JPH09219215A - Lithium ion battery - Google Patents

Lithium ion battery

Info

Publication number
JPH09219215A
JPH09219215A JP8046564A JP4656496A JPH09219215A JP H09219215 A JPH09219215 A JP H09219215A JP 8046564 A JP8046564 A JP 8046564A JP 4656496 A JP4656496 A JP 4656496A JP H09219215 A JPH09219215 A JP H09219215A
Authority
JP
Japan
Prior art keywords
lithium
lithium ion
active material
ion battery
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8046564A
Other languages
Japanese (ja)
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP8046564A priority Critical patent/JPH09219215A/en
Publication of JPH09219215A publication Critical patent/JPH09219215A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high degree of freedom for battery and easily design a totally solid lithium battery by providing lithium storage and release active material and specific lithium ion conductive solid electrolyte and specifying the operating potential of a negative electrode. SOLUTION: A lithium ion battery formed with lithium ion conductive solid electrolyte which has a V range for constant I=0 in a V-I related curve (V: potential, I: current) measured by scanning a potential on Li/Li+ and positive and negative electrodes made of lithium storage and release active material is manufactured, in which the operating potential of the negative electrode on Li/Li+ is set to be minimum V for constant I=0. At this time, spinel lithium manganese compound such as LiMn2-x Nix O4 is preferable for the positive electrode active material and lithium titanium oxide such as LiTi2 O4 is preferable for the negative electrode active material. In this way, the lithium ion battery shows high lithium ion conductivity and stable battery property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、固体電解質を主
な電解質とするリチウムイオン電池に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion battery having a solid electrolyte as a main electrolyte.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いたリチ
ウム電池は、エネルギー密度が大きいので、携帯用無線
電話、携帯用パソコン、携帯用ビデオカメラ等の各種の
携帯可能な小型電子機器に内蔵される電池として好適で
ある。就中、リチウムを炭素材料の中に金属リチウムよ
りも安定なイオンの形態で吸蔵放出させて使用するリチ
ウムイオン電池は、比較的サイクル寿命及び安全性に優
れている。
2. Description of the Related Art Lithium batteries, which use lithium as a negative electrode active material, have a large energy density, and are therefore incorporated in various portable small electronic devices such as portable wireless phones, portable personal computers, and portable video cameras. It is suitable as a battery. In particular, a lithium ion battery in which lithium is absorbed and released in a carbon material in the form of ions more stable than metallic lithium is used, and the lithium ion battery has relatively excellent cycle life and safety.

【0003】一方、固体電解質電池は、液体を主な電解
質とする電池と異なり、液漏れ、ガス発生に伴う電池破
裂の危険性がないので、高信頼性及び使用温度範囲の拡
大を期待することができる。従って、固体電解質を電解
質とするリチウムイオン電池が得られるなら、両者の長
所を兼備した理想的な電池といえる。
On the other hand, a solid electrolyte battery, unlike a battery using a liquid as a main electrolyte, has no risk of battery rupture due to liquid leakage or gas generation, so expect high reliability and expansion of operating temperature range. You can Therefore, if a lithium ion battery using a solid electrolyte as an electrolyte can be obtained, it can be said that it is an ideal battery having both advantages.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来、リチウ
ム電池用に提案されているLiI等のLi+イオン伝導
性固体電解質は、リチウムイオン伝導度が低いために取
り出せる電流が低い、水分によって分解しやすく安定し
た電池特性を発揮しない等の課題を有していた。また、
リチウムイオン伝導度が高く、水分とも反応しにくい固
体電解質としてペロブスカイト形酸化物が知られている
が、リチウム金属と反応するので、リチウム電池への適
用は不可能とされていた。
However, Li + ion conductive solid electrolytes such as LiI, which have been conventionally proposed for lithium batteries, have low lithium ion conductivity and therefore can be taken out with a low current, and are decomposed by moisture. It had a problem that it could not easily exhibit stable battery characteristics. Also,
A perovskite oxide is known as a solid electrolyte having high lithium ion conductivity and hardly reacting with water, but since it reacts with lithium metal, it has been impossible to apply it to a lithium battery.

【0005】それ故、この発明の第一の目的は、リチウ
ム金属と反応する材料であっても電解質としての利用を
可能にしたリチウムイオン電池を提供することにある。
第二の目的は、リチウムイオン伝導度が高く、安定して
電池特性を発揮するリチウムイオン電池を提供すること
にある。
Therefore, a first object of the present invention is to provide a lithium ion battery which can be used as an electrolyte even if it is a material that reacts with lithium metal.
A second object is to provide a lithium ion battery having high lithium ion conductivity and exhibiting stable battery characteristics.

【0006】[0006]

【課題を解決するための手段】その目的を達成するため
に、この発明のリチウムイオン電池は、Li/Li+
対する電位を走査させて計測されるV−I関係曲線
(V:電位,I:電流)においてI=0一定となるVの
範囲を有するリチウムイオン伝導性固体電解質と、リチ
ウムを吸蔵放出しうる材料をそれぞれ活物質とする正極
及び負極とを備え、Li/Li+に対する負極の作動電
位が、前記I=0一定となるVの最小値以上に設定され
ていることを特徴とする。
In order to achieve the object, the lithium ion battery of the present invention has a VI relational curve (V: potential, I: measured by scanning the potential with respect to Li / Li +) . Current), a lithium ion conductive solid electrolyte having a range of V in which I = 0 is constant, and a positive electrode and a negative electrode each having a material capable of inserting and extracting lithium as an active material, and the operation of the negative electrode with respect to Li / Li + It is characterized in that the potential is set to be equal to or higher than the minimum value of V at which I = 0 is constant.

【0007】リチウム金属に対する反応性は、対象とす
る固体電解質のLi/Li+に対する電位を走査させて
計測される電流値をもって容易に評価される。そして、
電流値I=0のときは反応していないと認められる。従
って、Li/Li+と同じ電位ではリチウム金属と互い
に反応する固体電解質であっても、上記のV−I関係曲
線においてI=0一定となるVの範囲を有するものであ
るときは、Li/Li+に対する負極の作動電位を、前
記I=0一定となるVの最小値以上に設定しておくこと
で、固体電解質がリチウムと反応せず電気化学的に安定
に存在する。負極の作動電位は、負極の充電電圧を充電
器で設定値に制御する、正極活物質のLi吸蔵量を制限
する等の手段により、上記の通りに設定することができ
る。この発明によれば、リチウムとの反応性故にリチウ
ム電池の電解質としては適用不可能とされていた固体電
解質を使用することができ、有益である。
The reactivity with respect to lithium metal can be easily evaluated by a current value measured by scanning the potential of Li / Li + of the solid electrolyte of interest. And
When the current value I = 0, it is recognized that no reaction has occurred. Therefore, even if the solid electrolyte reacts with lithium metal at the same potential as Li / Li +, if it has a range of V where I = 0 is constant in the above VI relation curve, Li / Li By setting the operating potential of the negative electrode with respect to + to be equal to or higher than the minimum value of V at which I = 0 is constant, the solid electrolyte does not react with lithium and is electrochemically stable. The operating potential of the negative electrode can be set as described above by means such as controlling the charging voltage of the negative electrode to a set value with a charger or limiting the amount of Li absorbed in the positive electrode active material. According to the present invention, it is possible to use a solid electrolyte, which is not applicable as an electrolyte of a lithium battery because of its reactivity with lithium, which is advantageous.

【0008】[0008]

【発明の実施の形態】この発明に適用されるリチウムイ
オン伝導性固体電解質として好ましいのは、例えば(L
a,Li)TiO3等のペロブスカイト形酸化物であ
る。(La,Li)TiO3は、リチウムイオン伝導度
が液体電解質と同程度に高いうえ、上記のV−I関係曲
線においてI=0一定となるVの最小値が0.03ボル
トと低いため、液体電解質を用いた場合と同等の電池容
量を得ることができるからである。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium ion conductive solid electrolyte applicable to the present invention is preferably, for example, (L
a, Li) Perovskite type oxide such as TiO 3 . Since (La, Li) TiO 3 has a lithium ion conductivity as high as that of the liquid electrolyte and the minimum value of V at which I = 0 is constant in the above VI relation curve is as low as 0.03 V, This is because it is possible to obtain a battery capacity equivalent to that when a liquid electrolyte is used.

【0009】正極活物質としては、LiNi1-x-yCox
Aly2(0.1<x≦0.25,0≦y<0.2)が
リチウムの吸蔵放出に伴う結晶構造の変化が無く、かつ
4Vvs. Li/Li+級の高い平均放電電圧をもってい
るので好ましい。ただし、xが0.1以下ではサイクル
寿命が低下するし、逆に0.25を超えると容量が低下
する。また、yが0.2以上となると活物質の電子伝導
の低下に伴って容量が低下する。
As the positive electrode active material, LiNi 1-xy Co x is used.
Al y O 2 (0.1 <x ≤ 0.25, 0 ≤ y <0.2) has no change in crystal structure due to absorption and desorption of lithium, and has a high average discharge voltage of 4 V vs. Li / Li + class. It is preferable because it has. However, when x is 0.1 or less, the cycle life is reduced, and conversely, when x is more than 0.25, the capacity is reduced. Further, when y is 0.2 or more, the capacity decreases as the electronic conductivity of the active material decreases.

【0010】また、正極活物質としては、LiMn2-x
Nix4等のスピネル型リチウムマンガン化合物も安価
のため好ましい。リチウム吸蔵放出反応行程おける活物
質の体積変化が大きいと、過膨張に伴って固体電解質が
割れたり又は過収縮に伴って固体電解質との接触が不良
となりサイクル寿命が低下したりするが、スピネル型リ
チウムマンガン化合物のうち、LiMn2-xNix
4(0≦x≦1)は、体積変化が2%以下であって、そ
のような問題を生じないので特に好ましい。なお、体積
変化はX線で測定可能である。
As the positive electrode active material, LiMn 2-x is used.
Spinel type lithium manganese compounds such as Ni x O 4 are also preferable because they are inexpensive. When the volume change of the active material in the lithium absorption / desorption reaction process is large, the solid electrolyte is cracked due to overexpansion, or the contact with the solid electrolyte is poor due to excessive contraction, resulting in a decrease in cycle life. Of the lithium manganese compounds, LiMn 2-x Ni x O
4 (0 ≦ x ≦ 1) is particularly preferable because the volume change is 2% or less and such a problem does not occur. The volume change can be measured by X-ray.

【0011】一方、負極活物質としては、LiTi
24、Li2Ti37polymorph等のリチウムチタン系酸
化物が、同様に体積変化が2%以下であるので好まし
い。また、負極活物質としては、d002面の面間隔が
3.7オンク゛ストローム以上の炭素材料も好ましい。この範囲
の炭素は、結晶化度が低くリチウム吸蔵放出反応行程に
おける体積変化が小さいからである。
On the other hand, as the negative electrode active material, LiTi
Lithium-titanium-based oxides such as 2 O 4 and Li 2 Ti 3 O 7 polymorph are also preferable because their volume change is 2% or less. As the negative electrode active material, a carbon material having a d002 plane spacing of 3.7 angstroms or more is also preferable. This is because carbon in this range has a low crystallinity and a small volume change in the lithium occlusion / desorption reaction process.

【0012】さらに両極の活物質は、上記に例示した材
料を単独で用いるよりもペロブスカイト形酸化物を混入
させて用いるのが好ましい。混入により活物質と固体電
解質との接触面積が広くなり、電池反応が効率よく進行
するからである。
Further, it is preferable that the active materials of both polarities are used by mixing the perovskite type oxide, rather than using the above-exemplified materials alone. This is because the contact area of the active material and the solid electrolyte is widened by the mixture, and the battery reaction proceeds efficiently.

【0013】なお、この発明では電解質は、全固体に限
らず主として固体であれば良い。例えば、相対密度が1
00%でない固体電解質に少量の電解液を含ませた場合
も適用可能である。
In the present invention, the electrolyte is not limited to all solids, but may be mainly solid. For example, the relative density is 1
It is also applicable when a small amount of electrolytic solution is included in a solid electrolyte which is not 00%.

【0014】[0014]

【実施例】La23、Li2O及びTiO2の各粉末を、
後述の焼成により理論上La0.57Li0.26TiO3の組
成となるように秤量し混合し、有機バインダーとともに
ペースト状に調製し、固体電解質用ペーストとした。こ
のペーストを絶縁体に塗布し、800℃で焼成すること
によって、絶縁体表面にリチウムイオン伝導性固体電解
質を形成した。この固体電解質及び金属リチウムをLi
PF6濃度1モル/lのスルフォラン溶液に浸漬し、金
属リチウムを基準電極とする固体電解質の電位を5mV
/secの速度で走査させた。得られたポテンシャルス
ウィープ曲線を図1に示す。
EXAMPLE La 2 O 3 , Li 2 O and TiO 2 powders were
It was weighed and mixed so as to theoretically have a composition of La 0.57 Li 0.26 TiO 3 by firing described later, and prepared into a paste with an organic binder to obtain a solid electrolyte paste. This paste was applied to an insulator and fired at 800 ° C. to form a lithium ion conductive solid electrolyte on the surface of the insulator. This solid electrolyte and metallic lithium are mixed with Li
Immersion in a sulfolane solution with a PF 6 concentration of 1 mol / l and the potential of the solid electrolyte using metallic lithium as a reference electrode was 5 mV.
It was scanned at a speed of / sec. The obtained potential sweep curve is shown in FIG.

【0015】図1に見られるように、0.03V vs.
Li/Li+より低い電位では電流が流れたが、それ以
上の電位では電流が流れなかった。即ち、この固体電解
質は、0.03V vs. Li/Li+以上であればリチウ
ム金属と反応せず、そのため負極の作動電位が0.03
V vs. Li/Li+以上となるように設定されたリチウ
ムイオン電池の電解質として利用できることが明らかで
ある。なお、5.4V vs. Li/Li+付近から反対方
向に電流が流れ出しているのは、固体電解質の反応によ
るものではなく、電解液としてのスルフォラン溶液の反
応に起因する。
As can be seen in FIG. 1, 0.03V vs.
A current flowed at a potential lower than Li / Li + , but a current did not flow at a potential higher than that. That is, this solid electrolyte does not react with lithium metal as long as it is 0.03 V vs. Li / Li + or higher, so that the operating potential of the negative electrode is 0.03 V.
It is clear that it can be used as an electrolyte of a lithium-ion battery set to have V vs. Li / Li + or more. The fact that the current flows from the vicinity of 5.4 V vs. Li / Li + in the opposite direction is not due to the reaction of the solid electrolyte but due to the reaction of the sulfolane solution as the electrolytic solution.

【0016】次に上記固体電解質用ペーストを調製する
ために秤量し混合して得られた無機粉末混合物を800
℃で焼成し、固体電解質La0.57Li0.26TiO3を得
た。焼成粉末がペロブスカイト型酸化物であることは、
X線回折にて同定された。そして、正極活物質としての
LiNi0.78Co0.2Al0.022粉末とこの固体電解質
粉末とを所定の重量比で混合し、有機バインダーを添加
してペースト状にし、正極活物質用ペーストを調製し
た。なお、正極活物質としての上記粉末は、共沈合成し
たβ−Ni1-xCox(OH)2とAl(OH)3とを所定
割合で混合した後、酸素中720℃で40時間焼成し、
その焼成物を平均粒径3.5μmに粉砕して得られたも
のである。
Next, the inorganic powder mixture obtained by weighing and mixing to prepare the above solid electrolyte paste is 800
The solid electrolyte La 0.57 Li 0.26 TiO 3 was obtained by firing at ℃. That the calcined powder is a perovskite type oxide
It was identified by X-ray diffraction. Then, LiNi 0.78 Co 0.2 Al 0.02 O 2 powder as a positive electrode active material and this solid electrolyte powder were mixed at a predetermined weight ratio, and an organic binder was added to form a paste to prepare a positive electrode active material paste. The powder as the positive electrode active material was prepared by mixing co-precipitated β-Ni 1-x Co x (OH) 2 and Al (OH) 3 in a predetermined ratio and then firing the mixture in oxygen at 720 ° C. for 40 hours. Then
It was obtained by crushing the fired product to an average particle size of 3.5 μm.

【0017】別途、負極活物質としての炭素粉末と同じ
固体電解質粉末とを正極活物質と同じ重量比で混合し、
有機バインダーを添加してペースト状にし、負極活物質
用ペーストを調製した。
Separately, carbon powder as the negative electrode active material and the same solid electrolyte powder are mixed in the same weight ratio as the positive electrode active material,
An organic binder was added to form a paste to prepare a paste for negative electrode active material.

【0018】次にセラミックス絶縁基板の上に、先ず正
極活物質用ペーストを塗布し乾燥し、その上に固体電解
質用ペーストを塗布し乾燥し、更に上に負極活物質用ペ
ーストを塗布し乾燥した。塗布されるペーストの量は、
正極活物質のLi量が負極活物質の理論容量に対して7
割となるようにした。その後、800℃で焼成すること
によって3段積層体を得た。積層体の両面に金Auペー
ストを塗布し、再び800℃で焼成することによってリ
チウムイオン電池を製造した。各ペーストは、2回の焼
成により有機分が焼失して、それぞれ得られた電池は、
全固体型であった。
Next, a positive electrode active material paste was first applied and dried on the ceramics insulating substrate, a solid electrolyte paste was applied and dried thereon, and a negative electrode active material paste was further applied and dried. . The amount of paste applied is
The amount of Li in the positive electrode active material is 7 relative to the theoretical capacity of the negative electrode active material.
It was set to be a percentage. Then, it baked at 800 degreeC and the three-step laminated body was obtained. A gold-Au paste was applied to both surfaces of the laminate and baked again at 800 ° C. to manufacture a lithium ion battery. The organic content of each paste was burned off twice, and the obtained batteries were
It was all solid.

【0019】得られた電池を30μA/cm2で4.0
Vまで充電した後、30μA/cm2で2.0Vに達す
るまで放電し、その間の放電容量を測定した。正極活物
質層に混入される固体電解質が10重量%以上では一定
の放電容量を示したので、その放電容量を100%と
し、固体電解質の混入量に対する電池の放電容量を打点
したグラフを図2に示す。図2にみられるように、活物
質層に微量以上の固体電解質を混入させることで放電容
量が著しく向上した。
The obtained battery was 4.0 at 30 μA / cm 2 .
After charging to V, the battery was discharged at 30 μA / cm 2 until reaching 2.0 V, and the discharge capacity during that period was measured. When the solid electrolyte mixed in the positive electrode active material layer showed a constant discharge capacity at 10 wt% or more, the discharge capacity was set to 100%, and a graph plotting the discharge capacity of the battery against the mixed amount of the solid electrolyte is shown in FIG. Shown in. As shown in FIG. 2, the discharge capacity was remarkably improved by mixing a small amount or more of the solid electrolyte into the active material layer.

【0020】本例の電池は、リチウムイオン伝導度に優
れた固体電解質を用いた全固体型のリチウムイオン電池
であるから、エネルギー密度が大きく、サイクル寿命及
び安全性に優れるうえ、電解液を用いた従来のリチウム
電池よりもはるかに広い温度範囲で使用できる。
Since the battery of this example is an all-solid-state type lithium ion battery using a solid electrolyte having excellent lithium ion conductivity, it has a large energy density, excellent cycle life and safety, and uses an electrolyte solution. It can be used in a much wider temperature range than conventional lithium batteries.

【0021】[0021]

【発明の効果】以上のように、この発明のリチウムイオ
ン電池は、リチウム電池と固体電解質電池の長所を兼備
しているばかりか、リチウム金属と反応する固体電解質
であっても利用できるので、電池要素の自由度が広が
り、全固体型リチウム電池を設計しやすくなる。
INDUSTRIAL APPLICABILITY As described above, the lithium ion battery of the present invention not only has the advantages of a lithium battery and a solid electrolyte battery, but can also be used as a solid electrolyte that reacts with lithium metal. The degree of freedom of the elements is expanded, making it easier to design an all-solid-state lithium battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ペロブスカイト型酸化物のLi/Li+に対
するポテンシャルスウィープ曲線を示すグラフである。
FIG. 1 is a graph showing a potential sweep curve for Li / Li + of a perovskite type oxide.

【図2】 活物質層に混入される固体電解質の量と放電
容量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of solid electrolyte mixed in the active material layer and the discharge capacity.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Li/Li+に対する電位を走査させて
計測されるV−I関係曲線(V:電位,I:電流)にお
いてI=0一定となるVの範囲を有するリチウムイオン
伝導性固体電解質と、リチウムを吸蔵放出しうる材料を
それぞれ活物質とする正極及び負極とを備え、Li/L
+に対する負極の作動電位が、前記I=0一定となる
Vの最小値以上に設定されていることを特徴とするリチ
ウムイオン電池。
1. A lithium ion conductive solid electrolyte having a V range in which I = 0 is constant in a VI relationship curve (V: potential, I: current) measured by scanning a potential with respect to Li / Li + . And a positive electrode and a negative electrode each of which has a material capable of inserting and extracting lithium as an active material.
A lithium-ion battery, wherein an operating potential of the negative electrode with respect to i + is set to be equal to or more than the minimum value of V at which I = 0 is constant.
【請求項2】 固体電解質がペロブスカイト形酸化物で
ある請求項1に記載のリチウムイオン電池。
2. The lithium ion battery according to claim 1, wherein the solid electrolyte is a perovskite oxide.
【請求項3】 ペロブスカイト形酸化物が(La,L
i)TiO3である請求項2に記載のリチウムイオン電
池。
3. A perovskite oxide is (La, L
The lithium ion battery according to claim 2, which is i) TiO 3 .
【請求項4】 正極活物質がLiNi1-x-yCoxAly
2(0.1<x≦0.25,0≦y<0.2)からな
る請求項1〜3のいずれかに記載のリチウムイオン電
池。
4. The positive electrode active material is LiNi 1-xy Co x Al y
The lithium ion battery according to claim 1, which comprises O 2 (0.1 <x ≦ 0.25, 0 ≦ y <0.2).
【請求項5】 正極活物質が、スピネル型リチウムマン
ガン化合物からなる請求項1〜3のいずれかに記載のリ
チウムイオン電池。
5. The lithium ion battery according to claim 1, wherein the positive electrode active material is a spinel type lithium manganese compound.
【請求項6】 負極活物質が、リチウムチタン系酸化物
からなる請求項1〜5のいずれかに記載のリチウムイオ
ン電池。
6. The lithium ion battery according to claim 1, wherein the negative electrode active material is a lithium titanium oxide.
【請求項7】 負極活物質が、d002面の面間隔が
3.7オンク゛ストローム以上の炭素材料からなる請求項1〜5
のいずれかに記載のリチウムイオン電池。
7. The negative electrode active material comprises a carbon material having a d002 plane spacing of 3.7 angstroms or more.
The lithium-ion battery according to any one of 1.
【請求項8】 活物質層にペロブスカイト形酸化物を混
入させた請求項1〜7のいずれかに記載のリチウムイオ
ン電池。
8. The lithium ion battery according to claim 1, wherein a perovskite oxide is mixed in the active material layer.
JP8046564A 1996-02-07 1996-02-07 Lithium ion battery Pending JPH09219215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8046564A JPH09219215A (en) 1996-02-07 1996-02-07 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8046564A JPH09219215A (en) 1996-02-07 1996-02-07 Lithium ion battery

Publications (1)

Publication Number Publication Date
JPH09219215A true JPH09219215A (en) 1997-08-19

Family

ID=12750824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8046564A Pending JPH09219215A (en) 1996-02-07 1996-02-07 Lithium ion battery

Country Status (1)

Country Link
JP (1) JPH09219215A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003784A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
JP2001243952A (en) * 2000-02-29 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
US6316145B1 (en) 1997-03-10 2001-11-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and charging method therefor
JP2003051309A (en) * 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
JP2007234233A (en) * 2006-02-27 2007-09-13 National Institute Of Advanced Industrial & Technology Active material for lithium secondary battery, its manufacturing method, and lithium secondary cell using it
JP2010205739A (en) * 2010-05-17 2010-09-16 Kyocera Corp Lithium battery
JP2012171803A (en) * 2011-02-17 2012-09-10 Toyota Motor Corp Double oxide laminate, solid electrolyte film-electrode assembly including the double oxide laminate, lithium secondary battery, and method for producing the double oxide laminate
JP2013054926A (en) * 2011-09-05 2013-03-21 Seiko Epson Corp Electrode active material for lithium ion secondary battery, electrode body for lithium ion secondary battery, and lithium ion secondary battery
JP2013073907A (en) * 2011-09-29 2013-04-22 Toyota Motor Corp Method for manufacturing electrode mixture
CN103302040A (en) * 2013-06-13 2013-09-18 高平唐一新能源科技有限公司 Screening method for lithium-ion battery consistency
US8748044B2 (en) 2008-07-25 2014-06-10 Toyota Jidosha Kabushiki Kaisha Li-La-Ti-O composite solid electrolyte material containing silicon and synthesizing method thereof
US8795902B2 (en) 2010-04-13 2014-08-05 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
US8945779B2 (en) 2010-04-13 2015-02-03 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
JP2015088423A (en) * 2013-11-01 2015-05-07 セントラル硝子株式会社 Solid electrolyte precursor, method for producing the same, method for producing solid electrolyte, and method for producing solid electrolyte-electrode active material composite
US9196924B2 (en) 2010-04-13 2015-11-24 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
US10193152B2 (en) 2015-09-09 2019-01-29 Samsung Electronics Co., Ltd. Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles
CN113165904A (en) * 2018-12-19 2021-07-23 托普索公司 Lithium positive electrode active material
US11476524B2 (en) 2014-09-30 2022-10-18 Dai Nippon Printing Co., Ltd. Packaging material for batteries

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316145B1 (en) 1997-03-10 2001-11-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and charging method therefor
US6139815A (en) * 1997-07-15 2000-10-31 Sony Corporation Hydrogen lithium titanate and manufacturing method therefor
WO1999003784A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
JP2001243952A (en) * 2000-02-29 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2003051309A (en) * 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
JP4615339B2 (en) * 2005-03-16 2011-01-19 独立行政法人科学技術振興機構 Porous solid electrode and all-solid lithium secondary battery using the same
JP2007234233A (en) * 2006-02-27 2007-09-13 National Institute Of Advanced Industrial & Technology Active material for lithium secondary battery, its manufacturing method, and lithium secondary cell using it
US8748044B2 (en) 2008-07-25 2014-06-10 Toyota Jidosha Kabushiki Kaisha Li-La-Ti-O composite solid electrolyte material containing silicon and synthesizing method thereof
US8945779B2 (en) 2010-04-13 2015-02-03 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
US8795902B2 (en) 2010-04-13 2014-08-05 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
US9196924B2 (en) 2010-04-13 2015-11-24 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
JP2010205739A (en) * 2010-05-17 2010-09-16 Kyocera Corp Lithium battery
JP2012171803A (en) * 2011-02-17 2012-09-10 Toyota Motor Corp Double oxide laminate, solid electrolyte film-electrode assembly including the double oxide laminate, lithium secondary battery, and method for producing the double oxide laminate
JP2013054926A (en) * 2011-09-05 2013-03-21 Seiko Epson Corp Electrode active material for lithium ion secondary battery, electrode body for lithium ion secondary battery, and lithium ion secondary battery
JP2013073907A (en) * 2011-09-29 2013-04-22 Toyota Motor Corp Method for manufacturing electrode mixture
CN103302040A (en) * 2013-06-13 2013-09-18 高平唐一新能源科技有限公司 Screening method for lithium-ion battery consistency
JP2015088423A (en) * 2013-11-01 2015-05-07 セントラル硝子株式会社 Solid electrolyte precursor, method for producing the same, method for producing solid electrolyte, and method for producing solid electrolyte-electrode active material composite
US11476524B2 (en) 2014-09-30 2022-10-18 Dai Nippon Printing Co., Ltd. Packaging material for batteries
US10193152B2 (en) 2015-09-09 2019-01-29 Samsung Electronics Co., Ltd. Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles
CN113165904A (en) * 2018-12-19 2021-07-23 托普索公司 Lithium positive electrode active material
CN113165904B (en) * 2018-12-19 2023-12-26 托普索公司 Lithium positive electrode active material

Similar Documents

Publication Publication Date Title
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
US7919207B2 (en) Anode material for lithium batteries
JPH09219215A (en) Lithium ion battery
JP2016171068A (en) Garnet-type lithium ion conductive oxide
EP2214231A1 (en) Positive electrode active material, method for production thereof, and electrochemical device
KR20190062998A (en) Solid Electrolyte, Method for Preparing the Same and All Solid Battery Compring the Same
JP4604347B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7121219B1 (en) Method for producing lithium metal composite oxide
JP2010244827A (en) Lithium air battery
JP4729774B2 (en) Method for producing negative electrode material for lithium secondary battery
KR20170098199A (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP4296274B2 (en) Lithium manganate positive electrode active material and all-solid lithium secondary battery
JP2000231919A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JP2002145619A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and manufacturing method of lithium secondary cell and lithium manganese multiple oxide
WO2010146776A1 (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery using same
JP2006073259A (en) Positive electrode active material and water dissolving lithium secondary battery
JP2004362934A (en) Positive electrode material and battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JPH10199509A (en) Solid electrolyte battery
JP5463222B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP2835138B2 (en) Non-aqueous solvent secondary battery
Choi et al. Study of the electrochemical properties of Li 4 Ti 5 O 12 doped with Ba and Sr anodes for lithium-ion secondary batteries