JP2010244827A - Lithium air battery - Google Patents

Lithium air battery Download PDF

Info

Publication number
JP2010244827A
JP2010244827A JP2009091804A JP2009091804A JP2010244827A JP 2010244827 A JP2010244827 A JP 2010244827A JP 2009091804 A JP2009091804 A JP 2009091804A JP 2009091804 A JP2009091804 A JP 2009091804A JP 2010244827 A JP2010244827 A JP 2010244827A
Authority
JP
Japan
Prior art keywords
lithium
electrode
air battery
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009091804A
Other languages
Japanese (ja)
Other versions
JP5378038B2 (en
Inventor
Masahiko Hayashi
政彦 林
Hironobu Minowa
浩伸 蓑輪
Masaya Takahashi
雅也 高橋
Setiawati Elly
セティアワティ エリ
Takahisa Masashiro
尊久 正代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009091804A priority Critical patent/JP5378038B2/en
Publication of JP2010244827A publication Critical patent/JP2010244827A/en
Application granted granted Critical
Publication of JP5378038B2 publication Critical patent/JP5378038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium air battery serving as a high capacity secondary battery and moreover not getting conspicuous deterioration of a discharging capacity even if charge and discharge cycles are repeated. <P>SOLUTION: In the lithium air battery, oxygen in the atmosphere is used as a positive electrode active material, a metal lithium is used as a negative electrode active material and an organic solution containing lithium salt is used as an electrolyte solution. Powder of La<SB>0.56</SB>Li<SB>0.33</SB>TiO<SB>3</SB>in 40 wt. against acetylene black 30 wt. is added as an electrode catalyst to a gas diffusion electrode which is a positive electrode 1 made mainly of acetylene black, a kind of carbon. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はリチウム空気電池に関する。   The present invention relates to a lithium air battery.

市販型亜鉛空気電池は、電池重量当たりで 300mAh/g程度の大きな放電容量を有することから、主に補聴器などに用いられている。しかしながら、非水電解液を用いるリチウムイオン電池と比較すると 1V級の電圧しか得られないため、広範な利用は難しいと考えられる。近年、正極反応系として亜鉛空気電池と同様な酸素の電気化学的な還元を用いて、負極として亜鉛にかえて金属リチウムを組み合わせ、また電解液として非水溶液媒を用いることによって、リチウム空気電池を作製する試みが行われている。   Commercial zinc-air batteries have a large discharge capacity of about 300 mAh / g per battery weight, and are therefore mainly used for hearing aids. However, compared to a lithium ion battery using a non-aqueous electrolyte, only a voltage of 1V can be obtained, so it is considered difficult to use it widely. In recent years, by using electrochemical reduction of oxygen similar to a zinc-air battery as a positive electrode reaction system, by combining metal lithium instead of zinc as a negative electrode and using a non-aqueous solution medium as an electrolyte, Attempts have been made to make it.

これまでに下記特許文献1や非特許文献1に報告されているように、正極であるガス拡散型電極に種々の触媒を添加することにより、放電容量やサイクル特性についての電池性能の改善が試みられている。   As reported in the following Patent Document 1 and Non-Patent Document 1, attempts have been made to improve battery performance in terms of discharge capacity and cycle characteristics by adding various catalysts to a gas diffusion electrode as a positive electrode. It has been.

電極触媒については、特許文献1ではフタロシアニン誘導体及びナフトシアニン誘導体、非特許文献1では主にFeやCoなどの遷移金属酸化物が検討されている。その結果、特許文献1では、特に大電流放電特性が改善されることが報告されている。しかしながら、二次電池としての充放電サイクル特性は明示されていない。一方、非特許文献1では、放電電圧が 2.5〜3.0Vと現行のリチウムイオン電池よりも低いものの、正極に含まれるカーボンの重量当りで 1000〜3000mAh/gの非常に大きな放電容量が得られている。しかしながら、充放電を繰り返すと、放電容量の低下が著しく、例えば、Coの場合には 10サイクルで容量維持率が 65%と、著しい容量の減少が見られ、不十分な特性しか得られていない。 Regarding the electrode catalyst, Patent Document 1 discusses phthalocyanine derivatives and naphthocyanine derivatives, and Non-Patent Document 1 mainly examines transition metal oxides such as Fe 2 O 3 and Co 3 O 4 . As a result, Patent Document 1 reports that particularly large current discharge characteristics are improved. However, charge / discharge cycle characteristics as a secondary battery are not clearly shown. On the other hand, in Non-Patent Document 1, although the discharge voltage is 2.5 to 3.0 V, which is lower than the current lithium ion battery, a very large discharge capacity of 1000 to 3000 mAh / g is obtained per weight of carbon contained in the positive electrode. Yes. However, when charging and discharging are repeated, the discharge capacity is remarkably reduced. For example, in the case of Co 3 O 4 , the capacity retention rate is 65% in 10 cycles, and the capacity is significantly reduced. It is not done.

特開2004−063262号公報JP 2004-063262 A

A. Debart et al., Journal of Power Sources, Vol. 174, pp. 1177-1182 (2007).A. Debart et al., Journal of Power Sources, Vol. 174, pp. 1177-1182 (2007).

本発明が解決しようとする課題は、高容量二次電池として作動し、かつ、充放電サイクルを繰り返しても著しい放電容量の低下が見られないリチウム空気電池を供することである。   The problem to be solved by the present invention is to provide a lithium-air battery that operates as a high-capacity secondary battery and does not show a significant decrease in discharge capacity even after repeated charge / discharge cycles.

上記課題を解決するために、本発明は、請求項1に記載のように、
正極活物質として空気中の酸素を使用し、負極活物質として金属リチウムまたはリチウム含有合金を使用し、電解液としてリチウム塩を含有する有機溶液を使用するリチウム空気電池において、カーボンを主体とする正極であるガス拡散型電極に、電極触媒としてリチウムイオン導電性を有する固体電解質化合物が添加されていることを特徴とするリチウム空気電池を構成する。
In order to solve the above problems, the present invention provides a method as described in claim 1.
A positive electrode mainly composed of carbon in a lithium air battery using oxygen in the air as a positive electrode active material, using metallic lithium or a lithium-containing alloy as a negative electrode active material, and an organic solution containing a lithium salt as an electrolyte. A lithium-air battery is characterized in that a solid electrolyte compound having lithium ion conductivity is added as an electrode catalyst to the gas diffusion type electrode.

また、本発明においては、請求項2に記載のように、
前記電極触媒として、La2/3−xLi3xTiO(ここに0<x<2/3である)が用いられることを特徴とする請求項1記載のリチウム空気電池を構成する。
In the present invention, as described in claim 2,
The lithium air battery according to claim 1, wherein La 2 / 3-x Li 3x TiO 3 (where 0 <x <2/3) is used as the electrode catalyst.

また、本発明においては、請求項3に記載のように、
前記xが0.10≦x≦0.12の範囲内にあることを特徴とする請求項2記載のリチウム空気電池を構成する。
In the present invention, as described in claim 3,
3. The lithium air battery according to claim 2, wherein x is in a range of 0.10 ≦ x ≦ 0.12.

本発明によれば、充電・放電反応に高活性なガス拡散型電極用触媒を用いることによって、高容量二次電池として作動し、かつ、充放電サイクルを繰り返しても著しい放電容量の低下が見られないリチウム空気電池を供することができる。   According to the present invention, by using a highly active gas diffusion electrode catalyst for the charge / discharge reaction, it operates as a high-capacity secondary battery, and a significant decrease in discharge capacity is observed even after repeated charge / discharge cycles. Lithium-air batteries that are not possible can be provided.

リチウム空気電池の断面図である。It is sectional drawing of a lithium air battery. 実施例1に係るリチウム空気電池の充放電曲線を示す図である。1 is a diagram illustrating a charge / discharge curve of a lithium air battery according to Example 1. FIG. 実施例1及び比較例1におけるリチウム空気電池のサイクル特性を示す図である。It is a figure which shows the cycling characteristics of the lithium air battery in Example 1 and Comparative Example 1.

本発明においては、上述した課題を解決し、目的を達するために、正極活物質として空気中の酸素、負極活物質として金属リチウムまたはリチウム含有合金をそれぞれ使用し、電解液としてリチウム塩を含む有機溶液を用いるリチウム空気電池において、カーボンを主体とする正極であるガス拡散型電極に、電極触媒としてリチウムイオン導電性を有する固体電解質化合物を添加する。ここで、リチウムイオン導電性とは、リチウムイオンイオンの移動によって生じる導電性のことである。正極にリチウムイオン導電性を有する固体電解質化合物を添加することによって、添加された固体電解質が触媒として作用し、高容量かつ充放電特性に優れた電池性能をを有するリチウム空気電池が実現する。   In the present invention, in order to solve the above-described problems and achieve the object, oxygen in the air is used as the positive electrode active material, metal lithium or a lithium-containing alloy is used as the negative electrode active material, and an organic solution containing a lithium salt as the electrolytic solution. In a lithium-air battery using a solution, a solid electrolyte compound having lithium ion conductivity is added as an electrode catalyst to a gas diffusion electrode that is a positive electrode mainly composed of carbon. Here, the lithium ion conductivity is conductivity generated by movement of lithium ion ions. By adding a solid electrolyte compound having lithium ion conductivity to the positive electrode, the added solid electrolyte acts as a catalyst, thereby realizing a lithium-air battery having high capacity and battery performance with excellent charge / discharge characteristics.

固体電解質としてLiイオン導電性を有する化合物は、結晶構造中もしくはアモルファス構造中にLiイオンを取り込むことができる能力を有しており、触媒として使用することによって、酸素-電解液-電極(触媒)で構成される三相界面である活性点に反応種の一つであるLiイオンをトラップ(吸蔵もしくは吸着)させる能力が高く、電極反応がスムーズに進行する。   A compound having Li ion conductivity as a solid electrolyte has the ability to incorporate Li ions into a crystal structure or an amorphous structure. By using it as a catalyst, oxygen-electrolyte-electrode (catalyst) It has a high ability to trap (occlude or adsorb) Li ions, which are one of the reactive species, at an active site, which is a three-phase interface composed of: and the electrode reaction proceeds smoothly.

本発明に係るリチウム空気電池は、カーボン及びバインダーを構成要素とする正極(ガス拡散型電極)と、金属リチウムまたはリチウムイオンを放出及び吸収することができるリチウム含有合金を構成要素とする負極とを有し、前記正極と前記負極との間に有機電解液が配置される構成となっている。   The lithium-air battery according to the present invention comprises a positive electrode (gas diffusion electrode) having carbon and a binder as constituent elements, and a negative electrode having a lithium-containing alloy capable of releasing and absorbing metallic lithium or lithium ions as constituent elements. And an organic electrolyte is disposed between the positive electrode and the negative electrode.

本発明においては、リチウム空気電池の高性能化を達成するために、上記のように、前記正極に、酸素還元(放電)・酸素発生(充電)の両反応に対して高活性な電極触媒を添加する。前記電極触媒は、正極中に電解液が浸透し、同時に大気中の酸素ガスが供給されることによって、電極触媒-電解液-ガス(酸素)が共存する三相界面サイトを形成する。前記電極触媒が高活性であれば、酸素還元(放電)・酸素発生(充電)がスムーズに進行し、電池性能は大きく向上する。   In the present invention, in order to achieve high performance of the lithium-air battery, as described above, the positive electrode is provided with a highly active electrode catalyst for both oxygen reduction (discharge) and oxygen generation (charge) reactions. Added. The electrode catalyst forms a three-phase interface site where the electrode catalyst-electrolyte solution-gas (oxygen) coexists when the electrolyte solution penetrates into the positive electrode and oxygen gas in the atmosphere is supplied at the same time. If the electrode catalyst is highly active, oxygen reduction (discharge) and oxygen generation (charge) proceed smoothly, and battery performance is greatly improved.

正極上での反応(放電反応)は次のように表すことができる。

2Li + (1/2)O + 2e → LiO (1)

2Li + O + 2e → Li (2)

上式中のリチウムイオン(Li)は、負極から電気化学的酸化により電解液に溶解し、電解液中を正極表面まで移動してきたものである。また、酸素(O)は、大気中からガス拡散型電極内部に取り込まれたものである。
The reaction (discharge reaction) on the positive electrode can be expressed as follows.

2Li + + (1/2) O 2 + 2e → Li 2 O (1)

2Li + + O 2 + 2e → Li 2 O 2 (2)

Lithium ions (Li + ) in the above formula are dissolved in the electrolytic solution from the negative electrode by electrochemical oxidation, and move in the electrolytic solution to the surface of the positive electrode. Furthermore, oxygen (O 2) are those taken into the gas diffusion electrode from the atmosphere.

電極触媒としてリチウムイオン導電性の固体電解質を用いた場合、リチウムイオンは、触媒表面もしくは格子内にトラップされ、Li-O2−-Li及びLi-O-Liで表される式(1)及び(2)の中間反応体を形成する。このような反応中間体による活性サイトが電極内に多数存在するため、電極反応は効率よく進行しうる。また式(1)及び(2)の逆反応である充電反応についても、前記電極触媒は活性を有しており、電池の充電、つまり、正極上での酸素発生反応も効率よく進行する。 When using a lithium ion conductive solid electrolyte as an electrode catalyst, a lithium ion is trapped on the catalyst surface or in the lattice, represented by Li + -O 2- -Li + and Li + -O 2 -Li + An intermediate reactant of formula (1) and (2) is formed. Since there are many active sites due to such reaction intermediates in the electrode, the electrode reaction can proceed efficiently. In addition, regarding the charging reaction that is the reverse reaction of the formulas (1) and (2), the electrode catalyst has activity, and the charging of the battery, that is, the oxygen generation reaction on the positive electrode proceeds efficiently.

触媒として添加する固体電解質化合物としては、リチウムイオン導電性を有したものであればよく、例えば、LiNなどの窒化物、LiLa(1−x)/3NbO(0<x<1)、La2/3−xLi3xTiO(0<x<2/3)などの金属酸化物、thio-LISICON(Li4−xGe1−x、0.6≦x≦0.8)などの硫化物や、リンもしくは硫黄を含有したリチウム含有ガラス化合物を用いることができる。 The solid electrolyte compound to be added as a catalyst is not particularly limited as long as it has lithium ion conductivity. For example, a nitride such as Li 3 N, Li x La (1-x) / 3 NbO 3 (0 <x < 1), metal oxides such as La 2 / 3-x Li 3x TiO 3 (0 <x <2/3), thio-LISICON (Li 4−x Ge 1−x P x S 4 , 0.6 ≦ x ≦ 0.8) or a lithium-containing glass compound containing phosphorus or sulfur can be used.

特に、前記電極触媒としては、導電率や安定性の面からLa2/3−xLi3xTiO(0<x<2/3)が好適であり、全組成範囲(0<x<2/3)のうち、固体電解質として最も高い導電率を示し、リチウムイオンを触媒表面にトラップできる能力が高い0.10≦x≦0.12の組成範囲において、高い触媒活性が得られる。 In particular, as the electrode catalyst, La 2-3-x Li 3x TiO 3 (0 <x <2/3) is preferable from the viewpoint of conductivity and stability, and the entire composition range (0 <x <2 / Among the 3), high catalytic activity is obtained in the composition range of 0.10 ≦ x ≦ 0.12 which shows the highest conductivity as a solid electrolyte and has a high ability to trap lithium ions on the catalyst surface.

これら触媒の合成手法としては、固相法や液相法などの公知のプロセスを用いることができるが、三相界面サイトを多量に電極触媒表面に生成することが重要であり、使用する触媒は高表面積であることが望ましく、焼成後の比表面積が 10m/g以上であることが好適であるため、金属酢酸塩や金属硝酸塩の混合水溶液の蒸発乾固や金属アルコキシドの加水分解によりアモルファス前駆体を得る手法などに代表される湿式法を用いることが望ましい。 As a method for synthesizing these catalysts, a known process such as a solid phase method or a liquid phase method can be used. However, it is important to generate a large amount of three-phase interface sites on the surface of the electrode catalyst. A high surface area is desirable and the specific surface area after firing is preferably 10 m 2 / g or more. Therefore, an amorphous precursor is obtained by evaporating and drying a mixed aqueous solution of metal acetate or metal nitrate or by hydrolysis of metal alkoxide. It is desirable to use a wet method typified by a technique for obtaining a body.

ガス拡散型電極(正極)を形成するには、触媒粉末、カーボン粉末とポリテトラフルオロエチレン(PTFE)のようなバインダー粉末との混合物をチタンメッシュ等の支持体上に圧着成形する、あるいは、前述の混合物を有機溶剤等の溶媒中に分散してスラリー状にして金属メッシュ又はカーボンクロス上に塗布し乾燥する、等の手段によって形成され、電極の片面は大気に曝され、またもう一方の面は電解液と接する。また、電極の強度を高め電解液の漏洩を防止するために、冷間プレスだけでなくホットプレスを行うことによっても、より安定性に優れた電極を作製可能である。なお、バインダーとしては、上記のPTFEだけでなく、ポリフッ化ビニリデン、ポリブタジエンゴムなどの粉末もしくは分散液も用いることができる。   In order to form a gas diffusion electrode (positive electrode), a mixture of a catalyst powder, carbon powder and a binder powder such as polytetrafluoroethylene (PTFE) is formed on a support such as a titanium mesh, or the above-mentioned The mixture is dispersed in a solvent such as an organic solvent to form a slurry, which is then applied onto a metal mesh or carbon cloth and dried, and one side of the electrode is exposed to the atmosphere, and the other side Is in contact with the electrolyte. Further, in order to increase the strength of the electrode and prevent leakage of the electrolytic solution, it is possible to produce an electrode having higher stability by performing not only cold pressing but also hot pressing. As the binder, not only the above PTFE but also a powder or dispersion such as polyvinylidene fluoride and polybutadiene rubber can be used.

負極の活物質としては、金属リチウム、もしくは、リチウムイオンを放出及び吸収することができる物質である、リチウムを含むシリコンやスズとの合金やLi2.6Co0.4Nなどのリチウム窒化物も使用することができ、リチウム二次電池負極材料として用いることができる材料であれば使用することができる。しかしながら、出発材料としてリチウムを含まないシリコンやスズなどを用いる場合には、前もって化学的処理または電気化学的処理によって、それらの材料がリチウムを含む状態にあるようにしておく必要がある。 As an active material of the negative electrode, metallic lithium or lithium nitride such as lithium-containing silicon or tin alloy or Li 2.6 Co 0.4 N, which is a material capable of releasing and absorbing lithium ions Any material that can be used as a negative electrode material for a lithium secondary battery can be used. However, when silicon or tin that does not contain lithium is used as a starting material, it is necessary to make these materials contain lithium in advance by chemical treatment or electrochemical treatment.

放電時の負極(金属リチウム)の反応は以下のように表すことができる。

Li → Li + e (3)

電解液としては、正・負極間でリチウムイオンの移動が可能な物質であればよく、リチウムイオンを含む金属塩を溶解した非水溶媒を使用でき、あるいはリチウムイオン導電性を有する固体電解質や高分子電解質や、リチウム金属塩を溶解させたイオン液体も使用可能である。
The reaction of the negative electrode (metallic lithium) during discharge can be expressed as follows.

Li → Li + + e (3)

The electrolyte solution may be any substance that can move lithium ions between the positive and negative electrodes. A non-aqueous solvent in which a metal salt containing lithium ions is dissolved can be used. A molecular electrolyte or an ionic liquid in which a lithium metal salt is dissolved can also be used.

セパレータ、電池ケース等の要素についても、従来公知の各種材料が使用でき、特に制限はない。   For the elements such as the separator and the battery case, conventionally known various materials can be used and there is no particular limitation.

以下に添付図面を参照して、この発明に係るリチウム空気電池についての実施例を詳細に説明する。なお、本発明は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Embodiments of a lithium-air battery according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited to what was shown to the following Example, In the range which does not change the summary, it can change suitably and can implement.

高いリチウムイオン導電性を有するLa0.56Li0.33TiO(x=0.11)を合成し、電極触媒として正極に添加した。前記チタン酸塩の合成は、炭酸リチウム、酸化ランタン、二酸化チタンを、合成目標となる化合物中のモル比で混合し、さらにメノウ乳鉢を用いて混合・粉砕し、得られた混合物を、直径 10mmのコイン型に一軸プレスを行い、ペレット成形を行った。ペレットは、1150℃で 12時間の熱処理を行った。熱処理後のペレットは、前記同様に粉砕・混合を行い、さらに熱処理を行った。これらの工程を、熱処理を4回行うように繰り返した。最終的に得られたペレットは、十分に粉砕し、電極触媒として用いた。なお、得られた粉末は、La0.56Li0.33TiO単相であることをX線回折測定により確認した。 To synthesize La 0.56 Li 0.33 TiO 3 (x = 0.11) having high lithium ion conductivity was added to the positive electrode as an electrode catalyst. The titanate was synthesized by mixing lithium carbonate, lanthanum oxide, and titanium dioxide at a molar ratio in the synthesis target compound, and further mixing and pulverizing using an agate mortar. The resulting mixture had a diameter of 10 mm. The coin mold was uniaxially pressed to form a pellet. The pellets were heat treated at 1150 ° C. for 12 hours. The pellets after the heat treatment were pulverized and mixed in the same manner as described above, and further subjected to heat treatment. These steps were repeated so that the heat treatment was performed 4 times. The finally obtained pellet was sufficiently pulverized and used as an electrode catalyst. The obtained powder was confirmed to be La 0.56 Li 0.33 TiO 3 single phase by X-ray diffraction measurement.

次に、ガス拡散型カーボン正極およびリチウム空気電池セルの作製法について説明を行う。   Next, a method for producing a gas diffusion type carbon positive electrode and a lithium air battery cell will be described.

La0.56Li0.33TiO粉末、カーボンの一種であるアセチレンブラック粉末及びポリテトラフルオロエチレン(PTFE)粉末を40:30:30の重量比で、らいかい機を用いて十分に粉砕・混合し、ロール成形し、シート状電極(厚さ 0.5mm)を作製した。このシート状電極を直径 23mmの円形に切り抜き、チタンメッシュ上にプレスすることにより、ガス拡散型電極を得た。 La 0.56 Li 0.33 TiO 3 powder, acetylene black powder, which is a kind of carbon, and polytetrafluoroethylene (PTFE) powder are sufficiently pulverized in a weight ratio of 40:30:30 using a coarse machine. It mixed, roll-formed, and produced the sheet-like electrode (thickness 0.5mm). The sheet electrode was cut into a circle with a diameter of 23 mm and pressed onto a titanium mesh to obtain a gas diffusion electrode.

図1に、円柱形のリチウム空気電池セルの断面図を示す。正極1は、PTFE被覆された正極支持体2の凹部に配置し、正極固定用PTFEリング3で固定した。なお、正極1と正極支持体2が接触する部分は、電気的接触をとるためにPTFE被覆されていない。また、正極1と空気とが接触する電極の有効面積は 2cmである。 FIG. 1 shows a cross-sectional view of a cylindrical lithium-air battery cell. The positive electrode 1 was disposed in a concave portion of the positive electrode support 2 coated with PTFE, and fixed with a positive electrode fixing PTFE ring 3. Note that the portion where the positive electrode 1 and the positive electrode support 2 are in contact with each other is not covered with PTFE in order to make electrical contact. Moreover, the effective area of the electrode which the positive electrode 1 and air contact is 2 cm < 2 >.

次に、正極1の大気が接触する面とは逆面にリチウム二次電池用のセパレータ5を凹部の底面に配置した。負極固定用座金7に負極8である厚さ 150μmの4枚の金属リチウム箔(有効面積 2cm)に同心円上に重ねて圧着した。負極固定用PTFEリング6を、正極1を設置する凹部と対向する逆の凹部に配置し、中央部に金属リチウムが圧着された負極固定用座金7を更に配置した。Oリング9は、図に示すようにセットした。セルの内部に、有機電解液10である 1mol/l(モル/リットル)の六フッ化リン酸リチウム/炭酸プロピレン(LiPF/PC)溶液を充填し、負極支持体11を被せて、セル固定用ねじ12で、セル全体を固定した。電池性能の測定試験には、正極端子4、負極端子13を用いた。 Next, a separator 5 for a lithium secondary battery was disposed on the bottom surface of the recess on the side opposite to the surface of the positive electrode 1 that contacts the atmosphere. The negative electrode fixing washer 7 was pressure-bonded onto four metallic lithium foils (effective area 2 cm 2 ) having a thickness of 150 μm as the negative electrode 8 in a concentric manner. The negative electrode fixing PTFE ring 6 was disposed in a concave portion opposite to the concave portion in which the positive electrode 1 is disposed, and a negative electrode fixing washer 7 having metallic lithium bonded thereto was further disposed in the center. The O-ring 9 was set as shown in the figure. Inside the cell, the organic electrolyte is 10 1 mol / l (mole / liter) of hexafluorophosphate lithium / propylene carbonate (LiPF 6 / PC) solution was filled with, covered with a negative electrode support 11, cells fixed The entire cell was fixed with the screw 12. The positive electrode terminal 4 and the negative electrode terminal 13 were used for the battery performance measurement test.

電池のサイクル試験は、充放電測定システムを用いて、正極の有効面積当りの電流密度で 0.1mA/cmを通電し、開回路電圧から電池電圧が 2.0Vに低下するまで測定を行った。また、充電は、同電流密度で、電池電圧が 4.5Vに増加するまで行った。 Cycle test of the battery using the charge and discharge measurement system, energizes the 0.1 mA / cm 2 at a current density per effective area of the positive electrode, the battery voltage from the open circuit voltage was measured until reduced to 2.0 V. Charging was performed at the same current density until the battery voltage increased to 4.5V.

電池の作製は、露点が -60℃以下の乾燥空気中で行い、電池の充放電試験は、通常の生活環境下で行った。   The battery was manufactured in dry air with a dew point of -60 ° C. or lower, and the battery charge / discharge test was performed in a normal living environment.

充放電容量はカーボン(アセチレンブラック)の重量あたりの値(mAh/g)で表し、図2に、初回の放電・充電曲線、二回目の放電曲線を示す。   The charge / discharge capacity is represented by a value (mAh / g) per weight of carbon (acetylene black), and FIG. 2 shows the first discharge / charge curve and the second discharge curve.

図2より、La0.56Li0.33TiO触媒を用いたリチウム空気電池は、2.7Vの空気電池に特有な非常に平坦な放電電圧特性を示すことがわかる。また、初回放電容量は、約 1700mAh/gと大きな値を示し、本電池が非常に大きなエネルギー密度を有していることが分かった。また、初回充電後の放電は、初期にオーバーシュートが見られるものの、初回と同様の電圧を示し、二次電池として作動していることがわかる。また、二回目の放電容量は、初回放電容量よりも大きく、約 2600mAh/gという大きな値を示した。これは、充放電サイクルを行ったことにより、カーボン表面の濡れ性が向上し、電解液が電極内部まで浸透したためであると考えられ、これ以降のサイクルでは安定した放電挙動を示した。 FIG. 2 shows that the lithium air battery using the La 0.56 Li 0.33 TiO 3 catalyst exhibits a very flat discharge voltage characteristic unique to a 2.7 V air battery. In addition, the initial discharge capacity was as large as about 1700 mAh / g, and it was found that the battery had a very large energy density. Moreover, although discharge after the first charge shows an overshoot in the initial stage, it shows the same voltage as the first time, and it turns out that it is operating as a secondary battery. Further, the second discharge capacity was larger than the first discharge capacity, and showed a large value of about 2600 mAh / g. This is considered to be because the wettability of the carbon surface was improved by performing the charge / discharge cycle, and the electrolyte solution penetrated into the electrode, and stable discharge behavior was shown in the subsequent cycles.

次に、本電池のサイクル特性を、下記比較例1のサイクル特性とともに、図3に示す。測定を行った50回のサイクルにおいて、初回を除き、約 2500mAh/gの大きな放電容量を示した。2回目から50回目までの、放電容量の維持率は約 96%であり、優れた充放電サイクル特性を有していることが確認された。   Next, the cycle characteristics of this battery are shown in FIG. 3 together with the cycle characteristics of Comparative Example 1 below. In the 50 cycles of measurement, a large discharge capacity of about 2500 mAh / g was shown except for the first time. From the second time to the 50th time, the maintenance rate of the discharge capacity was about 96%, and it was confirmed that it had excellent charge / discharge cycle characteristics.

以上の結果は、La0.56Li0.33TiOがリチウム空気電池用正極触媒として有効に充放電反応に作用することを示している。 These results are La 0.56 Li 0.33 TiO 3 shows acting effectively to charge and discharge reactions as a positive electrode catalyst for a lithium-air battery.

[比較例1]
正極用電極触媒として公知であるCoを用いて、リチウム空気電池を実施例1と同様にして作製した。また、Coは市販試薬を用いた。電池のサイクル試験の条件は、実施例1と同様である。
[Comparative Example 1]
A lithium air battery was produced in the same manner as in Example 1 using Co 3 O 4 which is known as a positive electrode catalyst. Co 3 O 4 used a commercially available reagent. The conditions of the battery cycle test are the same as in Example 1.

本比較例に係るリチウム空気電池のサイクル特性を図3に示す。   The cycle characteristics of the lithium air battery according to this comparative example are shown in FIG.

図3より、初回放電容量は約 2500mAh/gと、実施例1とほぼ同様の放電容量を示すことがわかる。しかしながら、充放電サイクルを繰り返すと、実施例1とは異なり大きな放電容量の減少が見られ、20サイクル後の容量維持率は約 20%であった。   FIG. 3 shows that the initial discharge capacity is about 2500 mAh / g, which is almost the same as that of Example 1. However, when the charge / discharge cycle was repeated, unlike in Example 1, a large decrease in discharge capacity was observed, and the capacity retention rate after 20 cycles was about 20%.

これらの結果より、本発明による電極触媒は、公知の材料よりも、充放電サイクル特性に優れており、リチウム空気電池用正極触媒として有効に使用できることが確認された。   From these results, it was confirmed that the electrode catalyst according to the present invention is more excellent in charge / discharge cycle characteristics than known materials and can be used effectively as a positive electrode catalyst for a lithium air battery.

本発明による電極触媒を用いることにより、高エネルギー密度かつ充放電サイクル性能に優れたリチウム空気電池を作製することができ、これを様々な電子機器の駆動源として使用することができる。   By using the electrode catalyst according to the present invention, a lithium-air battery having high energy density and excellent charge / discharge cycle performance can be produced, and this can be used as a drive source for various electronic devices.

1:正極(ガス拡散型電極)、2:正極支持体(PTFE被覆)、3:正極固定用PTFEリング、4:正極端子、5:セパレータ、6:負極固定用PTFEリング、7:負極固定用座金、8:負極、9:Oリング、10:有機電解液、11:負極支持体、12:セル固定用ねじ(PTFE被覆)、13:負極端子。   1: positive electrode (gas diffusion type electrode), 2: positive electrode support (PTFE coating), 3: positive electrode fixing PTFE ring, 4: positive electrode terminal, 5: separator, 6: negative electrode fixing PTFE ring, 7: negative electrode fixing Washer, 8: negative electrode, 9: O-ring, 10: organic electrolyte, 11: negative electrode support, 12: screw for fixing cells (PTFE coating), 13: negative electrode terminal.

Claims (3)

正極活物質として空気中の酸素を使用し、負極活物質として金属リチウムまたはリチウム含有合金を使用し、電解液としてリチウム塩を含有する有機溶液を使用するリチウム空気電池において、
カーボンを主体とする正極であるガス拡散型電極に、電極触媒としてリチウムイオン導電性を有する固体電解質化合物が添加されていることを特徴とするリチウム空気電池。
In a lithium air battery using oxygen in the air as a positive electrode active material, using metal lithium or a lithium-containing alloy as a negative electrode active material, and using an organic solution containing a lithium salt as an electrolyte,
A lithium-air battery, wherein a solid electrolyte compound having lithium ion conductivity is added as an electrode catalyst to a gas diffusion electrode which is a positive electrode mainly composed of carbon.
前記電極触媒として、La2/3−xLi3xTiO(ここに0<x<2/3である)が用いられることを特徴とする請求項1記載のリチウム空気電池。 The lithium air battery according to claim 1, wherein La 2 / 3-x Li 3x TiO 3 (where 0 <x <2/3) is used as the electrode catalyst. 前記xが0.10≦x≦0.12の範囲内にあることを特徴とする請求項2記載のリチウム空気電池。   3. The lithium air battery according to claim 2, wherein x is in a range of 0.10 ≦ x ≦ 0.12.
JP2009091804A 2009-04-06 2009-04-06 Lithium air battery Active JP5378038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091804A JP5378038B2 (en) 2009-04-06 2009-04-06 Lithium air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091804A JP5378038B2 (en) 2009-04-06 2009-04-06 Lithium air battery

Publications (2)

Publication Number Publication Date
JP2010244827A true JP2010244827A (en) 2010-10-28
JP5378038B2 JP5378038B2 (en) 2013-12-25

Family

ID=43097625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091804A Active JP5378038B2 (en) 2009-04-06 2009-04-06 Lithium air battery

Country Status (1)

Country Link
JP (1) JP5378038B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025975A1 (en) * 2010-08-23 2012-03-01 トヨタ自動車株式会社 Air electrode, metal-air battery, and method for producing air electrode for metal-air battery
CN102654566A (en) * 2012-05-02 2012-09-05 上海交通大学 Novel lithium air cell mould
CN103259064A (en) * 2013-04-19 2013-08-21 华南理工大学 Novel lithium air battery with independently-adjustable anode and cathode
CN103715432A (en) * 2012-09-28 2014-04-09 丰田自动车株式会社 Air electrode for metal air battery
JP2015529945A (en) * 2012-08-03 2015-10-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Air breathing cathode for metal-air battery
JP2015198056A (en) * 2014-04-02 2015-11-09 日本電信電話株式会社 lithium air secondary battery
JP2016167413A (en) * 2015-03-10 2016-09-15 日本電信電話株式会社 Lithium air secondary battery
EP3863094A3 (en) * 2020-02-04 2021-12-01 Samsung Electronics Co., Ltd. Cathode, lithium-air battery comprising the same, and method of preparing the cathode
US11658306B2 (en) 2020-02-04 2023-05-23 Samsung Electronics Co., Ltd. Cathode, lithium-air battery comprising the same, and method of preparing the cathode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294429A (en) * 2006-03-30 2007-11-08 Ohara Inc Lithium ion conductive solid electrolyte and its manufacturing method
JP2008059843A (en) * 2006-08-30 2008-03-13 Kyoto Univ Solid electrolytic layer and its manufacturing method
JP2009252638A (en) * 2008-04-09 2009-10-29 Toyota Motor Corp Catalyst for air cell
WO2010005686A2 (en) * 2008-06-16 2010-01-14 Polyplus Battery Company Aqueous lithium/air battery cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294429A (en) * 2006-03-30 2007-11-08 Ohara Inc Lithium ion conductive solid electrolyte and its manufacturing method
JP2008059843A (en) * 2006-08-30 2008-03-13 Kyoto Univ Solid electrolytic layer and its manufacturing method
JP2009252638A (en) * 2008-04-09 2009-10-29 Toyota Motor Corp Catalyst for air cell
WO2010005686A2 (en) * 2008-06-16 2010-01-14 Polyplus Battery Company Aqueous lithium/air battery cells

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025975A1 (en) * 2010-08-23 2012-03-01 トヨタ自動車株式会社 Air electrode, metal-air battery, and method for producing air electrode for metal-air battery
CN102654566A (en) * 2012-05-02 2012-09-05 上海交通大学 Novel lithium air cell mould
JP2015529945A (en) * 2012-08-03 2015-10-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Air breathing cathode for metal-air battery
CN103715432A (en) * 2012-09-28 2014-04-09 丰田自动车株式会社 Air electrode for metal air battery
JP2014072079A (en) * 2012-09-28 2014-04-21 Toyota Motor Corp Air electrode for metal-air battery
CN103259064A (en) * 2013-04-19 2013-08-21 华南理工大学 Novel lithium air battery with independently-adjustable anode and cathode
JP2015198056A (en) * 2014-04-02 2015-11-09 日本電信電話株式会社 lithium air secondary battery
JP2016167413A (en) * 2015-03-10 2016-09-15 日本電信電話株式会社 Lithium air secondary battery
EP3863094A3 (en) * 2020-02-04 2021-12-01 Samsung Electronics Co., Ltd. Cathode, lithium-air battery comprising the same, and method of preparing the cathode
US11658306B2 (en) 2020-02-04 2023-05-23 Samsung Electronics Co., Ltd. Cathode, lithium-air battery comprising the same, and method of preparing the cathode
US11764364B2 (en) 2020-02-04 2023-09-19 Samsung Electronics Co., Ltd. Cathode, lithium-air battery comprising the same, and method of preparing the cathode

Also Published As

Publication number Publication date
JP5378038B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5378038B2 (en) Lithium air battery
JP5184212B2 (en) Lithium air secondary battery and lithium air secondary battery manufacturing method
US9660261B2 (en) Positive electrode active material, method for producing the same, and electrochemical device
JP5061458B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP5468416B2 (en) Lithium-air secondary battery and method for producing air electrode thereof
JP6731199B2 (en) Catalyst for oxygen reduction reaction and air electrode for metal-air secondary battery
JP2015115283A (en) Sodium secondary battery, and method for manufacturing positive electrode material used therefor
JP2015097161A (en) Sodium secondary battery
JP6178758B2 (en) Lithium air secondary battery
JP6302424B2 (en) Lithium air secondary battery
KR20150032413A (en) Cathode Catalyst for Metal-Air Battery, Method of Manufacturing the Same, and Metal-Air Battery Comprising the Same
CN104011933B (en) Metal-oxygen battery and method for producing oxygen storage material used in same
JP6209123B2 (en) Lithium air secondary battery
WO2019093441A1 (en) Amorphous transition metal oxide and use thereof
JP5937941B2 (en) Sodium secondary battery
JP6310413B2 (en) Lithium air secondary battery, method for producing catalyst for air electrode, and method for producing lithium air secondary battery
JP2015069960A (en) Lithium air secondary battery
JP6059632B2 (en) Lithium air secondary battery
JP2009283307A (en) Method of manufacturing silicon/c compound-type negative electrode active material
JP5652877B2 (en) Lithium air battery
JP6715209B2 (en) Lithium air secondary battery
JP6599815B2 (en) Lithium air secondary battery
JP2015032545A (en) Nonaqueous electrolyte secondary battery
KR20130110350A (en) Zirconium-doped cerium oxide, method for producing the same and air electrode for metal-air secondary battery including the same as catalyst
JP2014107160A (en) Sodium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120530

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5378038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350