to 3 carbon atoms, hydroxyl groups, carboxy groups, or amino groups, and at least one of R 1 and R 2 is an amino group.
  • R 3 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, or a cyano group
  • R 4 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. is there.
  • the compound (C) is 6-aminoindazole, 5-aminoindazole, 6-amino-5-methylindazole, 6-amino-5-ethylindazole, 6-amino-5-hydroxyindazole, 6-amino-5-.
  • the above aspect 1 comprises at least one selected from bromoindazole, 6-amino-5-chloroindazole, 3-cyano-5-aminoindazole, 5-carboxy-6-aminoindazole, and 5,6-diaminoindazole.
  • the thermocurable resin composition according to the above. [3] The thermosetting resin composition according to the above aspect 2, wherein the compound (C) contains at least one selected from 5-aminoindazole and 6-aminoindazole. [4]
  • the contents of the compound (C) are 0.05 parts by mass to 5 parts by mass with respect to 100 parts by mass in total of the polyalkenylphenol compound (A) and the polymaleimide compound (B).
  • the thermosetting resin composition according to any one of.
  • thermosetting resin composition according to any one of the above aspects 1 to 4, wherein the amount of the polyalkenylphenol compound (A) is 5 to 200 parts by mass with respect to 100 parts by mass of the polymaleimide compound (B). .. [6]
  • the polyalkenylphenol compound (A) is represented by the formula (2) -1 :.
  • equation (2) -2 In formulas (2) -1 and (2) -2, R 5 independently has a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms, respectively.
  • R 6 Represents an alkoxy group of 5, and R 6 is an independent formula (3):
  • R 7 , R 8 , R 9 , R 10 and R 11 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, and carbon atoms, respectively. It is a cycloalkyl group of number 5 to 10 or an aryl group having 6 to 12 carbon atoms, where * in the formula (3) represents a bond with a carbon atom constituting an aromatic ring, and R 5 and R 6 are.
  • thermosetting resin composition each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • the thermosetting resin composition according to any one of the above aspects 1 to 5.
  • thermosetting resin composition When the average number of structural units shown in formula (2) -1 per molecule is p and the average number of structural units shown in formula (2) -2 per molecule is q, p is 1.1 to The thermosetting resin according to the above aspect 6, wherein 35 is a real number, p + q is a real number of 1.1 to 35, and q is a real number having a value of the formula: p / (p + q) of 0.4 to 1. Composition. [8] The thermosetting resin composition according to any one of the above aspects 1 to 7, wherein the polymaleimide compound (B) is an aromatic bismaleimide compound. [9] The thermosetting resin composition according to any one of the above aspects 1 to 8, wherein the radical initiator (D) is an organic peroxide.
  • the thermosetting resin composition according to the above aspect 10 wherein the filler (E) is at least one selected from the group consisting of silica, alumina, magnesium oxide and solid rubber particles.
  • the content of the filler (E) is 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the compound (C), and the radical initiator (D).
  • the thermosetting resin composition according to the above aspect 10 or 11 which is 200 to 1900 parts by mass.
  • a method for producing a structure wherein the thermosetting resin composition according to any one of the above aspects 1 to 12 is molded by molding.
  • thermosetting resin composition having excellent adhesion and adhesiveness to a metal without impairing moldability.
  • the thermosetting resin composition of the present disclosure can be cured in an appropriate time and gives excellent productivity.
  • a highly reliable cured product can be formed by using the thermosetting resin composition of the present disclosure.
  • thermosetting resin composition of one embodiment contains a polyalkenylphenol compound (A), a polymaleimide compound (B), a compound (C) having the structure represented by the formula (1), and a radical initiator (D). Including.
  • the polyalkenylphenol compound (A) is a compound having at least two phenol skeletons in the molecule and having a 2-alkenyl group bonded to a part or all of the aromatic ring forming the phenol skeleton in the molecule. ..
  • a group having a structure represented by the formula (3) is preferable.
  • R 7 , R 8 , R 9 , R 10 and R 11 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, cycloalkyl groups having 5 to 10 carbon atoms, or carbons, respectively. It is an aryl group having 6 to 12 atoms. * In the formula (3) represents a bond with a carbon atom constituting an aromatic ring.
  • alkyl group having 1 to 5 carbon atoms constituting R 7 , R 8 , R 9 , R 10 and R 11 in the formula (3) include a methyl group, an ethyl group, an n-propyl group and an isopropyl group. , N-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and the like.
  • Specific examples of the cycloalkyl group having 5 to 10 carbon atoms include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group and the like.
  • the aryl group having 6 to 12 carbon atoms include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a naphthyl group and the like. It is preferable that the 2-alkenyl group represented by the formula (3) is an allyl group, that is, R 7 , R 8 , R 9 , R 10 and R 11 are all hydrogen atoms.
  • a 2-alkenyl group is contained in preferably 40 to 100%, more preferably 60 to 100%, still more preferably 80 to 100% of the total aromatic rings forming the phenol skeleton. It is combined.
  • Known basic skeletons of the polyalkenylphenol compound (A) include phenol novolac resin, cresol novolac resin, triphenylmethane-type phenol resin, phenol aralkyl resin, biphenyl aralkyl phenol resin, and phenol-dicyclopentadiene copolymer resin.
  • the skeleton of phenolic resin can be mentioned.
  • the polyalkenylphenol compound (A) having the following formula (2) -1 and optionally the structural unit represented by the formula (2) -2 can be preferably used.
  • the structural units represented by the formulas (2) -1 and (2) -2 are preferable phenol skeleton units constituting the polyalkenylphenol compound (A), and the binding order of these phenol skeleton units is not particularly limited.
  • R 5 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, respectively, and is represented by the formula (2).
  • R 6 is a 2-alkoxy group independently represented by the formula (3).
  • R 5 and R 6 may be the same or different for each phenol skeleton unit.
  • Equation (2) -1 and the formula (2) each Q is at -2 independently formula -CR 12 R 13 - in the alkylene group represented, a cycloalkylene group having 5 to 10 carbon atoms, divalent having an aromatic ring , A divalent organic group having an alicyclic condensed ring, or a divalent organic group in combination thereof.
  • R 12 and R 13 are independently hydrogen atoms and alkyl having 1 to 5 carbon atoms, respectively.
  • p is preferably 1.
  • a real number of 1 to 35, p + q is a real number of 1.1 to 35, and q satisfies a real number in which the value of the formula: p / (p + q) is 0.4 to 1.
  • alkyl group having 1 to 5 carbon atoms constituting R 5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and n. -Pentyl group and the like can be mentioned.
  • alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentoxy group and the like. Can be mentioned.
  • cycloalkyl groups having 5 to 10 carbon atoms include cyclopentyl groups, cyclohexyl groups, methylcyclohexyl groups, cycloheptyl groups and the like, and have carbon atoms.
  • aryl groups 6 to 12 include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a naphthyl group and the like.
  • cycloalkylene group having 5 to 10 carbon atoms constituting Q include a cyclopentylene group, a cyclohexylene group, a methylcyclohexylene group, a cycloheptylene group and the like.
  • divalent organic group having an aromatic ring include a phenylene group, a tolylen group, a naphthylene group, a biphenylene group, a fluorenylene group, an anthracenylene group, a xylylene group, a 4,4-methylenediphenyl group and the like.
  • the number of carbon atoms of the divalent organic group having an aromatic ring can be 6 to 20 or 6 to 14.
  • divalent organic group having an alicyclic condensed ring examples include a dicyclopentadienylene group and the like.
  • the number of carbon atoms of the divalent organic group having an alicyclic condensed ring can be 7 to 20 or 7 to 10.
  • Q is a dicyclopentadienylene group, a phenylene group, a methylphenylene group, a xylylene group, or a biphenylene group in terms of high mechanical strength of the cured product. Since the viscosity of the polyalkenylphenol compound (A) is low and it is advantageous for mixing with the polymaleimide compound (B), it is preferable that Q is ⁇ CH 2 ⁇ .
  • P is preferably a real number of 1.1 to 35, more preferably a real number of 2 to 30, and even more preferably a real number of 3 to 10.
  • the thermal decomposition start temperature when the cured product of the thermosetting resin composition is placed in a high temperature environment is appropriate, and when p is 35 or less, the viscosity of the thermosetting resin composition Is in a suitable range depending on the processing at the time of molding.
  • P + q is preferably a real number of 1.1 to 35, more preferably a real number of 2 to 30, and even more preferably a real number of 3 to 10.
  • p + q is 1.1 or more, the thermal decomposition start temperature when the cured product of the thermosetting resin composition is placed in a high temperature environment is appropriate, and when it is 35 or less, the viscosity of the thermosetting resin composition Is in a suitable range depending on the processing at the time of molding.
  • q is preferably a real number having a value of the formula: p / (p + q) of 0.4 to 1, and more preferably a real number having a value of the formula: p / (p + q) of 0.6 to 1. More preferably, it is a real number in which the value of the formula: p / (p + q) is 0.8 to 1. Equation: When the value of p / (p + q) is 1, q is 0. That is, in this embodiment, the polyalkenylphenol compound (A) does not contain the structural unit represented by the formula (2) -2.
  • the polyalkenylphenol compound (A) can consist of the structural units represented by the formula (2) -1.
  • q is a value satisfying the above conditions, the degree of curing of the thermosetting resin composition can be made sufficient depending on the application.
  • the preferred number average molecular weight Mn of the polyalkenylphenol compound (A) is 300 to 5000, more preferably 400 to 4000, and even more preferably 500 to 3000.
  • the thermal decomposition start temperature is appropriate when the cured product of the thermosetting resin composition is placed in a high temperature environment, and when it is 5000 or less, the viscosity of the thermosetting resin composition. Is in a suitable range depending on the processing at the time of molding.
  • the polyalkenylphenol compound (A) can be obtained by converting a part of the hydroxyl groups of the raw material phenol resin into alkenyl ether and then rearranging the 2-alkenyl group by the Claisen rearrangement reaction.
  • the raw material phenol resin a known phenol resin having a structural unit represented by the following formula (2) -2 can be preferably used.
  • raw material phenol resin of the polyalkenylphenol compound (A) include phenol novolac resin, cresol novolac resin, triphenylmethane type phenol resin, phenol aralkyl resin, biphenyl aralkyl resin, phenol-dicyclopentadiene copolymer resin and the like. Can be mentioned.
  • the 2-alkenyl etherification reaction of the raw material phenol resin includes (i) a known method for reacting a halogenated 2-alkenyl compound such as allyl chloride, methallyl chloride, and allyl bromide with a phenol compound, and (ii) allyl acetate.
  • a halogenated 2-alkenyl compound such as allyl chloride, methallyl chloride, and allyl bromide with a phenol compound
  • allyl acetate Two known methods of reacting such a carboxylic acid 2-alkenyl compound with a phenol compound can be exemplified.
  • the method described in JP-A-2-91113 can be used.
  • the method described in JP-A-2011-26253 can be used as a method for reacting the carboxylic acid 2-alkenyl compound with the phenol resin.
  • the amount of the halogenated 2-alkenyl compound or the carboxylic acid 2-alkenyl compound used with respect to the phenolic hydroxyl group is preferably 0.4 to 5.0 equivalents, more preferably 0.6 to 4.0 equivalents.
  • the 2-alkenyl etherification reaction is carried out by mixing the 2-alkenyl compound with the raw material phenol resin and reacting for 4 to 40 hours. In the 2-alkenyl etherification reaction, a solvent in which the raw material phenol resin dissolves can be used.
  • the reaction can also be carried out without a solvent using a carboxylic acid 2-alkenyl compound capable of dissolving the raw material phenol resin.
  • the 2-alkenyl etherification rate of the raw material phenol resin is determined by using a larger amount of the halogenated 2-alkenyl compound or the carboxylic acid 2-alkenyl compound than the above amount and adjusting the reaction time to be shorter than the above reaction time. It can also be controlled by suppressing the reaction rate (conversion rate) of the 2-alkenyl compound to a low level.
  • the target polyalkenylphenol compound (A) can be obtained by subjecting the polyalkenyl ether compound produced by the method according to (i) or (ii) above to a Claisen rearrangement reaction.
  • the Claisen rearrangement reaction can be carried out by heating the polyalkenyl ether compound to a temperature of 100 to 250 ° C. and reacting it for 1 to 20 hours.
  • the Claisen rearrangement reaction may be carried out using a solvent having a high boiling point, or may be carried out without a solvent.
  • Inorganic salts such as sodium thiosulfate and sodium carbonate can also be added to promote the rearrangement reaction. Details are disclosed in, for example, Japanese Patent Application Laid-Open No. 2-911113.
  • the polymaleimide compound (B) is a compound having two or more maleimide groups represented by the formula (4).
  • * represents an aromatic ring or a bond with an organic group containing a straight chain, a branched chain or a cyclic aliphatic hydrocarbon group.
  • polymaleimide compound (B) examples include bismaleimide such as bis (4-maleimidephenyl) methane, trismaleimide such as tris (4-maleimidephenyl) methane, and tetraxmaleimide such as bis (3,4-dimaleimidephenyl) methane. And polymaleimide such as poly (4-maleimide styrene).
  • polymaleimide compound examples include an aromatic polymaleimide compound and an aliphatic polymaleimide compound, and the aromatic polymaleimide compound is preferable in that the obtained cured product has particularly excellent flame retardancy.
  • An aromatic polymaleimide compound is a compound having two or more maleimide groups represented by the formula (4), and these maleimide groups are bonded to the same or different aromatic rings.
  • Specific examples of the aromatic ring include a monocyclic ring such as benzene, a condensed ring such as naphthalene and anthracene, and the like.
  • the polymaleimide compound (B) is preferably an aromatic bismaleimide compound and an aliphatic bismaleimide compound, and more preferably an aromatic bismaleimide compound because it mixes well in the thermosetting resin composition. ..
  • aromatic bismaleimide compound examples include bis (4-maleimidephenyl) methane, bis (3-maleimidephenyl) methane, bis (3-methyl-4-maleimidephenyl) methane, and bis (3,5-dimethyl-).
  • 4-maleimidephenyl) methane bis (3-ethyl-4-maleimidephenyl) methane, bis (3,5-diethyl-4-maleimidephenyl) methane, bis (3-propyl-4-maleimidephenyl) methane, bis ( 3,5-Dipropyl-4-maleimidephenyl) methane, bis (3-butyl-4-maleimidephenyl) methane, bis (3,5-dibutyl-4-maleimidephenyl) methane, bis (3-ethyl-4-maleimide) -5-Methylphenyl) methane, 2,2-bis (4-maleimidephenyl) propane, 2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane, bis (4-maleimidephenyl) ether, bis (3-Maleimidephenyl) ether, bis (4-maleimidephenyl) ketone, bis (3-maleimidephenyl)
  • aliphatic bismaleimide compound examples include bis (4-maleimidecyclohexyl) methane and bis (3-maleimidecyclohexyl) methane. Of these, bis (4-maleimidephenyl) methane and 2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane are preferable. Examples of commercially available products include the BMI (trade name, manufactured by Daiwa Kasei Kogyo Co., Ltd.) series.
  • the blending amount of the polyalkenylphenol compound (A) is preferably 5 to 200 parts by mass, more preferably 10 to 150 parts by mass, and 20 to 20 to 150 parts by mass. It is more preferably 130 parts by mass.
  • the compounding amount is 5 parts by mass or more, the fluidity at the time of molding is better.
  • the compounding amount is 200 parts by mass or less, the heat resistance of the cured product is better.
  • Compound (C) is represented by the formula (1).
  • R 1 and R 2 are hydrogen atoms, halogen atoms, alkyl groups having 1 to 3 carbon atoms, hydroxyl groups, carboxy groups, or amino groups, and at least one of R 1 and R 2 is an amino group.
  • R 3 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, or a cyano group
  • R 4 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. It is a compound represented by).
  • one of R 1 and R 2 is preferably a hydrogen atom
  • both R 3 and R 4 are preferably hydrogen atoms.
  • halogen atom constituting R 1 or R 2 include a chlorine atom, a bromine atom, an iodine atom and the like.
  • alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like.
  • R 1 or R 2 other than the amino group a hydrogen atom, a chlorine atom, a bromine atom, a methyl group, an ethyl group, a hydroxyl group and a carboxy group are preferable, and a hydrogen atom, a methyl group, an ethyl group, a hydroxyl group and a carboxy group are more preferable.
  • Hydrogen atom is more preferable.
  • alkyl group having 1 to 3 carbon atoms constituting R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like.
  • alkenyl group having 2 to 3 carbon atoms include a vinyl group and an allyl group.
  • R 3 a hydrogen atom, a methyl group, an ethyl group, a vinyl group, an allyl group, and a cyano group are preferable, a hydrogen atom, a methyl group, an ethyl group, and a cyano group are more preferable, and a hydrogen atom is further preferable.
  • alkyl group having 1 to 3 carbon atoms constituting R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like.
  • R 4 a hydrogen atom, a methyl group, and an ethyl group are preferable, a hydrogen atom and a methyl group are more preferable, and a hydrogen atom is further preferable.
  • Examples of the compound (C) include 6-aminoindazole, 5-aminoindazole, 6-amino-5-methylindazole, 6-amino-5-ethylindazole, 6-amino-5-hydroxyindazole, and 6-amino-5.
  • Examples thereof include -bromoindazole, 6-amino-5-chloroindazole, 3-cyano-5-aminoindazole, 5-carboxy-6-aminoindazole, and 5,6-diaminoindazole.
  • 6-aminoindazole and 5-aminoindazole are preferable because they are excellent in adjusting the gel time and having an affinity for the metal surface, particularly copper. By controlling the gel time within an appropriate range, it is considered that the wetting of the thermosetting resin composition with respect to the substrate can be improved.
  • the curing rate of compound (C) can be adjusted in the curing reaction by radical polymerization. Without being bound by any theory, it is believed that the aniline moiety of compound (C) temporarily traps and stabilizes radicals, thereby adjusting the curing rate of the thermosetting resin composition.
  • the radical polymerization rate is generally adjusted by the amount of the radical polymerization initiator. If the radical polymerization reaction rate of the composition is too fast, the initial curing of, for example, 0 to 30 seconds after the start of molding and curing proceeds in a state where sufficient wetting with respect to the base material cannot be ensured, and the distance between the cured product and the base material is increased. Sufficient adhesion is not obtained.
  • the amount of the radical polymerization initiator is reduced in order to slow down the radical polymerization, not only the initial curing but also the reaction rate in the middle stage of curing, for example, 30 seconds to 180 seconds after the start of molding curing, becomes slow, which is sufficient for removing the molded product from the mold. It takes longer to reach the desired hardness and productivity is reduced.
  • the compound (C) it is possible to prevent a decrease in productivity due to a delay in the curing rate while sufficiently ensuring wetting with respect to the base material.
  • the pyrazole ring has higher chemical stability than the imidazole ring, which has a similar heterocyclic structure, and has a very high polymerization activity on the polymaleimide compound (B), which is catalyzed by the imidazole ring and causes a polymerization reaction. Low. This point is also excellent in terms of adjusting the curing speed.
  • compound (C) has a high affinity for metals, and the amino group, which is at least one of R 1 and R 2 , is an ethylenically unsaturated bond contained in the maleimide group of the polymaleimide compound (B).
  • compound (C) is covalently fixed in the molded product.
  • the compound (C) can act as a coupling agent between the resin and the metal surface, and can develop a strong adhesive force between the cured product and the metal base material.
  • the content of the compound (C) can be appropriately determined depending on the intended use, but is 0.05 parts by mass to 0.05 parts by mass with respect to 100 parts by mass in total of the polyalkenylphenol compound (A) and the polymaleimide compound (B). It is preferably 5 parts by mass, more preferably 0.2 parts by mass to 3 parts by mass, and further preferably 0.3 parts by mass to 2.5 parts by mass. If it is 0.05 part by mass or more, the adhesion to copper is better, and if it is 5 parts by mass or less, the function of adjusting the curing speed can be fully exhibited and the quick curing property can be maintained. Thereby, the appearance of the molded product and the moldability of the thermosetting resin composition can be improved.
  • thermosetting resin composition can be promoted by blending the radical initiator (D) with the thermosetting resin composition.
  • the radical initiator (D) is preferably a thermal radical initiator.
  • the thermal radical initiator include organic peroxides.
  • the organic peroxide is preferably an organic peroxide having a 10-hour half-life temperature of 100 to 170 ° C., specifically, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert-).
  • the preferable amount of the radical initiator (D) to be used is 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), and the compound (C). , More preferably 0.05 to 7.5 parts by mass, and even more preferably 0.1 to 5 parts by mass.
  • the amount of the radical initiator (D) used is 0.01 parts by mass or more, the curing reaction proceeds sufficiently, and when it is 10 parts by mass or less, the storage stability of the thermosetting resin composition is better.
  • the thermosetting resin composition may further contain a filler (E).
  • the type of the filler (E) is not particularly limited, and examples thereof include solid rubber particles such as solid silicone rubber particles, organic fillers such as silicone powder, and inorganic fillers such as silica, alumina, magnesium oxide, and boron nitride. It can be appropriately selected depending on the intended use.
  • the filler (E) is preferably at least one selected from the group consisting of silica, alumina, magnesium oxide, and solid rubber particles.
  • thermosetting resin composition when used for semiconductor encapsulation, it is preferable to add an insulating inorganic filler in order to obtain a cured product having a low coefficient of thermal expansion.
  • the inorganic filler is not particularly limited, and known materials can be used. Specific examples of the inorganic filler include silica such as amorphous silica and crystalline silica, and particles such as alumina, boron nitride, aluminum nitride, and silicon nitride. From the viewpoint of reducing the viscosity, spherical amorphous silica is desirable.
  • the inorganic filler may be surface-treated with a silane coupling agent or the like, but may not be surface-treated.
  • the average particle size of the filler (E) is preferably 0.1 to 30 ⁇ m, and more preferably the maximum particle size is 100 ⁇ m or less, particularly 75 ⁇ m or less. When the average particle size is in this range, the viscosity of the thermosetting resin composition is appropriate at the time of use, and the injectability into a narrow pitch wiring portion or a narrow gap portion is also appropriate.
  • the average particle size referred to here is a volume cumulative particle size D 50 measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the content of the filler (E) in the thermosetting resin composition can be appropriately determined according to the application.
  • the content of the filler (E) in the thermosetting resin composition is 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the compound (C), and the radical initiator (D).
  • it is preferably 200 to 1900 parts by mass, more preferably 300 to 1000 parts by mass, and further preferably 300 to 600 parts by mass.
  • thermosetting resin composition As other additives, a defoaming agent, a coloring agent, a phosphor, a denaturing agent, a leveling agent, a light diffusing agent, a flame retardant, an adhesion imparting agent, a mold release agent, a coupling agent, etc. are blended in the thermosetting resin composition. It is also possible to do.
  • various waxes such as ester waxes such as carnauba wax and montanic acid ester wax, amide-based waxes such as lauric acid amide, stearic acid amide, and N-stearyl erucate amide, polyethylene, and polyethylene oxide are appropriately selected. can do.
  • examples of the coupling agent include vinyl triethoxysilane, vinyl trimethoxysilane, 3-glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, and N-phenyl-3.
  • -A silane coupling agent such as aminopropyltrimethoxysilane can be mentioned.
  • the coupling agent may be used alone or in combination of two or more.
  • the blending amount of the coupling agent in the thermosetting resin composition is preferably 0.1 to 5% by mass. When the blending amount is 0.1% by mass or more, the effect of the coupling agent is sufficiently exhibited, and when it is 5% by mass or less, the melt viscosity, the hygroscopicity and the strength of the cured product are more good.
  • thermosetting resin composition The method for preparing the thermosetting resin composition is as long as the polyalkenylphenol compound (A), the polymaleimide compound (B), the compound (C), the radical initiator (D), and other optional components can be uniformly mixed and dispersed. There is no particular limitation.
  • the method of first melting and mixing the polyalkenylphenol compound (A), the polymaleimide compound (B), and the compound (C), and then adding the radical initiator (D) and any additive is to make each material uniform. It is preferable because it is easy to mix.
  • each component is not particularly limited.
  • Reaction vessel pot mill, two-roll mill, three-roll mill, rotary mixer, twin-screw mixer, dispenser, single-screw or twin-screw (same direction or different direction) extruder, kneader, etc. It can be mixed by putting it in a mixer and stirring or kneading it.
  • a rotary mixer is preferable because the stirring conditions can be easily changed, and industrially, a twin-screw mixer is preferable from the viewpoint of productivity.
  • Each mixer can be used by appropriately changing the stirring conditions.
  • the method is not particularly limited as long as the resin is not melted by the heat generated in the work process, but it is convenient to use an agate mortar if the amount is small.
  • a commercially available crusher it is preferable that the amount of heat generated during crushing is small in order to suppress the melting of the mixture.
  • the particle size of the powder is preferably 1 mm or less.
  • thermosetting resin composition can be melted by heating.
  • a structure can be produced by molding the melted thermosetting resin composition into an arbitrary preferable shape, curing it if necessary, and removing the mold.
  • molding molding particularly transfer molding and compression molding are preferable.
  • preferable conditions for transfer molding for example, in the case of a mold having a size of 10 mm ⁇ 75 mm ⁇ 3 mm, the temperature of the top plate and the mold is 170 to 190 ° C., the holding pressure is 50 to 150 kg / cm 2 , and the holding time is set. It can be 1.5 to 10 minutes.
  • the temperature of the top plate and the mold is 170 to 190 ° C.
  • the molding pressure is 5 to 20 MPa
  • the pressurizing time is 1. It can be 5 to 10 minutes.
  • the thermosetting resin composition can be cured by heating.
  • the curing temperature is preferably 130 to 300 ° C, more preferably 150 to 230 ° C, and even more preferably 150 to 200 ° C.
  • the curing temperature is 130 ° C. or higher, the thermosetting resin composition before curing can be sufficiently melted and easily filled in the mold, and the mold can be easily removed after curing.
  • the curing temperature is 300 ° C. or lower, thermal deterioration or volatilization of the material can be avoided.
  • the heating time can be appropriately changed depending on the thermosetting resin composition and the curing temperature, but 0.1 to 24 hours is preferable from the viewpoint of productivity. This heating may be performed in a plurality of times.
  • the final curing temperature is preferably 250 ° C. or lower, preferably 230 ° C. or lower, without curing at an excessively high temperature, for example, by raising the temperature as the curing progresses. Is more preferable.
  • thermosetting resin composition can be used, for example, in applications such as semiconductor encapsulants, prepregs, interlayer insulating resins, solder resists, and die attaches.
  • a structure of 30 mm ⁇ 30 mm ⁇ 5 mmt in which the molding time was lengthened by 30 s, 60 s and 15 s at 180 ° C. was prepared by a compression mold, respectively, and the structure obtained by using a type D durometer compliant with JIS K 7215 (1986). Body hardness was measured at 180 ° C. The time (seconds) required for the hardness to exceed 85 is defined as the curing time.
  • the adhesiveness to metal is evaluated from the viewpoint of shear adhesive force.
  • As the adherend base material a base material of oxygen-free copper (C1020) having a size of 18 mm ⁇ 14 mm ⁇ 1.6 mmt is used.
  • the adherend is immersed in acetone for 5 minutes, immersed in 5% by mass sulfuric acid for 5 minutes, washed twice or more with ion-exchanged water, and dried at 50 ° C. for 10 minutes before use.
  • a thermosetting resin composition is formed on the surface of the adherend base material into a conical tower shape (a circle having a ground contact portion of 3 mm ⁇ , a height of 3 mm, and an upper portion of 1.5 mm ⁇ ) using a transfer molding machine.
  • the molding conditions are a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2 , and a holding time of 3 minutes.
  • a lead frame is used in which the material is rolled oxygen-free copper (C1020), the outer dimensions are 52 mm in width, 38 mm in length, and 0.5 mm in thickness, and the bed is 18 mm in length and width in the center.
  • the pretreatment of the lead frame is performed under the same conditions as the pretreatment of the adherend base material in the shear adhesion test.
  • a thermosetting resin composition is used to seal the bed around the center of the lead frame with outer dimensions of 30 mm in length, 30 mm in width, and 3 mm in thickness. Sealing was performed by molding a thermosetting resin composition using a transfer molding machine under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2, and a holding time of 3 minutes.
  • test piece after the reflow test is analyzed in the same manner as in the post-molding adhesion test, and the obtained value is determined as the post-reflow adhesion.
  • For the production method refer to Example 1 of JP-A-2016-28129.
  • BMI-4000 (2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane, Daiwa Kasei Kogyo Co., Ltd.)
  • BMI-1100H bis (4-maleimidephenyl) methane, Daiwa Kasei Kogyo Co., Ltd.
  • thermosetting resin composition 35 parts by mass of BRG-APO as the polyalkenylphenol compound (A), 65 parts by mass of BMI-4000 as the polymaleimide compound (B), 1.5 parts by mass of Park Mill D as the radical initiator (D), filler ( 400 parts by mass of MSR5100 treated with KBM-603 as E) and 0.35 parts by mass of 5-aminoindazole as compound (C) were mixed and melt-kneaded (2 rolls manufactured by Toyo Seiki Seisakusho Co., Ltd.). At 110 ° C. for 10 minutes) at a diameter of 8 inches).
  • thermosetting resin composition was obtained.
  • a powdery thermosetting resin composition was compacted into a tablet shape by a tableting machine (manufactured by Fuji Yakuhin Machinery Co., Ltd.).
  • a tableting machine manufactured by Fuji Yakuhin Machinery Co., Ltd.
  • thermosetting resin composition was produced and evaluated in the same manner as in Example 1 except that the types and amounts of the components were changed as shown in Table 1.
  • Examples 1 to 6 the structure could be easily removed from the mold, and the moldability was good.
  • the shear adhesive force, the adhesion rate after molding, and the adhesion rate after reflow were high, and the adhesion to the metal and the adhesiveness were excellent.
  • the gel times of Examples 1 to 6 were in an appropriate range.
  • the curing times of Examples 1 to 6 were in an appropriate range, and the productivity was also excellent.
  • Comparative Examples 1 to 5 the shear adhesive force and the adhesion after molding, particularly the adhesion after reflow, were low, and the adhesiveness and adhesion to the metal, particularly the adhesion after the reflow test, were poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

[Problem] To provide a thermosetting resin composition that has excellent adherence and adhesiveness with respect to metals without compromising moldability. [Solution] This thermosetting resin composition contains a poly alkenyl phenol compound (A), a poly maleimide compound (B), a compound (C) having a structure set forth in formula (1), and a radical initiator (D). (In the formula, R1 and R2 each represent a hydrogen atom, a halogen atom, an alkyl group having 1-3 carbon atoms, a hydroxyl group, a carboxy group, or an amino group, at least one of R1 and R2 represents an amino group, R3 represents a hydrogen atom, an alkyl group having 1-3 carbon atoms, an alkenyl group having 2-3 carbon atoms, or a cyano group, and R4 represents a hydrogen atom or an alkyl group having 1-3 carbon atoms.)

Description

熱硬化性樹脂組成物、その硬化物、及び該硬化物を含む構造体A thermosetting resin composition, a cured product thereof, and a structure containing the cured product.
 本発明は、熱硬化性樹脂組成物、その硬化物、該熱硬化性樹脂組成物を用いた構造体の製造方法、及び該硬化物を含む構造体に関する。 The present invention relates to a thermosetting resin composition, a cured product thereof, a method for producing a structure using the thermosetting resin composition, and a structure containing the cured product.
 近年、電子機器及び産業機器に用いられる半導体パッケージには、電子部品の高密度集積化に伴い、高密度配線化、小型化、薄型化、高耐熱化、高放熱化等の性能が求められている。そのためプラスチック材料である封止材にも高耐熱化が求められている。 In recent years, semiconductor packages used in electronic devices and industrial devices have been required to have high-density wiring, miniaturization, thinning, high heat resistance, high heat dissipation, and other performances due to the high-density integration of electronic components. There is. Therefore, the encapsulant, which is a plastic material, is also required to have high heat resistance.
 トランスファー成形は、材料をプランジャー内で加熱軟化させ、加熱軟化した材料をゲート、スプルー、ランナーなどの金型内流路を介して加熱された金型キャビティの中に押し込み、金型キャビティの中で硬化させる方法である。材料を流動性の高い状態でキャビティ内に注入するため、低い圧力での成形が可能である。トランスファー成形は、高い圧力を必要とする他の成形方法と比べてインサート物を損傷しにくいという特徴がある。トランスファー成形は、小型化及び微細加工が可能であり、生産性も高いことから、パワー半導体及びICの封止成形における代表的な成形方法として知られている。 In transfer molding, the material is heated and softened in the plunger, and the heated and softened material is pushed into the heated mold cavity through the flow path in the mold such as a gate, sprue, and runner, and inside the mold cavity. It is a method of curing with. Since the material is injected into the cavity in a highly fluid state, it can be molded at low pressure. Transfer molding is characterized in that it is less likely to damage the insert than other molding methods that require high pressure. Transfer molding is known as a typical molding method in sealing molding of power semiconductors and ICs because it can be miniaturized and microfabricated and has high productivity.
 トランスファー成形で利用される封止材としては、従来、エポキシ-フェノール系熱硬化性樹脂材料が利用されていた。しかし、近年の高耐熱化の要求に従来の材料で対応することは難しい。高耐熱化の要求に対応するため、樹脂系を種々工夫した封止材、例えば、多官能エポキシ樹脂を多く配合した熱硬化性樹脂組成物、ビスマレイミド、トリアジン骨格、ベンゾオキサジン骨格、シルセスキオキサン骨格などの高耐熱性構造を含む熱硬化性樹脂組成物等が提案されている。 Conventionally, an epoxy-phenolic thermosetting resin material has been used as a sealing material used in transfer molding. However, it is difficult to meet the recent demand for high heat resistance with conventional materials. In order to meet the demand for high heat resistance, encapsulants with various resin systems, such as thermosetting resin compositions containing a large amount of polyfunctional epoxy resin, bismaleimide, triazine skeleton, benzoxazine skeleton, and silsesquioki Thermosetting resin compositions and the like containing a highly heat-resistant structure such as a sun skeleton have been proposed.
 特許文献1(特開平11-140277号公報)は、(A)分子中にビフェニル誘導体及び/又はナフタレン誘導体を含むノボラック構造のフェノール樹脂を総フェノール樹脂量中に30~100質量部含むフェノール樹脂、(B)分子中にビフェニル誘導体及び/又はナフタレン誘導体を含むノボラック構造のエポキシ樹脂を総エポキシ樹脂量中に30~100質量部含むエポキシ樹脂、(C)無機充填材、(D)硬化促進剤を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物を記載している。 Patent Document 1 (Japanese Unexamined Patent Publication No. 11-14277) describes (A) a phenol resin containing 30 to 100 parts by mass of a novolak-structured phenol resin containing a biphenyl derivative and / or a naphthalene derivative in the molecule. (B) An epoxy resin containing 30 to 100 parts by mass of a novolak-structured epoxy resin containing a biphenyl derivative and / or a naphthalene derivative in the molecule, (C) an inorganic filler, and (D) a curing accelerator. Describes an epoxy resin composition for encapsulating a semiconductor, which is characterized by being an essential component.
 特許文献2(特開平5-43630号公報)は、N,N’-(アルキル置換ジフェニルメタン)ビスマレイミドと、サリチルアルデヒドとフェノールの縮合ポリフェノールからのポリアリルフェノールとを含有してなる芳香族ビスマレイミド樹脂組成物を記載している。 Patent Document 2 (Japanese Unexamined Patent Publication No. 5-43630) describes an aromatic bismaleimide containing N, N'-(alkyl-substituted diphenylmethane) bismaleimide and polyallylphenol from condensed polyphenol of salicylaldehyde and phenol. Describes the resin composition.
 特許文献3(特開平5-6869号公報)は、(A)1分子中に2個以上のマレイミド基を有するマレイミド化合物、(B)特定の繰り返し単位を有するアリル化フェノール樹脂、及び(C)硬化触媒を含有する樹脂組成物を用いて半導体素子を封止してなる半導体装置を記載している。 Patent Document 3 (Japanese Unexamined Patent Publication No. 5-6869) describes (A) a maleimide compound having two or more maleimide groups in one molecule, (B) an allylated phenol resin having a specific repeating unit, and (C). A semiconductor device in which a semiconductor element is sealed using a resin composition containing a curing catalyst is described.
 特許文献4(特開平6-93047号公報)は、マレイミド化合物、特定構造のアルケニルフェノール化合物及びエポキシ基含有有機シラン化合物を、特定比率で配合してなる硬化性樹脂組成物を記載している。 Patent Document 4 (Japanese Unexamined Patent Publication No. 6-93047) describes a curable resin composition in which a maleimide compound, an alkenylphenol compound having a specific structure, and an epoxy group-containing organic silane compound are blended in a specific ratio.
特開平11-140277号公報Japanese Unexamined Patent Publication No. 11-14277 特開平5-43630号公報Japanese Unexamined Patent Publication No. 5-43630 特開平5-6869号公報Japanese Unexamined Patent Publication No. 5-6869 特開平6-93047号公報Japanese Unexamined Patent Publication No. 6-93047
 従来利用されていたエポキシ-フェノール系熱硬化性樹脂材料と比べ、ビスマレイミド樹脂を用いることで、成形物の耐熱性が向上することが分かっている(特許文献2~4)。しかし、従来のビスマレイミド樹脂を用いた封止材は、エポキシ-フェノール系熱硬化性樹脂材料と比べ、他部材、特に金属材料に対しての密着性が非常に低いという欠点がある。電子デバイスには、導体や冷却を担う銅などの金属部品が内包されており、金属と封止材の間での剥離が生じると内部保護上問題となる。そのため金属と封止材の密着性の向上が課題である。対して、成形金型に対しての密着性が向上すると型離れせずに成形不可となってしまうため生産上問題となる。そのため、成形しやすく、かつ金属に対しての密着力が高い封止材の実現が強く望まれている。 It is known that the heat resistance of the molded product is improved by using the bismaleimide resin as compared with the epoxy-phenolic thermosetting resin material which has been conventionally used (Patent Documents 2 to 4). However, the conventional encapsulant using bismaleimide resin has a drawback that the adhesion to other members, particularly metal materials, is very low as compared with the epoxy-phenolic thermosetting resin material. The electronic device contains metal parts such as a conductor and copper that is responsible for cooling, and if peeling occurs between the metal and the sealing material, there is a problem in terms of internal protection. Therefore, it is an issue to improve the adhesion between the metal and the sealing material. On the other hand, if the adhesion to the molding die is improved, the mold cannot be separated without being separated, which poses a problem in production. Therefore, it is strongly desired to realize a sealing material that is easy to mold and has a high adhesion to a metal.
 本開示では、成形性を損なうことなく、金属に対しての密着性及び接着性に優れた熱硬化性樹脂組成物が記載される。 In the present disclosure, a thermosetting resin composition having excellent adhesion to a metal and adhesiveness without impairing moldability is described.
 本発明は以下の態様を含む。
[1]
 ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、式(1)に記載の構造を有する化合物(C)、及びラジカル開始剤(D)を含有する熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、R1及びR2は水素原子、ハロゲン原子、炭素原子数1~3のアルキル基、水酸基、カルボキシ基、又はアミノ基であり、R1及びR2の少なくとも一方はアミノ基である。R3は水素原子、炭素原子数1~3のアルキル基、炭素原子数2~3のアルケニル基、又はシアノ基であり、R4は水素原子、又は炭素原子数1~3のアルキル基である。)
[2]
 前記化合物(C)は、6-アミノインダゾール、5-アミノインダゾール、6-アミノ-5-メチルインダゾール、6-アミノ-5-エチルインダゾール、6-アミノ-5-ヒドロキシインダゾール、6-アミノ-5-ブロモインダゾール、6-アミノ-5-クロロインダゾール、3-シアノ-5-アミノインダゾール、5-カルボキシ-6-アミノインダゾール、及び5,6-ジアミノインダゾールから選択される少なくとも一種を含む、上記態様1に記載の熱硬化性樹脂組成物。
[3]
 前記化合物(C)が5-アミノインダゾール、及び6-アミノインダゾールから選択される少なくとも一種を含む、上記態様2に記載の熱硬化性樹脂組成物。
[4]
 前記化合物(C)の含有量が前記ポリアルケニルフェノール化合物(A)と前記ポリマレイミド化合物(B)の合計100質量部に対して0.05質量部~5質量部である、上記態様1~3のいずれかに記載の熱硬化性樹脂組成物。
[5]
 前記ポリアルケニルフェノール化合物(A)の配合量が前記ポリマレイミド化合物(B)100質量部に対して5~200質量部である、上記態様1~4のいずれかに記載の熱硬化性樹脂組成物。
[6]
 前記ポリアルケニルフェノール化合物(A)が、式(2)-1:
Figure JPOXMLDOC01-appb-C000006
及び任意に式(2)-2:
Figure JPOXMLDOC01-appb-C000007
で表される構造単位を有し、式(2)-1及び式(2)-2において、R5はそれぞれ独立に水素原子、炭素原子数1~5のアルキル基、又は炭素原子数1~5のアルコキシ基を表し、R6はそれぞれ独立に式(3):
Figure JPOXMLDOC01-appb-C000008
で表される2-アルケニル基を表し、式(3)において、R7、R8、R9、R10及びR11はそれぞれ独立に水素原子、炭素原子数1~5のアルキル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基であり、式(3)の*は、芳香環を構成する炭素原子との結合部を表し、R5及びR6は各フェノール骨格単位で同じでもよく異なっていてもよく、式(2)-1及び式(2)-2におけるQはそれぞれ独立に式-CR1213-で表されるアルキレン基、炭素原子数5~10のシクロアルキレン基、芳香環を有する二価の有機基、脂環式縮合環を有する二価の有機基、又はこれらを組み合わせた二価の有機基を表し、R12及びR13はそれぞれ独立に水素原子、炭素原子数1~5のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基を表す、上記態様1~5のいずれかに記載の熱硬化性樹脂組成物。
[7]
 式(2)-1に示す構造単位の一分子あたりの平均数をp、式(2)-2に示す構造単位の一分子あたりの平均数をqとしたときに、pは1.1~35の実数、p+qは1.1~35の実数であり、かつqは式:p/(p+q)の値が0.4~1となる実数を満たす、上記態様6に記載の熱硬化性樹脂組成物。
[8]
 前記ポリマレイミド化合物(B)が芳香族ビスマレイミド化合物である、上記態様1~7のいずれかに記載の熱硬化性樹脂組成物。
[9]
 前記ラジカル開始剤(D)が有機過酸化物である、上記態様1~8のいずれかに記載の熱硬化性樹脂組成物。
[10]
 さらに充填材(E)を含む、上記態様1~9のいずれかに記載の熱硬化性樹脂組成物。
[11]
 前記充填材(E)が、シリカ、アルミナ、酸化マグネシウム及び固体ゴム粒子からなる群から選択される少なくとも一種である、上記態様10に記載の熱硬化性樹脂組成物。
[12]
 前記充填材(E)の含有量が、前記ポリアルケニルフェノール化合物(A)、前記ポリマレイミド化合物(B)、前記化合物(C)、及び前記ラジカル開始剤(D)の合計100質量部に対して200~1900質量部である、上記態様10又は11に記載の熱硬化性樹脂組成物。
[13]
 上記態様1~12のいずれかに記載の熱硬化性樹脂組成物の硬化物。
[14]
 上記態様1~12のいずれかに記載の熱硬化性樹脂組成物をモールディング成形する、構造体の製造方法。
[15]
 上記態様13に記載の硬化物を含む構造体。
The present invention includes the following aspects.
[1]
A thermosetting resin composition containing a polyalkenylphenol compound (A), a polymaleimide compound (B), a compound (C) having the structure according to the formula (1), and a radical initiator (D).
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 1 and R 2 are hydrogen atoms, halogen atoms, alkyl groups having 1 to 3 carbon atoms, hydroxyl groups, carboxy groups, or amino groups, and at least one of R 1 and R 2 is an amino group. R 3 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, or a cyano group, and R 4 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. is there.)
[2]
The compound (C) is 6-aminoindazole, 5-aminoindazole, 6-amino-5-methylindazole, 6-amino-5-ethylindazole, 6-amino-5-hydroxyindazole, 6-amino-5-. The above aspect 1 comprises at least one selected from bromoindazole, 6-amino-5-chloroindazole, 3-cyano-5-aminoindazole, 5-carboxy-6-aminoindazole, and 5,6-diaminoindazole. The thermocurable resin composition according to the above.
[3]
The thermosetting resin composition according to the above aspect 2, wherein the compound (C) contains at least one selected from 5-aminoindazole and 6-aminoindazole.
[4]
The contents of the compound (C) are 0.05 parts by mass to 5 parts by mass with respect to 100 parts by mass in total of the polyalkenylphenol compound (A) and the polymaleimide compound (B). The thermosetting resin composition according to any one of.
[5]
The thermosetting resin composition according to any one of the above aspects 1 to 4, wherein the amount of the polyalkenylphenol compound (A) is 5 to 200 parts by mass with respect to 100 parts by mass of the polymaleimide compound (B). ..
[6]
The polyalkenylphenol compound (A) is represented by the formula (2) -1 :.
Figure JPOXMLDOC01-appb-C000006
And optionally equation (2) -2:
Figure JPOXMLDOC01-appb-C000007
In formulas (2) -1 and (2) -2, R 5 independently has a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms, respectively. Represents an alkoxy group of 5, and R 6 is an independent formula (3):
Figure JPOXMLDOC01-appb-C000008
In formula (3), R 7 , R 8 , R 9 , R 10 and R 11 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, and carbon atoms, respectively. It is a cycloalkyl group of number 5 to 10 or an aryl group having 6 to 12 carbon atoms, where * in the formula (3) represents a bond with a carbon atom constituting an aromatic ring, and R 5 and R 6 are. or different may be the same for each phenol backbone units of the formula (2) -1 and the formula (2) wherein -CR 12 Q are each independently of -2 R 13 - in the alkylene group represented, the number of carbon atoms Represents a cycloalkylene group of 5 to 10, a divalent organic group having an aromatic ring, a divalent organic group having an alicyclic condensed ring, or a divalent organic group in which these are combined, and R 12 and R 13 represent. Each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms. The thermosetting resin composition according to any one of the above aspects 1 to 5.
[7]
When the average number of structural units shown in formula (2) -1 per molecule is p and the average number of structural units shown in formula (2) -2 per molecule is q, p is 1.1 to The thermosetting resin according to the above aspect 6, wherein 35 is a real number, p + q is a real number of 1.1 to 35, and q is a real number having a value of the formula: p / (p + q) of 0.4 to 1. Composition.
[8]
The thermosetting resin composition according to any one of the above aspects 1 to 7, wherein the polymaleimide compound (B) is an aromatic bismaleimide compound.
[9]
The thermosetting resin composition according to any one of the above aspects 1 to 8, wherein the radical initiator (D) is an organic peroxide.
[10]
The thermosetting resin composition according to any one of the above aspects 1 to 9, further comprising a filler (E).
[11]
The thermosetting resin composition according to the above aspect 10, wherein the filler (E) is at least one selected from the group consisting of silica, alumina, magnesium oxide and solid rubber particles.
[12]
The content of the filler (E) is 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the compound (C), and the radical initiator (D). The thermosetting resin composition according to the above aspect 10 or 11, which is 200 to 1900 parts by mass.
[13]
A cured product of the thermosetting resin composition according to any one of the above aspects 1 to 12.
[14]
A method for producing a structure, wherein the thermosetting resin composition according to any one of the above aspects 1 to 12 is molded by molding.
[15]
A structure containing the cured product according to the above aspect 13.
 本開示によれば、成形性を損なうことなく、金属に対しての密着性及び接着性に優れた熱硬化性樹脂組成物を得ることができる。本開示の熱硬化性樹脂組成物は適切な時間で硬化することができ、優れた生産性を与える。本開示の熱硬化性樹脂組成物を用いて高信頼性の硬化物を形成することができる。 According to the present disclosure, it is possible to obtain a thermosetting resin composition having excellent adhesion and adhesiveness to a metal without impairing moldability. The thermosetting resin composition of the present disclosure can be cured in an appropriate time and gives excellent productivity. A highly reliable cured product can be formed by using the thermosetting resin composition of the present disclosure.
 以下に本発明について詳細に説明する。一実施態様の熱硬化性樹脂組成物は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、式(1)に記載の構造を有する化合物(C)、及びラジカル開始剤(D)を含む。 The present invention will be described in detail below. The thermosetting resin composition of one embodiment contains a polyalkenylphenol compound (A), a polymaleimide compound (B), a compound (C) having the structure represented by the formula (1), and a radical initiator (D). Including.
[ポリアルケニルフェノール化合物(A)]
 ポリアルケニルフェノール化合物(A)は、分子内に少なくとも2つのフェノール骨格を有し、かつ分子内のフェノール骨格を形成する芳香環の一部又は全部に2-アルケニル基が結合している化合物である。2-アルケニル基としては、式(3)で表される構造の基が好ましい。
[Polyalkenylphenol compound (A)]
The polyalkenylphenol compound (A) is a compound having at least two phenol skeletons in the molecule and having a 2-alkenyl group bonded to a part or all of the aromatic ring forming the phenol skeleton in the molecule. .. As the 2-alkenyl group, a group having a structure represented by the formula (3) is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(3)において、R7、R8、R9、R10及びR11はそれぞれ独立に水素原子、炭素原子数1~5のアルキル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基である。式(3)の*は、芳香環を構成する炭素原子との結合部を表す。 In formula (3), R 7 , R 8 , R 9 , R 10 and R 11 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, cycloalkyl groups having 5 to 10 carbon atoms, or carbons, respectively. It is an aryl group having 6 to 12 atoms. * In the formula (3) represents a bond with a carbon atom constituting an aromatic ring.
 式(3)におけるR7、R8、R9、R10及びR11を構成する炭素原子数1~5のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等を挙げることができる。炭素原子数5~10のシクロアルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基等を挙げることができる。炭素原子数6~12のアリール基の具体例としては、フェニル基、メチルフェニル基、エチルフェニル基、ビフェニル基、ナフチル基等を挙げることができる。式(3)で表される2-アルケニル基はアリル基、すなわちR7、R8、R9、R10及びR11が全て水素原子であることが好ましい。 Specific examples of the alkyl group having 1 to 5 carbon atoms constituting R 7 , R 8 , R 9 , R 10 and R 11 in the formula (3) include a methyl group, an ethyl group, an n-propyl group and an isopropyl group. , N-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and the like. Specific examples of the cycloalkyl group having 5 to 10 carbon atoms include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group and the like. Specific examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a naphthyl group and the like. It is preferable that the 2-alkenyl group represented by the formula (3) is an allyl group, that is, R 7 , R 8 , R 9 , R 10 and R 11 are all hydrogen atoms.
 ポリアルケニルフェノール化合物(A)において、フェノール骨格を形成する全芳香環のうち好ましくは40~100%、より好ましくは60~100%、さらに好ましくは80~100%の芳香環に2-アルケニル基が結合されている。 In the polyalkenylphenol compound (A), a 2-alkenyl group is contained in preferably 40 to 100%, more preferably 60 to 100%, still more preferably 80 to 100% of the total aromatic rings forming the phenol skeleton. It is combined.
 ポリアルケニルフェノール化合物(A)の基本骨格としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェニルメタン型フェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキルフェノール樹脂、フェノール-ジシクロペンタジエン共重合体樹脂等の公知のフェノール樹脂の骨格が挙げられる。中でも下記式(2)-1及び任意に式(2)-2に示す構造単位を有するポリアルケニルフェノール化合物(A)を好ましく使用することができる。 Known basic skeletons of the polyalkenylphenol compound (A) include phenol novolac resin, cresol novolac resin, triphenylmethane-type phenol resin, phenol aralkyl resin, biphenyl aralkyl phenol resin, and phenol-dicyclopentadiene copolymer resin. The skeleton of phenolic resin can be mentioned. Among them, the polyalkenylphenol compound (A) having the following formula (2) -1 and optionally the structural unit represented by the formula (2) -2 can be preferably used.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(2)-1及び式(2)-2に示す構造単位は、ポリアルケニルフェノール化合物(A)を構成する好ましいフェノール骨格単位であり、これらのフェノール骨格単位の結合順序は特に限定されない。式(2)-1及び式(2)-2において、R5はそれぞれ独立に水素原子、炭素原子数1~5のアルキル基、又は炭素原子数1~5のアルコキシ基であり、式(2)-1において、R6はそれぞれ独立に式(3)で表される2-アルケニル基である。R5及びR6は各フェノール骨格単位で同じでもよく異なっていてもよい。式(2)-1及び式(2)-2におけるQはそれぞれ独立に式-CR1213-で表されるアルキレン基、炭素原子数5~10のシクロアルキレン基、芳香環を有する二価の有機基、脂環式縮合環を有する二価の有機基、又はこれらを組み合わせた二価の有機基であり、R12及びR13はそれぞれ独立に水素原子、炭素原子数1~5のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基である。 The structural units represented by the formulas (2) -1 and (2) -2 are preferable phenol skeleton units constituting the polyalkenylphenol compound (A), and the binding order of these phenol skeleton units is not particularly limited. In formulas (2) -1 and (2) -2, R 5 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, respectively, and is represented by the formula (2). In) -1, R 6 is a 2-alkoxy group independently represented by the formula (3). R 5 and R 6 may be the same or different for each phenol skeleton unit. Equation (2) -1 and the formula (2) each Q is at -2 independently formula -CR 12 R 13 - in the alkylene group represented, a cycloalkylene group having 5 to 10 carbon atoms, divalent having an aromatic ring , A divalent organic group having an alicyclic condensed ring, or a divalent organic group in combination thereof. R 12 and R 13 are independently hydrogen atoms and alkyl having 1 to 5 carbon atoms, respectively. A group, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
 式(2)-1に示す構造単位の一分子あたりの平均数をp、式(2)-2に示す構造単位の一分子あたりの平均数をqとしたときに、好ましくはpは1.1~35の実数、p+qは1.1~35の実数であり、かつqは式:p/(p+q)の値が0.4~1となる実数を満たす。 When the average number of structural units represented by the formula (2) -1 per molecule is p and the average number of structural units represented by the formula (2) -2 per molecule is q, p is preferably 1. A real number of 1 to 35, p + q is a real number of 1.1 to 35, and q satisfies a real number in which the value of the formula: p / (p + q) is 0.4 to 1.
 R5を構成する炭素原子数1~5のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等を挙げることができる。炭素原子数1~5のアルコキシ基の具体例としてはメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基等が挙げられる。 Specific examples of the alkyl group having 1 to 5 carbon atoms constituting R 5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and n. -Pentyl group and the like can be mentioned. Specific examples of the alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentoxy group and the like. Can be mentioned.
 式-CR1213-で表されるアルキレン基のR12及びR13において、炭素原子数1~5のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等を挙げることができ、炭素原子数2~6のアルケニル基の具体例としてはビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等を挙げることができ、炭素原子数5~10のシクロアルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基等を挙げることができ、炭素原子数6~12のアリール基の具体例としては、フェニル基、メチルフェニル基、エチルフェニル基、ビフェニル基、ナフチル基等を挙げることできる。 Formula -CR 12 R 13 - in R 12 and R 13 of the alkylene group represented by, specific examples of the alkyl group having 1 to 5 carbon atoms, a methyl group, an ethyl group, n- propyl group, an isopropyl group, Examples thereof include n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, and specific examples of the alkyl group having 2 to 6 carbon atoms include vinyl group, allyl group, butenyl group, and pentenyl. Groups, hexenyl groups and the like can be mentioned, and specific examples of cycloalkyl groups having 5 to 10 carbon atoms include cyclopentyl groups, cyclohexyl groups, methylcyclohexyl groups, cycloheptyl groups and the like, and have carbon atoms. Specific examples of the aryl groups 6 to 12 include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a naphthyl group and the like.
 Qを構成する炭素原子数5~10のシクロアルキレン基の具体例としてはシクロペンチレン基、シクロヘキシレン基、メチルシクロヘキシレン基、シクロヘプチレン基等を挙げることができる。芳香環を有する二価の有機基の具体例として、フェニレン基、トリレン基、ナフチレン基、ビフェニレン基、フルオレニレン基、アントラセニレン基、キシリレン基、4,4-メチレンジフェニル基等を挙げることができる。芳香環を有する二価の有機基の炭素原子数は6~20又は6~14とすることができる。脂環式縮合環を有する二価の有機基の具体例として、ジシクロペンタジエニレン基等を挙げることができる。脂環式縮合環を有する二価の有機基の炭素原子数は7~20又は7~10とすることができる。 Specific examples of the cycloalkylene group having 5 to 10 carbon atoms constituting Q include a cyclopentylene group, a cyclohexylene group, a methylcyclohexylene group, a cycloheptylene group and the like. Specific examples of the divalent organic group having an aromatic ring include a phenylene group, a tolylen group, a naphthylene group, a biphenylene group, a fluorenylene group, an anthracenylene group, a xylylene group, a 4,4-methylenediphenyl group and the like. The number of carbon atoms of the divalent organic group having an aromatic ring can be 6 to 20 or 6 to 14. Specific examples of the divalent organic group having an alicyclic condensed ring include a dicyclopentadienylene group and the like. The number of carbon atoms of the divalent organic group having an alicyclic condensed ring can be 7 to 20 or 7 to 10.
 Qがジシクロペンタジエニレン基、フェニレン基、メチルフェニレン基、キシリレン基、又はビフェニレン基であることが、硬化物の機械強度が高い点で好ましい。ポリアルケニルフェノール化合物(A)の粘度が低く、ポリマレイミド化合物(B)との混合に有利であることから、Qが-CH2-であることが好ましい。 It is preferable that Q is a dicyclopentadienylene group, a phenylene group, a methylphenylene group, a xylylene group, or a biphenylene group in terms of high mechanical strength of the cured product. Since the viscosity of the polyalkenylphenol compound (A) is low and it is advantageous for mixing with the polymaleimide compound (B), it is preferable that Q is −CH 2−.
 pは好ましくは1.1~35の実数であり、より好ましくは2~30の実数であり、さらに好ましくは3~10の実数である。pが1.1以上であれば、熱硬化性樹脂組成物の硬化物を高温環境に置いたときの熱分解開始温度が適切であり、35以下であれば、熱硬化性樹脂組成物の粘度が成形時の加工により好適な範囲となる。 P is preferably a real number of 1.1 to 35, more preferably a real number of 2 to 30, and even more preferably a real number of 3 to 10. When p is 1.1 or more, the thermal decomposition start temperature when the cured product of the thermosetting resin composition is placed in a high temperature environment is appropriate, and when p is 35 or less, the viscosity of the thermosetting resin composition Is in a suitable range depending on the processing at the time of molding.
 p+qは好ましくは1.1~35の実数であり、より好ましくは2~30の実数であり、さらに好ましくは3~10の実数である。p+qが1.1以上であれば、熱硬化性樹脂組成物の硬化物を高温環境に置いたときの熱分解開始温度が適切であり、35以下であれば、熱硬化性樹脂組成物の粘度が成形時の加工により好適な範囲となる。 P + q is preferably a real number of 1.1 to 35, more preferably a real number of 2 to 30, and even more preferably a real number of 3 to 10. When p + q is 1.1 or more, the thermal decomposition start temperature when the cured product of the thermosetting resin composition is placed in a high temperature environment is appropriate, and when it is 35 or less, the viscosity of the thermosetting resin composition Is in a suitable range depending on the processing at the time of molding.
 qは、好ましくは式:p/(p+q)の値が0.4~1となる実数であり、より好ましくは式:p/(p+q)の値が0.6~1となる実数であり、さらに好ましくは式:p/(p+q)の値が0.8~1となる実数である。式:p/(p+q)の値が1となる場合、qは0である。すなわち、この実施態様ではポリアルケニルフェノール化合物(A)は、式(2)-2に示す構造単位を含まない。ポリアルケニルフェノール化合物(A)は、式(2)-1に示す構造単位からなることができる。qが上記条件を満たす値であれば、熱硬化性樹脂組成物の硬化度を用途に応じて十分なものとすることができる。 q is preferably a real number having a value of the formula: p / (p + q) of 0.4 to 1, and more preferably a real number having a value of the formula: p / (p + q) of 0.6 to 1. More preferably, it is a real number in which the value of the formula: p / (p + q) is 0.8 to 1. Equation: When the value of p / (p + q) is 1, q is 0. That is, in this embodiment, the polyalkenylphenol compound (A) does not contain the structural unit represented by the formula (2) -2. The polyalkenylphenol compound (A) can consist of the structural units represented by the formula (2) -1. When q is a value satisfying the above conditions, the degree of curing of the thermosetting resin composition can be made sufficient depending on the application.
 ポリアルケニルフェノール化合物(A)の好ましい数平均分子量Mnは300~5000であり、より好ましくは400~4000であり、さらに好ましくは500~3000である。数平均分子量Mnが300以上であれば、熱硬化性樹脂組成物の硬化物を高温環境に置いたとき熱分解開始温度が適切であり、5000以下であれば、熱硬化性樹脂組成物の粘度が成形時の加工により好適な範囲となる。 The preferred number average molecular weight Mn of the polyalkenylphenol compound (A) is 300 to 5000, more preferably 400 to 4000, and even more preferably 500 to 3000. When the number average molecular weight Mn is 300 or more, the thermal decomposition start temperature is appropriate when the cured product of the thermosetting resin composition is placed in a high temperature environment, and when it is 5000 or less, the viscosity of the thermosetting resin composition. Is in a suitable range depending on the processing at the time of molding.
 ポリアルケニルフェノール化合物(A)は、原料となるフェノール樹脂の水酸基の一部をアルケニルエーテル化した後、クライゼン転位反応により、2-アルケニル基を転位させることにより得ることができる。原料フェノール樹脂として、好ましくは下記式(2)-2で表される構造単位を有する公知のフェノール樹脂を使用することができる。
Figure JPOXMLDOC01-appb-C000012
The polyalkenylphenol compound (A) can be obtained by converting a part of the hydroxyl groups of the raw material phenol resin into alkenyl ether and then rearranging the 2-alkenyl group by the Claisen rearrangement reaction. As the raw material phenol resin, a known phenol resin having a structural unit represented by the following formula (2) -2 can be preferably used.
Figure JPOXMLDOC01-appb-C000012
 ポリアルケニルフェノール化合物(A)の原料フェノール樹脂の具体例としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェニルメタン型フェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、フェノール-ジシクロペンタジエン共重合体樹脂等を挙げることができる。 Specific examples of the raw material phenol resin of the polyalkenylphenol compound (A) include phenol novolac resin, cresol novolac resin, triphenylmethane type phenol resin, phenol aralkyl resin, biphenyl aralkyl resin, phenol-dicyclopentadiene copolymer resin and the like. Can be mentioned.
 原料フェノール樹脂の2-アルケニルエーテル化反応としては、(i)塩化アリル、塩化メタリル、臭化アリル等のハロゲン化2-アルケニル化合物とフェノール化合物を反応させる公知の方法、及び(ii)酢酸アリルのようなカルボン酸2-アルケニル化合物とフェノール化合物を反応させる公知の方法の2つの方法を例示することができる。ハロゲン化2-アルケニル化合物を用いた2-アルケニルエーテル化反応は、例えば特開平2-91113号公報に記載の方法を使用することができる。カルボン酸2-アルケニル化合物とフェノール樹脂を反応させる方法は、例えば特開2011-26253号公報に記載の方法を使用することができる。 The 2-alkenyl etherification reaction of the raw material phenol resin includes (i) a known method for reacting a halogenated 2-alkenyl compound such as allyl chloride, methallyl chloride, and allyl bromide with a phenol compound, and (ii) allyl acetate. Two known methods of reacting such a carboxylic acid 2-alkenyl compound with a phenol compound can be exemplified. For the 2-alkenyl etherification reaction using a halogenated 2-alkenyl compound, for example, the method described in JP-A-2-91113 can be used. As a method for reacting the carboxylic acid 2-alkenyl compound with the phenol resin, for example, the method described in JP-A-2011-26253 can be used.
 フェノール性水酸基に対するハロゲン化2-アルケニル化合物又はカルボン酸2-アルケニル化合物の使用量は0.4~5.0当量が好ましく、より好ましくは0.6~4.0当量である。0.4当量以上であると、クライゼン転位した後のポリマレイミド化合物(B)との反応部位の量がより適切であり、より耐熱性に優れた硬化物を得ることができる。2-アルケニルエーテル化反応は、2-アルケニル化合物を原料フェノール樹脂と混合し、4~40時間反応させることにより実施する。2-アルケニルエーテル化反応において、原料フェノール樹脂が溶解する溶媒を用いることができる。原料フェノール樹脂を溶解可能なカルボン酸2-アルケニル化合物を用いて、無溶媒で反応を実施することもできる。原料フェノール樹脂の2-アルケニルエーテル化率は、ハロゲン化2-アルケニル化合物又はカルボン酸2-アルケニル化合物の使用量を前記使用量より多く使用し、かつ反応時間を前記反応時間より短く調整することにより2-アルケニル化合物の反応率(転化率)を低く抑制することでも制御することができる。 The amount of the halogenated 2-alkenyl compound or the carboxylic acid 2-alkenyl compound used with respect to the phenolic hydroxyl group is preferably 0.4 to 5.0 equivalents, more preferably 0.6 to 4.0 equivalents. When the amount is 0.4 equivalent or more, the amount of the reaction site with the polymaleimide compound (B) after the Claisen rearrangement is more appropriate, and a cured product having more excellent heat resistance can be obtained. The 2-alkenyl etherification reaction is carried out by mixing the 2-alkenyl compound with the raw material phenol resin and reacting for 4 to 40 hours. In the 2-alkenyl etherification reaction, a solvent in which the raw material phenol resin dissolves can be used. The reaction can also be carried out without a solvent using a carboxylic acid 2-alkenyl compound capable of dissolving the raw material phenol resin. The 2-alkenyl etherification rate of the raw material phenol resin is determined by using a larger amount of the halogenated 2-alkenyl compound or the carboxylic acid 2-alkenyl compound than the above amount and adjusting the reaction time to be shorter than the above reaction time. It can also be controlled by suppressing the reaction rate (conversion rate) of the 2-alkenyl compound to a low level.
 目的とするポリアルケニルフェノール化合物(A)は、前記(i)又は(ii)に記載の方法により製造されたポリアルケニルエーテル化合物にクライゼン転位反応を行うことにより得ることができる。クライゼン転位反応は、ポリアルケニルエーテル化合物を100~250℃の温度に加熱し、1~20時間反応させることにより行うことができる。クライゼン転位反応は高沸点の溶剤を用いて行ってもよく、無溶媒で行うこともできる。転位反応を促進するため、チオ硫酸ナトリウム、炭酸ナトリウム等の無機塩を添加することもできる。詳細は例えば特開平2-91113号公報に開示されている。 The target polyalkenylphenol compound (A) can be obtained by subjecting the polyalkenyl ether compound produced by the method according to (i) or (ii) above to a Claisen rearrangement reaction. The Claisen rearrangement reaction can be carried out by heating the polyalkenyl ether compound to a temperature of 100 to 250 ° C. and reacting it for 1 to 20 hours. The Claisen rearrangement reaction may be carried out using a solvent having a high boiling point, or may be carried out without a solvent. Inorganic salts such as sodium thiosulfate and sodium carbonate can also be added to promote the rearrangement reaction. Details are disclosed in, for example, Japanese Patent Application Laid-Open No. 2-911113.
[ポリマレイミド化合物(B)]
 ポリマレイミド化合物(B)は、式(4)で表されるマレイミド基を2つ以上有する化合物である。
Figure JPOXMLDOC01-appb-C000013
[Polymaleimide compound (B)]
The polymaleimide compound (B) is a compound having two or more maleimide groups represented by the formula (4).
Figure JPOXMLDOC01-appb-C000013
 式(4)において、*は、芳香環又は直鎖、分岐鎖若しくは環状脂肪族炭化水素基を含む有機基との結合部を表す。 In the formula (4), * represents an aromatic ring or a bond with an organic group containing a straight chain, a branched chain or a cyclic aliphatic hydrocarbon group.
 ポリマレイミド化合物(B)としては、ビス(4-マレイミドフェニル)メタン等のビスマレイミド、トリス(4-マレイミドフェニル)メタン等のトリスマレイミド、ビス(3,4-ジマレイミドフェニル)メタン等のテトラキスマレイミド及びポリ(4-マレイミドスチレン)等のポリマレイミドが挙げられる。ポリマレイミド化合物としては、芳香族ポリマレイミド化合物及び脂肪族ポリマレイミド化合物が挙げられ、得られる硬化物の難燃性が特に優れる点で、芳香族ポリマレイミド化合物が好ましい。 Examples of the polymaleimide compound (B) include bismaleimide such as bis (4-maleimidephenyl) methane, trismaleimide such as tris (4-maleimidephenyl) methane, and tetraxmaleimide such as bis (3,4-dimaleimidephenyl) methane. And polymaleimide such as poly (4-maleimide styrene). Examples of the polymaleimide compound include an aromatic polymaleimide compound and an aliphatic polymaleimide compound, and the aromatic polymaleimide compound is preferable in that the obtained cured product has particularly excellent flame retardancy.
 芳香族ポリマレイミド化合物は、式(4)で表されるマレイミド基を2つ以上有し、これらのマレイミド基が同一又は異なる芳香環に結合している化合物である。芳香環の具体例としては、ベンゼン等の単環、ナフタレン、アントラセン等の縮合環等が挙げられる。熱硬化性樹脂組成物中で良好に混合することから、ポリマレイミド化合物(B)は芳香族ビスマレイミド化合物及び脂肪族ビスマレイミド化合物であることが好ましく、芳香族ビスマレイミド化合物であることがより好ましい。芳香族ビスマレイミド化合物の具体例としては、ビス(4-マレイミドフェニル)メタン、ビス(3-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、ビス(3-プロピル-4-マレイミドフェニル)メタン、ビス(3,5-ジプロピル-4-マレイミドフェニル)メタン、ビス(3-ブチル-4-マレイミドフェニル)メタン、ビス(3,5-ジブチル-4-マレイミドフェニル)メタン、ビス(3-エチル-4-マレイミド-5-メチルフェニル)メタン、2,2-ビス(4-マレイミドフェニル)プロパン、2,2-ビス[4-(4-マレイミドフェニルオキシ)フェニル]プロパン、ビス(4-マレイミドフェニル)エーテル、ビス(3-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)ケトン、ビス(3-マレイミドフェニル)ケトン、ビス(4-マレイミドフェニル)スルホン、ビス(3-マレイミドフェニル)スルホン、ビス[4-(4-マレイミドフェニルオキシ)フェニル]スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(3-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)スルホキシド、ビス(3-マレイミドフェニル)スルホキシド、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ジマレイミドナフタレン、2,3-ジマレイミドナフタレン、1,5-ジマレイミドナフタレン、1,8-ジマレイミドナフタレン、2,6-ジマレイミドナフタレン、2,7-ジマレイミドナフタレン、4,4’-ジマレイミドビフェニル、3,3’-ジマレイミドビフェニル、3,4’-ジマレイミドビフェニル、2,5-ジマレイミド-1,3-キシレン、2,7-ジマレイミドフルオレン、9,9-ビス(4-マレイミドフェニル)フルオレン、9,9-ビス(4-マレイミド-3-メチルフェニル)フルオレン、9,9-ビス(3-エチル-4-マレイミドフェニル)フルオレン、3,7-ジマレイミド-2-メトキシフルオレン、9,10-ジマレイミドフェナントレン、1,2-ジマレイミドアントラキノン、1,5-ジマレイミドアントラキノン、2,6-ジマレイミドアントラキノン、1,2-ジマレイミドベンゼン、1,3-ジマレイミドベンゼン、1,4-ジマレイミドベンゼン、1,4-ビス(4-マレイミドフェニル)ベンゼン、2-メチル-1,4-ジマレイミドベンゼン、2,3-ジメチル-1,4-ジマレイミドベンゼン、2,5-ジメチル-1,4-ジマレイミドベンゼン、2,6-ジメチル-1,4-ジマレイミドベンゼン、4-エチル-1,3-ジマレイミドベンゼン、5-エチル-1,3-ジマレイミドベンゼン、4,6-ジメチル-1,3-ジマレイミドベンゼン、2,4,6-トリメチル-1,3-ジマレイミドベンゼン、2,3,5,6-テトラメチル-1,4-ジマレイミドベンゼン、4-メチル-1,3-ジマレイミドベンゼン等が挙げられる。脂肪族ビスマレイミド化合物の具体例としては、ビス(4-マレイミドシクロヘキシル)メタン、ビス(3-マレイミドシクロヘキシル)メタン等が挙げられる。中でも、ビス(4-マレイミドフェニル)メタン及び2,2-ビス[4-(4-マレイミドフェニルオキシ)フェニル]プロパンが好ましい。市販品としては例えば、BMI(商品名、大和化成工業株式会社製)シリーズ等が挙げられる。 An aromatic polymaleimide compound is a compound having two or more maleimide groups represented by the formula (4), and these maleimide groups are bonded to the same or different aromatic rings. Specific examples of the aromatic ring include a monocyclic ring such as benzene, a condensed ring such as naphthalene and anthracene, and the like. The polymaleimide compound (B) is preferably an aromatic bismaleimide compound and an aliphatic bismaleimide compound, and more preferably an aromatic bismaleimide compound because it mixes well in the thermosetting resin composition. .. Specific examples of the aromatic bismaleimide compound include bis (4-maleimidephenyl) methane, bis (3-maleimidephenyl) methane, bis (3-methyl-4-maleimidephenyl) methane, and bis (3,5-dimethyl-). 4-maleimidephenyl) methane, bis (3-ethyl-4-maleimidephenyl) methane, bis (3,5-diethyl-4-maleimidephenyl) methane, bis (3-propyl-4-maleimidephenyl) methane, bis ( 3,5-Dipropyl-4-maleimidephenyl) methane, bis (3-butyl-4-maleimidephenyl) methane, bis (3,5-dibutyl-4-maleimidephenyl) methane, bis (3-ethyl-4-maleimide) -5-Methylphenyl) methane, 2,2-bis (4-maleimidephenyl) propane, 2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane, bis (4-maleimidephenyl) ether, bis (3-Maleimidephenyl) ether, bis (4-maleimidephenyl) ketone, bis (3-maleimidephenyl) ketone, bis (4-maleimidephenyl) sulfone, bis (3-maleimidephenyl) sulfone, bis [4- (4) -Maleimidephenyloxy) phenyl] sulfone, bis (4-maleimidephenyl) sulfide, bis (3-maleimidephenyl) sulfide, bis (4-maleimidephenyl) sulfoxide, bis (3-maleimidephenyl) sulfoxide, 1,4-bis (4-Maleimidephenyl) Cyclohexane, 1,4-Dimareimidenaphthalene, 2,3-Dimareimidenaphthalene, 1,5-Dimareimidenaphthalene, 1,8-Dimareimidenaphthalene, 2,6-Dimareimidenaphthalene, 2, 7-Dimareimide naphthalene, 4,4'-Dimareimide biphenyl, 3,3'-Dimareimide biphenyl, 3,4'-Dimareimide biphenyl, 2,5-Dimareimide-1,3-xylene, 2,7-di Maleimide fluorene, 9,9-bis (4-maleimidephenyl) fluorene, 9,9-bis (4-maleimide-3-methylphenyl) fluorene, 9,9-bis (3-ethyl-4-maleimidephenyl) fluorene, 3,7-Dimareimide-2-methoxyfluorene, 9,10-Dimareimide phenanthrene, 1,2-Dimareimide anthraquinone, 1,5-Dimareimide anthraquinone, 2,6-Dimareimide anthraquinone, 1,2-Zimarei Midbenzene, 1,3-dimaleimidebenzene, 1,4-dimaleimidebenzene, 1,4-bis (4-maleimidephenyl) benzene, 2-methyl-1,4-dimaleimidebenzene, 2,3-dimethyl-1 , 4-dimaleimidebenzene, 2,5-dimethyl-1,4-dimaleimidebenzene, 2,6-dimethyl-1,4-dimaleimidebenzene, 4-ethyl-1,3-dimaleimidebenzene, 5-ethyl -1,3-dimaleimidebenzene, 4,6-dimethyl-1,3-dimaleimidebenzene, 2,4,6-trimethyl-1,3-dimaleimidebenzene, 2,3,5,6-tetramethyl- Examples thereof include 1,4-dimaleimidebenzene and 4-methyl-1,3-dimaleimidebenzene. Specific examples of the aliphatic bismaleimide compound include bis (4-maleimidecyclohexyl) methane and bis (3-maleimidecyclohexyl) methane. Of these, bis (4-maleimidephenyl) methane and 2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane are preferable. Examples of commercially available products include the BMI (trade name, manufactured by Daiwa Kasei Kogyo Co., Ltd.) series.
 ポリマレイミド化合物(B)を100質量部としたとき、ポリアルケニルフェノール化合物(A)の配合量は5~200質量部とすることが好ましく、10~150質量部とすることがより好ましく、20~130質量部であることがさらに好ましい。上記配合量が5質量部以上であれば成形時の流動性がより良好である。一方、上記配合量が200質量部以下であれば硬化物の耐熱性がより良好である。 When the polymaleimide compound (B) is 100 parts by mass, the blending amount of the polyalkenylphenol compound (A) is preferably 5 to 200 parts by mass, more preferably 10 to 150 parts by mass, and 20 to 20 to 150 parts by mass. It is more preferably 130 parts by mass. When the compounding amount is 5 parts by mass or more, the fluidity at the time of molding is better. On the other hand, when the compounding amount is 200 parts by mass or less, the heat resistance of the cured product is better.
[化合物(C)]
 化合物(C)は、式(1)
Figure JPOXMLDOC01-appb-C000014
(式中、R1及びR2は水素原子、ハロゲン原子、炭素原子数1~3のアルキル基、水酸基、カルボキシ基、又はアミノ基であり、R1及びR2の少なくとも一方はアミノ基である。R3は水素原子、炭素原子数1~3のアルキル基、炭素原子数2~3のアルケニル基、又はシアノ基であり、R4は水素原子、又は炭素原子数1~3のアルキル基である。)で表される化合物である。このうちR1及びR2の一方が水素原子であることが好ましく、R3、R4はいずれも水素原子であることが望ましい。
[Compound (C)]
Compound (C) is represented by the formula (1).
Figure JPOXMLDOC01-appb-C000014
(In the formula, R 1 and R 2 are hydrogen atoms, halogen atoms, alkyl groups having 1 to 3 carbon atoms, hydroxyl groups, carboxy groups, or amino groups, and at least one of R 1 and R 2 is an amino group. R 3 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, or a cyano group, and R 4 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. It is a compound represented by). Of these, one of R 1 and R 2 is preferably a hydrogen atom, and both R 3 and R 4 are preferably hydrogen atoms.
 R1又はR2を構成するハロゲン原子の具体例としては、塩素原子、臭素原子、ヨウ素原子等を挙げることができる。炭素原子数1~3のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基等を挙げることができる。
 アミノ基以外のR1又はR2としては、水素原子、塩素原子、臭素原子、メチル基、エチル基、水酸基、カルボキシ基が好ましく、水素原子、メチル基、エチル基、水酸基、カルボキシ基がより好ましく、水素原子がさらに好ましい。
Specific examples of the halogen atom constituting R 1 or R 2 include a chlorine atom, a bromine atom, an iodine atom and the like. Specific examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like.
As R 1 or R 2 other than the amino group, a hydrogen atom, a chlorine atom, a bromine atom, a methyl group, an ethyl group, a hydroxyl group and a carboxy group are preferable, and a hydrogen atom, a methyl group, an ethyl group, a hydroxyl group and a carboxy group are more preferable. , Hydrogen atom is more preferable.
 R3を構成する炭素原子数1~3のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基等を挙げることができる。炭素原子数2~3のアルケニル基の具体例としては、ビニル基、アリル基等を挙げることができる。
 R3としては、水素原子、メチル基、エチル基、ビニル基、アリル基、シアノ基が好ましく、水素原子、メチル基、エチル基、シアノ基がより好ましく、水素原子がさらに好ましい。
Specific examples of the alkyl group having 1 to 3 carbon atoms constituting R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like. Specific examples of the alkenyl group having 2 to 3 carbon atoms include a vinyl group and an allyl group.
As R 3 , a hydrogen atom, a methyl group, an ethyl group, a vinyl group, an allyl group, and a cyano group are preferable, a hydrogen atom, a methyl group, an ethyl group, and a cyano group are more preferable, and a hydrogen atom is further preferable.
 R4を構成する炭素原子数1~3のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基等を挙げることができる。
 R4としては、水素原子、メチル基、エチル基が好ましく、水素原子、メチル基がより好ましく、水素原子がさらに好ましい。
Specific examples of the alkyl group having 1 to 3 carbon atoms constituting R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like.
As R 4 , a hydrogen atom, a methyl group, and an ethyl group are preferable, a hydrogen atom and a methyl group are more preferable, and a hydrogen atom is further preferable.
 化合物(C)としては例えば、6-アミノインダゾール、5-アミノインダゾール、6-アミノ-5-メチルインダゾール、6-アミノ-5-エチルインダゾール、6-アミノ-5-ヒドロキシインダゾール、6-アミノ-5-ブロモインダゾール、6-アミノ-5-クロロインダゾール、3-シアノ-5-アミノインダゾール、5-カルボキシ-6-アミノインダゾール、5,6-ジアミノインダゾールが挙げられる。中でも、ゲルタイムの調整及び金属表面、特に銅に対しての親和性により優れる点で、6-アミノインダゾール、5-アミノインダゾールが好ましい。ゲルタイムを適切な範囲に制御することで、熱硬化性樹脂組成物の基材に対する濡れを向上させることができると考えられる。 Examples of the compound (C) include 6-aminoindazole, 5-aminoindazole, 6-amino-5-methylindazole, 6-amino-5-ethylindazole, 6-amino-5-hydroxyindazole, and 6-amino-5. Examples thereof include -bromoindazole, 6-amino-5-chloroindazole, 3-cyano-5-aminoindazole, 5-carboxy-6-aminoindazole, and 5,6-diaminoindazole. Of these, 6-aminoindazole and 5-aminoindazole are preferable because they are excellent in adjusting the gel time and having an affinity for the metal surface, particularly copper. By controlling the gel time within an appropriate range, it is considered that the wetting of the thermosetting resin composition with respect to the substrate can be improved.
 R1及びR2の少なくとも一方がアミノ基であることで、ラジカル重合による硬化反応において化合物(C)は硬化速度を調整することができる。いかなる理論に拘束されるものではないが、化合物(C)のアニリン部分がラジカルを一時的に捕捉し安定化することで熱硬化性樹脂組成物の硬化速度が調整されると考えられる。ラジカル重合速度はラジカル重合開始剤の量により調整することが一般的である。組成物のラジカル重合反応速度が早すぎる場合、基材に対しての濡れが十分確保できない状態で例えば成形硬化開始0秒~30秒の初期硬化が進行してしまい、硬化物と基材間の十分な密着力が出ない。しかしラジカル重合を遅くするためにラジカル重合開始剤量を減らすと初期硬化だけでなく、例えば成形硬化開始30秒~180秒の硬化中期の反応速度が遅くなり、型から成形物を取り出すための十分な硬度に達するための時間が長くなり生産性が落ちる。化合物(C)を添加することで、基材に対しての濡れを十分確保しながら硬化速度の遅延による生産性の低下を防ぐことができる。なお、ピラゾール環は、類似した複素環構造であるイミダゾール環と比べて化学的安定性が高く、イミダゾール環に触媒されて重合反応を起こすポリマレイミド化合物(B)に対しての重合活性が非常に低い。この点も硬化速度調整の点で優れている。 Since at least one of R 1 and R 2 is an amino group, the curing rate of compound (C) can be adjusted in the curing reaction by radical polymerization. Without being bound by any theory, it is believed that the aniline moiety of compound (C) temporarily traps and stabilizes radicals, thereby adjusting the curing rate of the thermosetting resin composition. The radical polymerization rate is generally adjusted by the amount of the radical polymerization initiator. If the radical polymerization reaction rate of the composition is too fast, the initial curing of, for example, 0 to 30 seconds after the start of molding and curing proceeds in a state where sufficient wetting with respect to the base material cannot be ensured, and the distance between the cured product and the base material is increased. Sufficient adhesion is not obtained. However, if the amount of the radical polymerization initiator is reduced in order to slow down the radical polymerization, not only the initial curing but also the reaction rate in the middle stage of curing, for example, 30 seconds to 180 seconds after the start of molding curing, becomes slow, which is sufficient for removing the molded product from the mold. It takes longer to reach the desired hardness and productivity is reduced. By adding the compound (C), it is possible to prevent a decrease in productivity due to a delay in the curing rate while sufficiently ensuring wetting with respect to the base material. The pyrazole ring has higher chemical stability than the imidazole ring, which has a similar heterocyclic structure, and has a very high polymerization activity on the polymaleimide compound (B), which is catalyzed by the imidazole ring and causes a polymerization reaction. Low. This point is also excellent in terms of adjusting the curing speed.
 さらに化合物(C)は金属に対しての親和性が高く、かつ、R1及びR2の少なくとも一方であるアミノ基が、ポリマレイミド化合物(B)のマレイミド基に含まれるエチレン性不飽和結合とマイケル付加反応することで、化合物(C)が共有結合的に成形物中に固定される。これらの働きにより、化合物(C)が樹脂と金属表面のカップリング剤としての働きをすることができ、硬化物と金属基材間の強い密着力を発現させることができる。 Furthermore, compound (C) has a high affinity for metals, and the amino group, which is at least one of R 1 and R 2 , is an ethylenically unsaturated bond contained in the maleimide group of the polymaleimide compound (B). By the Michael addition reaction, compound (C) is covalently fixed in the molded product. By these actions, the compound (C) can act as a coupling agent between the resin and the metal surface, and can develop a strong adhesive force between the cured product and the metal base material.
 化合物(C)の含有量については、用途に応じて適宜決定することができるが、ポリアルケニルフェノール化合物(A)とポリマレイミド化合物(B)の合計100質量部に対して0.05質量部~5質量部であることが好ましく、より好ましくは0.2質量部~3質量部であり、さらに好ましくは0.3質量部~2.5質量部である。0.05質量部以上あれば、銅に対しての密着性がより良好であり、5質量部以下であれば硬化速度調整の機能を十分に発揮したうえで速硬化性を保つことができる。これにより成形物の外観及び熱硬化性樹脂組成物の成形性を改善することができる。 The content of the compound (C) can be appropriately determined depending on the intended use, but is 0.05 parts by mass to 0.05 parts by mass with respect to 100 parts by mass in total of the polyalkenylphenol compound (A) and the polymaleimide compound (B). It is preferably 5 parts by mass, more preferably 0.2 parts by mass to 3 parts by mass, and further preferably 0.3 parts by mass to 2.5 parts by mass. If it is 0.05 part by mass or more, the adhesion to copper is better, and if it is 5 parts by mass or less, the function of adjusting the curing speed can be fully exhibited and the quick curing property can be maintained. Thereby, the appearance of the molded product and the moldability of the thermosetting resin composition can be improved.
[ラジカル開始剤(D)]
 熱硬化性樹脂組成物にラジカル開始剤(D)を配合することで熱硬化性樹脂組成物の硬化を促進することができる。ラジカル開始剤(D)は好ましくは熱ラジカル開始剤である。熱ラジカル開始剤としては、有機過酸化物を挙げることができる。有機過酸化物は、10時間半減期温度が100~170℃の有機過酸化物であることが好ましく、具体的にはジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、tert-ブチルクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、及びクメンハイドロパーオキサイドを挙げることができる。ラジカル開始剤(D)の好ましい使用量は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、及び化合物(C)の合計100質量部に対して、0.01~10質量部であり、より好ましくは0.05~7.5質量部であり、さらに好ましくは0.1~5質量部である。ラジカル開始剤(D)の使用量が0.01質量部以上であれば十分に硬化反応が進行し、10質量部以下であれば熱硬化性樹脂組成物の保存安定性がより良好である。
[Radical initiator (D)]
Curing of the thermosetting resin composition can be promoted by blending the radical initiator (D) with the thermosetting resin composition. The radical initiator (D) is preferably a thermal radical initiator. Examples of the thermal radical initiator include organic peroxides. The organic peroxide is preferably an organic peroxide having a 10-hour half-life temperature of 100 to 170 ° C., specifically, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert-). Butylperoxy) hexane, tert-butylcumyl peroxide, di-tert-butyl peroxide, 1,1,3,3-tetramethylbutylhydroperoxide, and cumenehydroperoxide can be mentioned. The preferable amount of the radical initiator (D) to be used is 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), and the compound (C). , More preferably 0.05 to 7.5 parts by mass, and even more preferably 0.1 to 5 parts by mass. When the amount of the radical initiator (D) used is 0.01 parts by mass or more, the curing reaction proceeds sufficiently, and when it is 10 parts by mass or less, the storage stability of the thermosetting resin composition is better.
[充填材(E)]
 熱硬化性樹脂組成物はさらに充填材(E)を含んでもよい。充填材(E)の種類に特に制限はなく、例として固体シリコーンゴム粒子等の固体ゴム粒子、シリコーンパウダー等の有機充填材、シリカ、アルミナ、酸化マグネシウム、窒化ホウ素等の無機充填材などが挙げられ、用途により適宜選択することができる。充填材(E)は、シリカ、アルミナ、酸化マグネシウム、及び固体ゴム粒子からなる群から選択される少なくとも一種であることが好ましい。
[Filler (E)]
The thermosetting resin composition may further contain a filler (E). The type of the filler (E) is not particularly limited, and examples thereof include solid rubber particles such as solid silicone rubber particles, organic fillers such as silicone powder, and inorganic fillers such as silica, alumina, magnesium oxide, and boron nitride. It can be appropriately selected depending on the intended use. The filler (E) is preferably at least one selected from the group consisting of silica, alumina, magnesium oxide, and solid rubber particles.
 例えば、熱硬化性樹脂組成物を半導体封止用途に使用する場合には、熱膨張係数の低い硬化物を得るために絶縁性である無機充填材を配合することが好ましい。無機充填材は特に限定されず、公知のものを使用することができる。無機充填材として、具体的には、非晶質シリカ、結晶性シリカなどのシリカ、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素などの粒子が挙げられる。低粘度化の観点からは真球状の非晶質シリカが望ましい。無機充填材は、シランカップリング剤などで表面処理が施されたものであってもよいが、表面処理が施されていなくてもよい。 For example, when a thermosetting resin composition is used for semiconductor encapsulation, it is preferable to add an insulating inorganic filler in order to obtain a cured product having a low coefficient of thermal expansion. The inorganic filler is not particularly limited, and known materials can be used. Specific examples of the inorganic filler include silica such as amorphous silica and crystalline silica, and particles such as alumina, boron nitride, aluminum nitride, and silicon nitride. From the viewpoint of reducing the viscosity, spherical amorphous silica is desirable. The inorganic filler may be surface-treated with a silane coupling agent or the like, but may not be surface-treated.
 充填材(E)の平均粒径は0.1~30μmが好ましく、最大粒径が100μm以下、特に75μm以下のものがより好ましい。平均粒径がこの範囲にあると熱硬化性樹脂組成物の粘度が使用時に適切であり、狭ピッチ配線部又は狭ギャップ部への注入性も適切である。ここでいう平均粒径とは、レーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50である。 The average particle size of the filler (E) is preferably 0.1 to 30 μm, and more preferably the maximum particle size is 100 μm or less, particularly 75 μm or less. When the average particle size is in this range, the viscosity of the thermosetting resin composition is appropriate at the time of use, and the injectability into a narrow pitch wiring portion or a narrow gap portion is also appropriate. The average particle size referred to here is a volume cumulative particle size D 50 measured by a laser diffraction / scattering type particle size distribution measuring device.
 熱硬化性樹脂組成物の充填材(E)の含有量は、用途に応じて適宜決定することができる。熱硬化性樹脂組成物の充填材(E)の含有量は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、化合物(C)、及びラジカル開始剤(D)の合計100質量部に対して、好ましくは200~1900質量部、より好ましくは300~1000質量部、さらに好ましくは300~600質量部である。 The content of the filler (E) in the thermosetting resin composition can be appropriately determined according to the application. The content of the filler (E) in the thermosetting resin composition is 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the compound (C), and the radical initiator (D). On the other hand, it is preferably 200 to 1900 parts by mass, more preferably 300 to 1000 parts by mass, and further preferably 300 to 600 parts by mass.
 その他の添加剤として、消泡剤、着色剤、蛍光体、変性剤、レベリング剤、光拡散剤、難燃剤、接着付与剤、離型剤、カップリング剤などを熱硬化性樹脂組成物に配合することも可能である。 As other additives, a defoaming agent, a coloring agent, a phosphor, a denaturing agent, a leveling agent, a light diffusing agent, a flame retardant, an adhesion imparting agent, a mold release agent, a coupling agent, etc. are blended in the thermosetting resin composition. It is also possible to do.
 例えば、離型剤としてはカルナバワックス、モンタン酸エステルワックスなどのエステル系や、ラウリン酸アマイド、ステアリン酸アマイド、N-ステアリルエルカ酸アマイドなどのアマイド系、ポリエチレン、酸化ポリエチレン等種々のワックスを適宜選択することができる。 For example, as the release agent, various waxes such as ester waxes such as carnauba wax and montanic acid ester wax, amide-based waxes such as lauric acid amide, stearic acid amide, and N-stearyl erucate amide, polyethylene, and polyethylene oxide are appropriately selected. can do.
 例えば、カップリング剤としては、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのシランカップリング剤などが挙げられる。カップリング剤は、単独で用いられてもよく、二種以上が併用されてもよい。熱硬化性樹脂組成物中のカップリング剤の配合量は0.1~5質量%が好ましい。上記配合量が0.1質量%以上であれば、カップリング剤の効果が十分発揮され、5質量%以下であれば、溶融粘度、硬化物の吸湿性及び強度がより良好である。 For example, examples of the coupling agent include vinyl triethoxysilane, vinyl trimethoxysilane, 3-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, and N-phenyl-3. -A silane coupling agent such as aminopropyltrimethoxysilane can be mentioned. The coupling agent may be used alone or in combination of two or more. The blending amount of the coupling agent in the thermosetting resin composition is preferably 0.1 to 5% by mass. When the blending amount is 0.1% by mass or more, the effect of the coupling agent is sufficiently exhibited, and when it is 5% by mass or less, the melt viscosity, the hygroscopicity and the strength of the cured product are more good.
[熱硬化性樹脂組成物の調製方法]
 熱硬化性樹脂組成物の調製方法は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、化合物(C)、ラジカル開始剤(D)、及びその他の任意成分が均一に混合及び分散できれば特に限定されない。ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、及び化合物(C)を先に溶融混合させ、その後にラジカル開始剤(D)及び任意の添加剤を加える方法は、各材料を均一に混合しやすいため好ましい。
[Method for preparing thermosetting resin composition]
The method for preparing the thermosetting resin composition is as long as the polyalkenylphenol compound (A), the polymaleimide compound (B), the compound (C), the radical initiator (D), and other optional components can be uniformly mixed and dispersed. There is no particular limitation. The method of first melting and mixing the polyalkenylphenol compound (A), the polymaleimide compound (B), and the compound (C), and then adding the radical initiator (D) and any additive is to make each material uniform. It is preferable because it is easy to mix.
 各成分の混合方法は特に限定されない。各成分を所定の配合割合で反応容器、ポットミル、二本ロールミル、三本ロールミル、回転式混合機、二軸ミキサー、ディスパー、単軸又は二軸(同方向又は異方向)押出機、ニーダーなどの混合機に投入し、撹拌又は混練することにより混合することができる。ラボスケールでは回転式混合機が容易に撹拌条件を変更できるため好ましく、工業的には生産性の観点から二軸ミキサーが好ましい。各混合機は撹拌条件を適宜変更して用いることができる。 The mixing method of each component is not particularly limited. Reaction vessel, pot mill, two-roll mill, three-roll mill, rotary mixer, twin-screw mixer, dispenser, single-screw or twin-screw (same direction or different direction) extruder, kneader, etc. It can be mixed by putting it in a mixer and stirring or kneading it. On a lab scale, a rotary mixer is preferable because the stirring conditions can be easily changed, and industrially, a twin-screw mixer is preferable from the viewpoint of productivity. Each mixer can be used by appropriately changing the stirring conditions.
 熱硬化性樹脂組成物の粉末化を行う場合は作業工程により発生した熱により樹脂が溶融しない方法であれば特に限定されないが、少量であればメノウ乳鉢を用いるのが簡便である。市販の粉砕機を利用する場合、粉砕に際して発生する熱量が少ないものが混合物の溶融を抑制するために好ましい。粉末の粒径については1mm以下とすることが好ましい。 When powdering the thermosetting resin composition, the method is not particularly limited as long as the resin is not melted by the heat generated in the work process, but it is convenient to use an agate mortar if the amount is small. When a commercially available crusher is used, it is preferable that the amount of heat generated during crushing is small in order to suppress the melting of the mixture. The particle size of the powder is preferably 1 mm or less.
[構造体の作製方法]
 熱硬化性樹脂組成物は加熱することにより溶融させることができる。溶融した熱硬化性樹脂組成物を任意の好ましい形状に成形し、必要に応じて硬化させ、脱型することにより、構造体を作製することができる。構造体の作製方法としては、モールディング成形、特にトランスファー成形及びコンプレッション成形が好ましい。トランスファー成形での好ましい条件として、例えばサイズが10mm×75mm×3mm厚の金型の場合、天板及び金型の温度を170~190℃、保持圧力を50~150kg/cm2、及び保持時間を1.5~10分間とすることができる。コンプレッション成形での好ましい条件として、例えばサイズが100mm×75mm×3mm厚の金型の場合、天板及び金型の温度を170~190℃、成形圧力を5~20MPa、及び加圧時間を1.5~10分間とすることができる。
[Method of manufacturing the structure]
The thermosetting resin composition can be melted by heating. A structure can be produced by molding the melted thermosetting resin composition into an arbitrary preferable shape, curing it if necessary, and removing the mold. As a method for producing the structure, molding molding, particularly transfer molding and compression molding are preferable. As preferable conditions for transfer molding, for example, in the case of a mold having a size of 10 mm × 75 mm × 3 mm, the temperature of the top plate and the mold is 170 to 190 ° C., the holding pressure is 50 to 150 kg / cm 2 , and the holding time is set. It can be 1.5 to 10 minutes. As preferable conditions for compression molding, for example, in the case of a mold having a size of 100 mm × 75 mm × 3 mm, the temperature of the top plate and the mold is 170 to 190 ° C., the molding pressure is 5 to 20 MPa, and the pressurizing time is 1. It can be 5 to 10 minutes.
[硬化物の作製方法]
 熱硬化性樹脂組成物は、加熱することにより硬化させることができる。硬化温度は、好ましくは130~300℃、より好ましくは150~230℃であり、さらに好ましくは150~200℃である。硬化温度が130℃以上であれば、硬化前の熱硬化性樹脂組成物を十分溶融させて、金型へ容易に充填することができ、硬化後の脱型も容易である。硬化温度が300℃以下であれば、材料の熱劣化又は揮発を避けることができる。加熱時間は熱硬化性樹脂組成物及び硬化温度に応じて適宜変更することができるが、生産性の観点から0.1~24時間が好ましい。この加熱は、複数回に分けて行ってもよい。特に高い硬化度を求める場合には、過度に高温で硬化させずに、例えば硬化の進行とともに昇温させて、最終的な硬化温度を250℃以下とすることが好ましく、230℃以下とすることがより好ましい。
[Method for producing cured product]
The thermosetting resin composition can be cured by heating. The curing temperature is preferably 130 to 300 ° C, more preferably 150 to 230 ° C, and even more preferably 150 to 200 ° C. When the curing temperature is 130 ° C. or higher, the thermosetting resin composition before curing can be sufficiently melted and easily filled in the mold, and the mold can be easily removed after curing. When the curing temperature is 300 ° C. or lower, thermal deterioration or volatilization of the material can be avoided. The heating time can be appropriately changed depending on the thermosetting resin composition and the curing temperature, but 0.1 to 24 hours is preferable from the viewpoint of productivity. This heating may be performed in a plurality of times. When a particularly high degree of curing is required, the final curing temperature is preferably 250 ° C. or lower, preferably 230 ° C. or lower, without curing at an excessively high temperature, for example, by raising the temperature as the curing progresses. Is more preferable.
[硬化物の用途]
 熱硬化性樹脂組成物の硬化物は例えば半導体封止材、プリプレグ、層間絶縁樹脂、ソルダーレジスト、ダイアタッチなどの用途に用いることができる。
[Use of cured product]
The cured product of the thermosetting resin composition can be used, for example, in applications such as semiconductor encapsulants, prepregs, interlayer insulating resins, solder resists, and die attaches.
 以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこの実施例に限定されない。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to this Example.
 実施例及び比較例で用いた分析方法及び特性評価方法は以下のとおりである。 The analysis method and characteristic evaluation method used in the examples and comparative examples are as follows.
[特性評価方法]
[分子量]
 GPCの測定条件は以下のとおりである。
 装置名:JASCO LC-2000 plus(日本分光株式会社製)
 カラム:Shodex(登録商標)LF-804(昭和電工株式会社製)
 移動相:テトラヒドロフラン
 流速:1.0mL/min
 検出器:JASCO RI-2031 plus(日本分光株式会社製)
 温度:40℃
 上記測定条件で、ポリスチレンの標準物質を使用して作成した検量線を用いて数平均分子量Mn及び重量平均分子量Mwを算出する。
[Characteristic evaluation method]
[Molecular weight]
The measurement conditions of GPC are as follows.
Device name: JASCO LC-2000 plus (manufactured by JASCO Corporation)
Column: Shodex (registered trademark) LF-804 (manufactured by Showa Denko KK)
Mobile phase: tetrahydrofuran Flow velocity: 1.0 mL / min
Detector: JASCO RI-2031 plus (manufactured by JASCO Corporation)
Temperature: 40 ° C
Under the above measurement conditions, the number average molecular weight Mn and the weight average molecular weight Mw are calculated using a calibration curve prepared using a polystyrene standard substance.
[重合度]
 重合度PはGPCより算出した数平均分子量をMn、ポリアルケニルフェノール化合物(A)の繰り返し構造の分子量をMとした時、以下の式で求められる。
  P=Mn/M
[Degree of polymerization]
The degree of polymerization P is calculated by the following formula, where Mn is the number average molecular weight calculated from GPC and M is the molecular weight of the repeating structure of the polyalkenylphenol compound (A).
P = Mn / M
[ゲルタイム]
 表面温度を180℃に調整した銅基板の上に、粉体状の熱硬化性樹脂組成物1gを載せ、へらで固まるまでこねる。材料のタック性が失われるまでにかかる時間(秒)をストップウォッチで測定し、ゲルタイムとする。
[Gel time]
1 g of a powdery thermosetting resin composition is placed on a copper substrate whose surface temperature has been adjusted to 180 ° C., and kneaded with a spatula until it hardens. The time (seconds) required for the material to lose its tackiness is measured with a stopwatch and used as the gel time.
[硬化時間]
 コンプレッションモールドで180℃にて30s、60sと15sずつ成形時間を長くした30mm×30mm×5mmtの構造体をそれぞれ作製し、JIS K 7215(1986)に準拠したタイプD デュロメータを用いて得られた構造体の硬度を180℃で測定した。硬度が85を超えるまでにかかった時間(秒)を硬化時間とする。
[Curing time]
A structure of 30 mm × 30 mm × 5 mmt in which the molding time was lengthened by 30 s, 60 s and 15 s at 180 ° C. was prepared by a compression mold, respectively, and the structure obtained by using a type D durometer compliant with JIS K 7215 (1986). Body hardness was measured at 180 ° C. The time (seconds) required for the hardness to exceed 85 is defined as the curing time.
[せん断接着力]
 金属に対しての接着性をせん断接着力の観点から評価する。被着基材として、無酸素銅(C1020)の、18mm×14mm×1.6mmtの基材を用いる。被着基材をアセトンに浸漬して5分、5質量%硫酸に浸漬して5分間処理したのちイオン交換水で2回以上洗浄して、50℃で10分間乾燥させてから用いる。被着基材表面に、トランスファー成形機を用いて熱硬化性樹脂組成物を円錐塔形(接地部分が3mmφの円、高さが3mm、上部部分が1.5mmφ)に成形する。成形条件は、金型温度180℃、保持圧力100kg/cm、及び保持時間3分間である。
[Shear adhesive force]
The adhesiveness to metal is evaluated from the viewpoint of shear adhesive force. As the adherend base material, a base material of oxygen-free copper (C1020) having a size of 18 mm × 14 mm × 1.6 mmt is used. The adherend is immersed in acetone for 5 minutes, immersed in 5% by mass sulfuric acid for 5 minutes, washed twice or more with ion-exchanged water, and dried at 50 ° C. for 10 minutes before use. A thermosetting resin composition is formed on the surface of the adherend base material into a conical tower shape (a circle having a ground contact portion of 3 mmφ, a height of 3 mm, and an upper portion of 1.5 mmφ) using a transfer molding machine. The molding conditions are a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2 , and a holding time of 3 minutes.
 得られた試験片について被着基材をしっかりと固定し、円錐塔形の構造体を横方向から2mm/sのスピードで被着面に沿って加圧し、円錐塔形の構造体が被着基材から剥離する際の付加圧力を測定する。この測定を1つの熱硬化性樹脂組成物についてN=6で行い、それぞれ測定された付加圧力を被着面積で割り返した値を平均した値(MPa)をその熱硬化性樹脂組成物のせん断接着力とする。
[成形後密着率]
 金属に対しての密着性を成形後密着率の観点から評価する。素材が圧延無酸素銅(C1020)であり、外寸は、横52mm、縦38mm、厚み0.5mmであり、ベッドが中央に縦横18mmで存在するリードフレームを用いる。リードフレームの前処理はせん断接着力試験における被着基材の前処理と同条件にて行う。リードフレームの中央を中心に、熱硬化性樹脂組成物により、縦30mm、横30mm、厚さ3mmの外寸でベッドを囲う封止を行う。封止は、金型温度180℃、保持圧力100kg/cm、及び保持時間3分間の条件にてトランスファー成形機を用いて熱硬化性樹脂組成物を成形することにより行い、得られた試験片を200℃、5時間で後硬化する。後硬化した試験片について、超音波探傷映像装置(本多電子株式会社製HA-60A)を用い、リードフレームと熱硬化性樹脂組成物の硬化物との界面の剥離状況を観察する。Image-Jソフトを用いて、剥離していない部分の面積を全体の面積で割り返した値を成形後密着率として決定する。
[耐リフロー性]
 金属に対しての密着性を耐リフロー性の観点からも評価する。成型後密着率試験において観察した試験片を用い、IPC/JEDEC J-STD-020Dのレベル3の条件に準拠して、株式会社マルコム製リフローシミュレーターSRS-1を用いてリフロー試験を行う。リフロー試験後の試験片について、成形後密着率試験と同様に解析し、得られた値をリフロー後密着率として決定する。
The adherend base material was firmly fixed to the obtained test piece, and the conical tower-shaped structure was pressed along the adherend surface at a speed of 2 mm / s from the lateral direction, and the conical tower-shaped structure was adhered. Measure the applied pressure when peeling from the substrate. This measurement was performed for one thermosetting resin composition at N = 6, and the value (MPa) obtained by dividing the measured applied pressure by the adherend area was the shear value of the thermosetting resin composition. Adhesive strength.
[Adhesion rate after molding]
Adhesion to metal is evaluated from the viewpoint of adhesion rate after molding. A lead frame is used in which the material is rolled oxygen-free copper (C1020), the outer dimensions are 52 mm in width, 38 mm in length, and 0.5 mm in thickness, and the bed is 18 mm in length and width in the center. The pretreatment of the lead frame is performed under the same conditions as the pretreatment of the adherend base material in the shear adhesion test. A thermosetting resin composition is used to seal the bed around the center of the lead frame with outer dimensions of 30 mm in length, 30 mm in width, and 3 mm in thickness. Sealing was performed by molding a thermosetting resin composition using a transfer molding machine under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2, and a holding time of 3 minutes. Is post-cured at 200 ° C. for 5 hours. For the post-cured test piece, an ultrasonic flaw detection imaging device (HA-60A manufactured by Honda Electronics Corporation) is used to observe the peeling state of the interface between the lead frame and the cured product of the thermosetting resin composition. Using Image-J software, the value obtained by dividing the area of the non-peeled portion by the total area is determined as the post-molding adhesion ratio.
[Reflow resistance]
Adhesion to metal is also evaluated from the viewpoint of reflow resistance. Using the test pieces observed in the post-molding adhesion test, a reflow test is performed using a reflow simulator SRS-1 manufactured by Malcolm Co., Ltd. in accordance with the level 3 conditions of IPC / JEDEC J-STD-020D. The test piece after the reflow test is analyzed in the same manner as in the post-molding adhesion test, and the obtained value is determined as the post-reflow adhesion.
[原材料]
[ポリアルケニルフェノール化合物(A)]
・BRG-APO(式(2)-1のR5=水素原子、Q=-CR1213-、R12及びR13=水素原子、式(3)のR7~R11=水素原子)
 フェノールノボラック樹脂ショウノール(登録商標)BRG-556及びBRG-558(アイカ工業株式会社)の1:1混合物を用い、フェノール性水酸基のオルト位又はパラ位をアリル化した樹脂(水酸基当量154、数平均分子量Mn1000、重量平均分子量Mw3000、重合度6.6、p=6.6、q=0、p/(p+q)=0)を製造した。製造方法は特開2016-28129号公報の実施例1を参照。
[raw materials]
[Polyalkenylphenol compound (A)]
· BRG-APO (formula (2) -1 of R 5 = hydrogen, Q = -CR 12 R 13 - , R 12 and R 13 = hydrogen atom, R 7 ~ R 11 = hydrogen atom of the formula (3))
Phenolic novolak resin A resin in which the ortho or para position of a phenolic hydroxyl group is allylated using a 1: 1 mixture of BRG-556 (registered trademark) BRG-556 and BRG-558 (Aika Kogyo Co., Ltd.) (hydroxyl equivalent 154, number). An average molecular weight Mn1000, a weight average molecular weight Mw3000, a degree of polymerization of 6.6, p = 6.6, q = 0, and p / (p + q) = 0) were produced. For the production method, refer to Example 1 of JP-A-2016-28129.
・HE100C-APO(式(2)-1及び式(2)-2のR5=水素原子、式(3)のR7~R11=水素原子、Q=p-キシリレン基)
 フェノールアラルキル樹脂HE100C-10-15(エア・ウォーター株式会社)を用い、特開2016-28129号公報の実施例1に準じた方法でフェノール性水酸基のオルト位又はパラ位をアリル化した樹脂(水酸基当量222、数平均分子量Mn900、重量平均分子量Mw1900、重合度4.0、p=3.8、q=0.2、p/(p+q)=0.95)を製造した。
HE100C-APO (R 5 = hydrogen atom of formula (2) -1 and formula (2) -2 , R 7 to R 11 = hydrogen atom of formula (3), Q = p-xylylene group)
A resin in which the ortho-position or para-position of a phenolic hydroxyl group is allylated by a method according to Example 1 of JP2016-28129A using a phenol aralkyl resin HE100C-10-15 (Air Water Co., Ltd.) (hydroxyl group). Equivalent 222, number average molecular weight Mn900, weight average molecular weight Mw1900, degree of polymerization 4.0, p = 3.8, q = 0.2, p / (p + q) = 0.95) were produced.
[ポリマレイミド化合物(B)]
・BMI-4000(2,2-ビス[4-(4-マレイミドフェニルオキシ)フェニル]プロパン、大和化成工業株式会社)
・BMI-1100H(ビス(4-マレイミドフェニル)メタン、大和化成工業株式会社)
[Polymaleimide compound (B)]
・ BMI-4000 (2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane, Daiwa Kasei Kogyo Co., Ltd.)
・ BMI-1100H (bis (4-maleimidephenyl) methane, Daiwa Kasei Kogyo Co., Ltd.)
[化合物(C)]
・6-アミノインダゾール(東京化成株式会社製 試薬)
・5-アミノインダゾール(東京化成株式会社製 試薬)
[Compound (C)]
・ 6-Aminoindazole (Reagent manufactured by Tokyo Kasei Co., Ltd.)
・ 5-Aminoindazole (Reagent manufactured by Tokyo Kasei Co., Ltd.)
[ラジカル開始剤(D)]
・パークミル(登録商標)D(ジクミルパーオキサイド、日油株式会社)
[Radical initiator (D)]
・ Park Mill (registered trademark) D (Dikumil Peroxide, NOF Corporation)
[充填材(E)]
・シリカフィラーMSR5100(球状シリカ、平均粒径22.7μm、株式会社龍森製)をシランカップリング剤KBM-603(信越化学工業株式会社製)0.5質量%を用いて処理した。
[Filler (E)]
-Silica filler MSR5100 (spherical silica, average particle size 22.7 μm, manufactured by Ryumori Co., Ltd.) was treated with 0.5% by mass of a silane coupling agent KBM-603 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 その他の成分として以下の添加物を用いた。
・インダゾール(東京化成株式会社製 試薬)
・5-ヒドロキシインダゾール(東京化成株式会社製)
・5-ニトロインダゾール(東京化成株式会社製)
・ピラゾリン(東京化成株式会社製)
・5-アミノ-2-(4-アミノフェニル)ベンゾイミダゾール(東京化成株式会社製)
・6-アミノ-1-H-ベンゾイミダゾール(東京化成株式会社製)
The following additives were used as other ingredients.
・ Indazole (reagent manufactured by Tokyo Kasei Co., Ltd.)
・ 5-Hydroxyindazole (manufactured by Tokyo Kasei Co., Ltd.)
・ 5-Nitroindazole (manufactured by Tokyo Kasei Co., Ltd.)
・ Pyrazoline (manufactured by Tokyo Kasei Co., Ltd.)
・ 5-Amino-2- (4-aminophenyl) benzimidazole (manufactured by Tokyo Kasei Co., Ltd.)
・ 6-Amino-1-H-benzimidazole (manufactured by Tokyo Kasei Co., Ltd.)
[熱硬化性樹脂組成物の製造]
実施例1
 ポリアルケニルフェノール化合物(A)としてBRG-APOを35質量部、ポリマレイミド化合物(B)としてBMI-4000を65質量部、ラジカル開始剤(D)としてパークミルDを1.5質量部、充填材(E)としてKBM-603でカップリング剤処理したMSR5100を400質量部、化合物(C)として5-アミノインダゾールを0.35質量部混合し、溶融混練(株式会社東洋精機製作所製2本ロール(ロール径8インチ)にて、110℃、10分)を行った。室温(25℃)にて1時間放冷して固化したのち、ミルミキサー(大阪ケミカル株式会社製、型式WB-1、25℃、30秒)を用いて粉砕することにより、粉末状の熱硬化性樹脂組成物を得た。トランスファー成形の原料としては、粉末状の熱硬化性樹脂組成物を打錠機(株式会社富士薬品機械製)によりタブレット状に押し固めたものを用いた。粉末状又はタブレット状の熱硬化性樹脂組成物を用いて、前述の各試験片の作製及び評価を行った。
[Manufacturing of thermosetting resin composition]
Example 1
35 parts by mass of BRG-APO as the polyalkenylphenol compound (A), 65 parts by mass of BMI-4000 as the polymaleimide compound (B), 1.5 parts by mass of Park Mill D as the radical initiator (D), filler ( 400 parts by mass of MSR5100 treated with KBM-603 as E) and 0.35 parts by mass of 5-aminoindazole as compound (C) were mixed and melt-kneaded (2 rolls manufactured by Toyo Seiki Seisakusho Co., Ltd.). At 110 ° C. for 10 minutes) at a diameter of 8 inches). After allowing to cool at room temperature (25 ° C) for 1 hour to solidify, it is pulverized using a mill mixer (manufactured by Osaka Chemical Co., Ltd., model WB-1, 25 ° C, 30 seconds) to heat-cure powder. A sex resin composition was obtained. As a raw material for transfer molding, a powdery thermosetting resin composition was compacted into a tablet shape by a tableting machine (manufactured by Fuji Yakuhin Machinery Co., Ltd.). Each of the above-mentioned test pieces was prepared and evaluated using a powdery or tablet-shaped thermosetting resin composition.
実施例2~6、比較例1~7
 成分の種類及び量を表1のとおり変更した以外は、実施例1と同様に熱硬化性樹脂組成物の製造及びその評価を行った。
Examples 2 to 6, Comparative Examples 1 to 7
The thermosetting resin composition was produced and evaluated in the same manner as in Example 1 except that the types and amounts of the components were changed as shown in Table 1.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例1~6は構造体を容易に脱型することができ、成形性は良好であった。実施例1~6はせん断接着力、成形後密着率及びリフロー後密着率が高く、金属に対しての密着性及び接着性に優れていた。実施例1~6のゲルタイムは適切な範囲であった。実施例1~6の硬化時間は適切な範囲であり、生産性にも優れていた。一方、比較例1~5については、せん断接着力及び成形後密着率、特にリフロー後密着率が低く、金属に対しての接着性及び密着性、特にリフロー試験後の密着性が悪かった。比較例6、7については、せん断接着力が低く、金属に対しての接着性が悪かった。また、イミダゾール骨格を有するその他の添加物が重合反応を過度に促進してしまい、比較的大きいサイズである成形後密着率及びリフロー後密着率評価用の試験片を作製することができなかった。 In Examples 1 to 6, the structure could be easily removed from the mold, and the moldability was good. In Examples 1 to 6, the shear adhesive force, the adhesion rate after molding, and the adhesion rate after reflow were high, and the adhesion to the metal and the adhesiveness were excellent. The gel times of Examples 1 to 6 were in an appropriate range. The curing times of Examples 1 to 6 were in an appropriate range, and the productivity was also excellent. On the other hand, in Comparative Examples 1 to 5, the shear adhesive force and the adhesion after molding, particularly the adhesion after reflow, were low, and the adhesiveness and adhesion to the metal, particularly the adhesion after the reflow test, were poor. In Comparative Examples 6 and 7, the shear adhesive force was low and the adhesiveness to the metal was poor. In addition, other additives having an imidazole skeleton excessively promoted the polymerization reaction, and it was not possible to prepare a test piece for evaluating the adhesion rate after molding and the adhesion rate after reflow, which are relatively large in size.

Claims (15)

  1.  ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、式(1)に記載の構造を有する化合物(C)、及びラジカル開始剤(D)を含有する熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2は水素原子、ハロゲン原子、炭素原子数1~3のアルキル基、水酸基、カルボキシ基、又はアミノ基であり、R1及びR2の少なくとも一方はアミノ基である。R3は水素原子、炭素原子数1~3のアルキル基、炭素原子数2~3のアルケニル基、又はシアノ基であり、R4は水素原子、又は炭素原子数1~3のアルキル基である。)
    A thermosetting resin composition containing a polyalkenylphenol compound (A), a polymaleimide compound (B), a compound (C) having the structure according to the formula (1), and a radical initiator (D).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 are hydrogen atoms, halogen atoms, alkyl groups having 1 to 3 carbon atoms, hydroxyl groups, carboxy groups, or amino groups, and at least one of R 1 and R 2 is an amino group. R 3 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, or a cyano group, and R 4 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. is there.)
  2.  前記化合物(C)は、6-アミノインダゾール、5-アミノインダゾール、6-アミノ-5-メチルインダゾール、6-アミノ-5-エチルインダゾール、6-アミノ-5-ヒドロキシインダゾール、6-アミノ-5-ブロモインダゾール、6-アミノ-5-クロロインダゾール、3-シアノ-5-アミノインダゾール、5-カルボキシ-6-アミノインダゾール、及び5,6-ジアミノインダゾールから選択される少なくとも一種を含む、請求項1に記載の熱硬化性樹脂組成物。 The compound (C) is 6-aminoindazole, 5-aminoindazole, 6-amino-5-methylindazole, 6-amino-5-ethylindazole, 6-amino-5-hydroxyindazole, 6-amino-5-. Claim 1 comprises at least one selected from bromoindazole, 6-amino-5-chloroindazole, 3-cyano-5-aminoindazole, 5-carboxy-6-aminoindazole, and 5,6-diaminoindazole. The thermocurable resin composition according to the above.
  3.  前記化合物(C)が5-アミノインダゾール、及び6-アミノインダゾールから選択される少なくとも一種を含む、請求項2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 2, wherein the compound (C) contains at least one selected from 5-aminoindazole and 6-aminoindazole.
  4.  前記化合物(C)の含有量が前記ポリアルケニルフェノール化合物(A)と前記ポリマレイミド化合物(B)の合計100質量部に対して0.05質量部~5質量部である、請求項1~3のいずれか一項に記載の熱硬化性樹脂組成物。 Claims 1 to 3 in which the content of the compound (C) is 0.05 parts by mass to 5 parts by mass with respect to a total of 100 parts by mass of the polyalkenylphenol compound (A) and the polymaleimide compound (B). The thermosetting resin composition according to any one of the above.
  5.  前記ポリアルケニルフェノール化合物(A)の配合量が前記ポリマレイミド化合物(B)100質量部に対して5~200質量部である、請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin according to any one of claims 1 to 4, wherein the amount of the polyalkenylphenol compound (A) is 5 to 200 parts by mass with respect to 100 parts by mass of the polymaleimide compound (B). Composition.
  6.  前記ポリアルケニルフェノール化合物(A)が、式(2)-1:
    Figure JPOXMLDOC01-appb-C000002
    及び任意に式(2)-2:
    Figure JPOXMLDOC01-appb-C000003
    で表される構造単位を有し、式(2)-1及び式(2)-2において、R5はそれぞれ独立に水素原子、炭素原子数1~5のアルキル基、又は炭素原子数1~5のアルコキシ基を表し、R6はそれぞれ独立に式(3):
    Figure JPOXMLDOC01-appb-C000004
    で表される2-アルケニル基を表し、式(3)において、R7、R8、R9、R10及びR11はそれぞれ独立に水素原子、炭素原子数1~5のアルキル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基であり、式(3)の*は、芳香環を構成する炭素原子との結合部を表し、R5及びR6は各フェノール骨格単位で同じでもよく異なっていてもよく、式(2)-1及び式(2)-2におけるQはそれぞれ独立に式-CR1213-で表されるアルキレン基、炭素原子数5~10のシクロアルキレン基、芳香環を有する二価の有機基、脂環式縮合環を有する二価の有機基、又はこれらを組み合わせた二価の有機基を表し、R12及びR13はそれぞれ独立に水素原子、炭素原子数1~5のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基を表す、請求項1~5のいずれか一項に記載の熱硬化性樹脂組成物。
    The polyalkenylphenol compound (A) is represented by the formula (2) -1 :.
    Figure JPOXMLDOC01-appb-C000002
    And optionally equation (2) -2:
    Figure JPOXMLDOC01-appb-C000003
    In formulas (2) -1 and (2) -2, R 5 independently has a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms, respectively. Represents an alkoxy group of 5, and R 6 is an independent formula (3):
    Figure JPOXMLDOC01-appb-C000004
    In formula (3), R 7 , R 8 , R 9 , R 10 and R 11 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, and carbon atoms, respectively. It is a cycloalkyl group of number 5 to 10 or an aryl group having 6 to 12 carbon atoms, where * in the formula (3) represents a bond with a carbon atom constituting an aromatic ring, and R 5 and R 6 are. or different may be the same for each phenol backbone units of the formula (2) -1 and the formula (2) wherein -CR 12 Q are each independently of -2 R 13 - in the alkylene group represented, the number of carbon atoms Represents a cycloalkylene group of 5 to 10, a divalent organic group having an aromatic ring, a divalent organic group having an alicyclic condensed ring, or a divalent organic group in which these are combined, and R 12 and R 13 represent. Each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms. The thermosetting resin composition according to any one of claims 1 to 5.
  7.  式(2)-1に示す構造単位の一分子あたりの平均数をp、式(2)-2に示す構造単位の一分子あたりの平均数をqとしたときに、pは1.1~35の実数、p+qは1.1~35の実数であり、かつqは式:p/(p+q)の値が0.4~1となる実数を満たす、請求項6に記載の熱硬化性樹脂組成物。 When the average number of structural units shown in formula (2) -1 per molecule is p and the average number of structural units shown in formula (2) -2 per molecule is q, p is 1.1 to The thermocurable resin according to claim 6, wherein 35 is a real number, p + q is a real number of 1.1 to 35, and q is a real number having a value of the formula: p / (p + q) of 0.4 to 1. Composition.
  8.  前記ポリマレイミド化合物(B)が芳香族ビスマレイミド化合物である、請求項1~7のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 7, wherein the polymaleimide compound (B) is an aromatic bismaleimide compound.
  9.  前記ラジカル開始剤(D)が有機過酸化物である、請求項1~8のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 8, wherein the radical initiator (D) is an organic peroxide.
  10.  さらに充填材(E)を含む、請求項1~9のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 9, further comprising a filler (E).
  11.  前記充填材(E)が、シリカ、アルミナ、酸化マグネシウム、及び固体ゴム粒子からなる群から選択される少なくとも一種である、請求項10に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 10, wherein the filler (E) is at least one selected from the group consisting of silica, alumina, magnesium oxide, and solid rubber particles.
  12.  前記充填材(E)の含有量が、前記ポリアルケニルフェノール化合物(A)、前記ポリマレイミド化合物(B)、前記化合物(C)、及び前記ラジカル開始剤(D)の合計100質量部に対して200~1900質量部である、請求項10又は11に記載の熱硬化性樹脂組成物。 The content of the filler (E) is 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the compound (C), and the radical initiator (D). The thermosetting resin composition according to claim 10 or 11, which is 200 to 1900 parts by mass.
  13.  請求項1~12のいずれか一項に記載の熱硬化性樹脂組成物の硬化物。 A cured product of the thermosetting resin composition according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか一項に記載の熱硬化性樹脂組成物をモールディング成形する、構造体の製造方法。 A method for producing a structure, wherein the thermosetting resin composition according to any one of claims 1 to 12 is molded by molding.
  15.  請求項13に記載の硬化物を含む構造体。 A structure containing the cured product according to claim 13.
PCT/JP2020/023639 2019-10-09 2020-06-16 Thermosetting resin composition, cured product thereof, and structural body including said cured product WO2021070416A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551143A JP7367766B2 (en) 2019-10-09 2020-06-16 Thermosetting resin composition, cured product thereof, and structure containing the cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-185745 2019-10-09
JP2019185745 2019-10-09

Publications (1)

Publication Number Publication Date
WO2021070416A1 true WO2021070416A1 (en) 2021-04-15

Family

ID=75437105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023639 WO2021070416A1 (en) 2019-10-09 2020-06-16 Thermosetting resin composition, cured product thereof, and structural body including said cured product

Country Status (3)

Country Link
JP (1) JP7367766B2 (en)
TW (1) TWI747338B (en)
WO (1) WO2021070416A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767610A (en) * 1980-10-15 1982-04-24 Semedain Kk Anaerobic curable composition
JPS62161820A (en) * 1986-01-10 1987-07-17 Hitachi Chem Co Ltd Epoxy resin composition
JP2016028129A (en) * 2014-07-08 2016-02-25 昭和電工株式会社 Production method of polyalkenyl phenol compound
WO2018047417A1 (en) * 2016-09-09 2018-03-15 昭和電工株式会社 Curable resin mixture and method for producing curable resin composition
JP2018095690A (en) * 2016-12-09 2018-06-21 昭和電工株式会社 Thermosetting resin composition
JP2019048933A (en) * 2017-09-08 2019-03-28 昭和電工株式会社 Curable resin composition, cured article thereof, manufacturing method of structure using the curable resin composition, and structure containing the cured article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106256175B (en) * 2014-04-25 2021-01-08 太阳油墨制造株式会社 Resin composition for permanent insulation film, multilayer printed wiring board, and method for producing same
JP7153635B2 (en) * 2017-04-19 2022-10-14 昭和電工株式会社 Curable resin composition, cured product thereof, and structure containing cured product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767610A (en) * 1980-10-15 1982-04-24 Semedain Kk Anaerobic curable composition
JPS62161820A (en) * 1986-01-10 1987-07-17 Hitachi Chem Co Ltd Epoxy resin composition
JP2016028129A (en) * 2014-07-08 2016-02-25 昭和電工株式会社 Production method of polyalkenyl phenol compound
WO2018047417A1 (en) * 2016-09-09 2018-03-15 昭和電工株式会社 Curable resin mixture and method for producing curable resin composition
JP2018095690A (en) * 2016-12-09 2018-06-21 昭和電工株式会社 Thermosetting resin composition
JP2019048933A (en) * 2017-09-08 2019-03-28 昭和電工株式会社 Curable resin composition, cured article thereof, manufacturing method of structure using the curable resin composition, and structure containing the cured article

Also Published As

Publication number Publication date
TWI747338B (en) 2021-11-21
JPWO2021070416A1 (en) 2021-04-15
TW202116908A (en) 2021-05-01
JP7367766B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP4793565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
CN107636071B (en) Epoxy molding compounds having high adhesion to nickel surfaces, method for the production thereof and use thereof
JP6271763B2 (en) Thermosetting resin composition
JP7153635B2 (en) Curable resin composition, cured product thereof, and structure containing cured product
JP6832938B2 (en) Method for Producing Curable Resin Mixture and Curable Resin Composition
JP7363821B2 (en) thermosetting resin composition
JP7065832B2 (en) A curable resin composition, a cured product thereof, and a structure containing the cured product thereof.
JP7367766B2 (en) Thermosetting resin composition, cured product thereof, and structure containing the cured product
JP6771369B2 (en) Thermosetting resin composition
JP2021059651A (en) Curable resin composition, cured product of the same, and structure including the cured product
WO2021240878A1 (en) Thermosetting resin composition
WO2021240879A1 (en) Thermosetting resin composition
JP7351297B2 (en) Thermosetting resin composition for semiconductor encapsulation materials, semiconductor encapsulation materials, and semiconductor devices
JP2019048933A (en) Curable resin composition, cured article thereof, manufacturing method of structure using the curable resin composition, and structure containing the cured article
TWI681991B (en) Curable resin composition, cured product thereof, method for manufacturing structure using the curable resin composition, and structure including the cured product
JP2013189490A (en) Epoxy resin composition for encapsulation and semiconductor device
WO2020070531A1 (en) Curable resin composition, cured object therefrom, method for producing structure using said curable resin composition, and structure including said cured object
JP2023070490A (en) thermosetting composition
JPH06322121A (en) Resin composition for sealing semiconductor and resin-sealed semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875508

Country of ref document: EP

Kind code of ref document: A1