JPH09219118A - Superconducting wiring - Google Patents

Superconducting wiring

Info

Publication number
JPH09219118A
JPH09219118A JP8023661A JP2366196A JPH09219118A JP H09219118 A JPH09219118 A JP H09219118A JP 8023661 A JP8023661 A JP 8023661A JP 2366196 A JP2366196 A JP 2366196A JP H09219118 A JPH09219118 A JP H09219118A
Authority
JP
Japan
Prior art keywords
superconducting
wiring
layer
niobium
superconducting wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8023661A
Other languages
Japanese (ja)
Inventor
Shinya Kominami
信也 小南
Reeko Mita
玲英子 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8023661A priority Critical patent/JPH09219118A/en
Publication of JPH09219118A publication Critical patent/JPH09219118A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To suppress the reduction of the critical current value owing to the oxidation of a superconducting wiring in a high temperature processing, by providing one of an aluminum oxide film, a magnecium oxide film, a zirconium oxide, and the like, on the upper surface of a superconductor. SOLUTION: An insulating liner layer 2 is formed by laminating a silicon dioxide on a silicon substrate 1. Then, a two-layer membrane of niobium and aluminum oxide is formed on the layer 2. Then, a part of the aluminum oxide and the niobium is etched to form the first wiring protective layer 4, and the niobium is etched by making the layer 4 as the mask, so as to form the first superconducting wiring 3. Then, a layer-to-layer insulating layer 5 is formed. After that, the second wiring protective layer 7 which consists of an aluminum oxide is formed. Then, the niobium is etched by making the layer 7 as the mask to form the second superconducting wiring 6. And after that, the silicon dioxide is laminated so as to make into a protective insulating layer 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超電導集積回路素子
に係り、多層超電導配線の集積化を行うのに適した超電
導配線の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting integrated circuit device, and more particularly to a superconducting wiring structure suitable for integrating multi-layered superconducting wiring.

【0002】[0002]

【従来の技術】従来の超電導配線の構造については、エ
ム・ビー・ケッチェン、ディー・ピアソン、エイ・ダブ
リュー・クラインザッサー、シー・ケイ・フー、エム・
スミス、ジェイ・ロウガン、ケイ・ストウイアッツ、イ
ー・バラン、エム・ジャソ、ティー・ロス、ケイ・ペト
リロ、エム・マニー、エス・バサヴァイア、エス・ブロ
ドスキー、エス・ビー・キャプラン、アンド ダブリュ
ー・ジェイ・ギャラガー; ”サブ−マイクロメート
ル,プラナライズド,ニオブ−アルミニウム オキサイ
ド−ニオブ ジョセフソン プロセス フォー 125
ミリメートル ウエハーズ デヴェロップト イン
パートナーシップ ウイズ シリコン テクノロジー”
アプライド フィジックス レターズ, 59巻,
第20号,1991年11月, 2609頁から261
1頁まで (M. B. Ketchen, D. Pearson, A. W. Kleins
sasser, C. K. Hu, M. Smyth, J. Logan, K. Stawiasz,
E.Baran, M. Jaso, T. Ross, K. Petrillo, M. Manny,
S. Basavaiah, S. Brodsky, S. B. Kaplan, and W. J.
Gallagher; "Sub-μm, planarized, Nb-AlOx-Nb Josep
hson process for 125 mm wafers developed in partne
rship with Si technology" Appl. Phys. Lett., Vol.
59, No. 20, November, 1991, pp.2609-2611)に記載の
ように、ニオブ(Nb)で構成されていた。
2. Description of the Related Art Regarding the structure of conventional superconducting wiring, M. B. Ketjen, Dee Pearson, A. W. Kleinzasser, CK Fu, M.
Smith, Jay Logan, Kay Stowiats, E. Balun, Em Jaso, Tee Ross, Kay Petrilo, Em Manny, S. Basavaia, S. Brodsky, S. B. Caplan, and W. Jay Gallagher "Sub-micrometer, planarized, niobium-aluminum oxide-niobium Josephson Process for 125";
Mm Wafers Developed Inn
Partnership With Silicon Technology ”
Applied Physics Letters, Volume 59,
No. 20, November 1991, pp. 2609-261
Up to 1 page (MB Ketchen, D. Pearson, AW Kleins
sasser, CK Hu, M. Smyth, J. Logan, K. Stawiasz,
E.Baran, M. Jaso, T. Ross, K. Petrillo, M. Manny,
S. Basavaiah, S. Brodsky, SB Kaplan, and WJ
Gallagher; "Sub-μm, planarized, Nb-AlOx-Nb Josep
hson process for 125 mm wafers developed in partne
rship with Si technology "Appl. Phys. Lett., Vol.
59, No. 20, November, 1991, pp.2609-2611), it was composed of niobium (Nb).

【0003】[0003]

【発明が解決しようとする課題】従来の技術において
は,超電導配線はニオブで構成されていた。多層のニオ
ブ超電導配線を用いて超電導集積回路を作製する場合,
一旦形成したニオブ配線がのちに高温の工程を経ること
がある。ニオブ配線が高温の工程を経ると,空気中の酸
素あるいは成膜工程中で用いている材料から拡散してき
た酸素とニオブが反応して酸化ニオブ(Nb25)を形
成し,超電導配線の一部が絶縁体に変化して,配線に流
すことのできる超電導臨界電流値が低下する。このこと
が原因で集積回路の動作が阻害されることがあり,回路
の信頼性の点で問題となる。
In the prior art, the superconducting wiring was made of niobium. When manufacturing a superconducting integrated circuit using multilayer niobium superconducting wiring,
The niobium wiring once formed may be subjected to a high temperature step later. When the niobium wiring undergoes a high temperature process, oxygen in the air or oxygen diffused from the material used in the film forming process reacts with niobium to form niobium oxide (Nb 2 O 5 ), which causes Part of it changes to an insulator, and the superconducting critical current value that can flow in the wiring decreases. This may hinder the operation of the integrated circuit, causing a problem in terms of circuit reliability.

【0004】本発明の目的は,超電導配線を形成した後
に高温の工程を経た場合においても,該超電導配線を構
成する超電導体中に酸素が拡散しにくく,超電導体が絶
縁体に変化して超電導臨界電流値が低下するのを抑制す
るのに適した超電導配線の構造を提供することにある。
The object of the present invention is to prevent oxygen from diffusing into the superconductor constituting the superconducting wiring even when a high temperature process is performed after the superconducting wiring is formed, and the superconductor changes to an insulator to change the superconducting property. An object of the present invention is to provide a superconducting wiring structure suitable for suppressing a decrease in the critical current value.

【0005】[0005]

【課題を解決するための手段】上記課題は、超電導配線
を形成し、その後高温下において超電導配線の形成部又
はその近傍に膜を形成する工程を含む超電導回路や超電
導デバイスの作製において、高温下での成膜工程の前
に、形成された超電導配線の表面(即ち、基板材料や絶
縁膜等に接合されない面)を当該配線を形成する超電導
材料の酸化物より標準生成エンタルピの大きい材料で覆
うことにより解決される。減圧下(所謂、真空下)で超
電導配線を形成し、超電導配線表面を金属の酸化物で覆
う場合は、減圧下において超電導配線の表面に金属の膜
を形成し、続いて酸化するのが望ましい。
Means for Solving the Problems The above-mentioned problem is to form a superconducting wire, and then to form a film at or near the superconducting wire forming portion at a high temperature. Before the film formation process in step 1, the surface of the formed superconducting wiring (that is, the surface not bonded to the substrate material or the insulating film) is covered with a material having a standard enthalpy larger than that of the oxide of the superconducting material forming the wiring. Will be solved. When the superconducting wiring is formed under reduced pressure (so-called vacuum) and the surface of the superconducting wiring is covered with a metal oxide, it is desirable to form a metal film on the surface of the superconducting wiring under reduced pressure and then oxidize it. .

【0006】上記本発明の目的は、超電導集積回路中に
設けられ超電導電流を流すことのできる超電導配線にお
いて、該超電導配線の少なくとも一部は、超電導配線を
構成する超電導体に接した形で該超電導体の上面に、酸
化アルミニウム膜(Al23)、酸化マグネシウム膜
(MgO)、酸化ジルコニウム膜(ZrO2)、酸化ハ
フニウム膜(Hf23)、及び酸化タンタル膜(TaO
3)のうちの少なくとも1つを有する構造とすることに
よって達成される。
The above-mentioned object of the present invention is to provide a superconducting wiring which is provided in a superconducting integrated circuit and is capable of flowing a superconducting current. At least a part of the superconducting wiring is in contact with a superconductor forming the superconducting wiring. On the upper surface of the superconductor, an aluminum oxide film (Al 2 O 3 ), a magnesium oxide film (MgO), a zirconium oxide film (ZrO 2 ), a hafnium oxide film (Hf 2 O 3 ), and a tantalum oxide film (TaO).
This is achieved by providing a structure having at least one of 3 ).

【0007】また本発明の目的は、上記の超電導配線に
おいて、該超電導配線を構成する超電導体を、ニオブ、
窒化ニオブ、および炭素窒素ニオブから選ばれたる材料
で構成することによって達成される。
Another object of the present invention is to provide, in the above-mentioned superconducting wiring, a superconductor which constitutes the superconducting wiring,
This is achieved by constructing a material selected from niobium nitride and niobium carbon nitrogen.

【0008】また本発明の目的は、上記の超電導配線に
おいて、該超電導配線をジョセフソン接合素子を用いた
超電導集積回路中に設けることによって達成される。
Further, the object of the present invention is achieved by providing the above-mentioned superconducting wiring in a superconducting integrated circuit using a Josephson junction element.

【0009】上述のように本発明において超電導集積回
路中に超電導配線を設ける場合に、該超電導配線を構成
する超電導体の上面に、超電導体に接した形で、酸化ア
ルミニウム膜、酸化マグネシウム膜、酸化ジルコニウム
膜、酸化ハフニウム膜、及び酸化タンタル膜のうちの少
なくとも1つを設ける。Nb2O5の酸素原子1mol当たりの
標準生成エンタルピーは−380kJ/molであるのに対し
て、Al2O3、MgO、ZrO2、Hf2O3、及びTaO3の標準生成エ
ンタルピーはそれぞれ、−559、−602、−55
0、−572、及び−409kJ/molである。例えば,超
電導体をニオブで構成した場合に、アルミニウム、マグ
ネシウム、ジルコニウム、ハフニウム、及びタンタルの
酸化物の生成エンタルピーの絶対値はニオブの酸化物よ
りも大きいので、アルミニウム、マグネシウム、ジルコ
ニウム、ハフニウム、及びタンタルと結合した酸素原子
はニオブと反応しにくく、高温工程を経たとしても超電
導体を構成するニオブが酸化して超電導臨界電流値が低
下することが少ない。
As described above, when the superconducting wiring is provided in the superconducting integrated circuit in the present invention, an aluminum oxide film, a magnesium oxide film, in contact with the superconductor, is formed on the upper surface of the superconductor forming the superconducting wiring. At least one of a zirconium oxide film, a hafnium oxide film, and a tantalum oxide film is provided. The standard enthalpy of formation of Nb 2 O 5 per mol of oxygen atoms is −380 kJ / mol, whereas the standard enthalpies of formation of Al 2 O 3 , MgO, ZrO 2 , Hf 2 O 3 , and TaO 3 are respectively: -559, -602, -55
0, -572, and -409 kJ / mol. For example, when the superconductor is made of niobium, since the absolute value of the enthalpy of formation of oxides of aluminum, magnesium, zirconium, hafnium, and tantalum is larger than that of niobium oxide, aluminum, magnesium, zirconium, hafnium, and Oxygen atoms bonded to tantalum are less likely to react with niobium, and even if a high temperature process is performed, niobium forming a superconductor is less likely to be oxidized and the superconducting critical current value be lowered.

【0010】[0010]

【発明の実施の形態】以下、本発明を実施例を挙げて詳
細に説明する。図1は、本発明の実施例による超電導配
線の一部を示す断面図である。シリコン基板1上に、圧
力1.3Paのアルゴンガスを用いた高周波マグネトロ
ンスパッタ法によって(即ち、減圧下で)二酸化シリコ
ンを280nm堆積して下地絶縁層2とする。下地絶縁
層2上に、圧力1.3Paのアルゴンガスを用いた直流
マグネトロンスパッタ法によってニオブを280nm、
アルミニウムを5nm、真空を破らずに連続して堆積
し、アルミニウムを酸化して、ニオブと酸化アルミニウ
ムの2層膜を形成する。上記の2層膜上に、1μm幅の
配線と1μm幅のスペースを含むホトレジストのパター
ンを形成し、アルゴンガスを用いたイオンビームエッチ
ング法によって酸化アルミニウムとニオブの一部(膜厚
にして10nm)をエッチングして、酸化アルミニウム
で成る第1配線保護層4を形成し、ホトレジストを除去
する。この第1配線保護層4をマスクとして、圧力13
PaのCF4ガスを用いた反応性イオンエッチング法に
よって二オブをエッチングして、第1超電導配線3を形
成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments. FIG. 1 is a sectional view showing a part of a superconducting wire according to an embodiment of the present invention. 280 nm of silicon dioxide is deposited on the silicon substrate 1 by a high frequency magnetron sputtering method using an argon gas with a pressure of 1.3 Pa (that is, under reduced pressure) to form a base insulating layer 2. Niobium having a thickness of 280 nm was formed on the base insulating layer 2 by a DC magnetron sputtering method using argon gas at a pressure of 1.3 Pa.
Aluminum is continuously deposited to a thickness of 5 nm without breaking the vacuum, and aluminum is oxidized to form a two-layer film of niobium and aluminum oxide. A photoresist pattern including a wiring of 1 μm width and a space of 1 μm width is formed on the above two-layer film, and a part of aluminum oxide and niobium (10 nm in thickness) is formed by an ion beam etching method using argon gas. Is etched to form a first wiring protection layer 4 made of aluminum oxide, and the photoresist is removed. Using this first wiring protection layer 4 as a mask, pressure 13
Niobium is etched by the reactive ion etching method using CF 4 gas of Pa to form the first superconducting wiring 3.

【0011】次に、再び圧力1.3Paのアルゴンガス
を用いた高周波マグネトロンスパッタ法によって二酸化
シリコンを360nm堆積し、CHF3ガスを用いた反
応性イオンエッチング法によって加工して、層間絶縁層
5を形成する。二酸化シリコンを堆積する時に試料全体
の温度が約180℃まで上昇するが、第1超電導配線3
の上に第1配線保護層4があるので、第1超電導配線3
を構成するニオブが成膜中の二酸化シリコン中の酸素と
反応して酸化されることが少ない。従って、第1超電導
配線3の超電導臨界電流値の低下が少ない。試料表面を
圧力2mTorrのアルゴンガスを用いてスパッタエッ
チングして、第1超電導配線3の上の第1配線保護層4
のうち露出した部分を除去した後、圧力1.3Paのア
ルゴンガスを用いた直流マグネトロンスパッタ法によっ
て、ニオブを360nm、アルミニウムを5nm、真空
を破らずに連続して堆積し、アルミニウムを酸化してニ
オブと酸化アルミニウムの2層膜を形成する。上記の2
層膜上に、1μm幅の配線と1μm幅のスペ−スを含む
ホトレジストのパタ−ンを形成し、アルゴンガスを用い
たイオンビ−ムエッチング法によって酸化アルミニウム
とニオブの一部(膜厚にして10nm)をエッチングし
て、酸化アルミニウムで成る第2配線保護層7を形成
し、ホトレジストを除去する。この第2配線保護層7を
マスクとして、圧力13PaのCF4ガスを用いた反応
性イオンエッチング法によってニオブをエッチングして
第2超電導配線6を形成する。第1超電導配線3と第2
超電導配線6がコンタクトする部分の平面的な寸法は
0.7μm角とする。さらに、圧力1.3Paのアルゴン
ガスを用いた高周波マグネトロンスパッタ法によって二
酸化シリコンを440nm堆積し、保護絶縁層8とす
る。二酸化シリコンを堆積する時に試料全体の温度が約
200℃まで上昇するが、第2超電導配線6の上に第2
配線保護層7があるので、第2超電導配線6を構成する
ニオブが成膜中の二酸化シリコン中の酸素と反応して酸
化されることが少ない。従って、第2超電導配線6の超
電導臨界電流値の低下が少ない。以上によって、本発明
の実施例による超電導配線を作製することができた。
Next, again, silicon dioxide is deposited to a thickness of 360 nm by a high frequency magnetron sputtering method using an argon gas having a pressure of 1.3 Pa, and is processed by a reactive ion etching method using a CHF 3 gas to form an interlayer insulating layer 5. Form. When the silicon dioxide is deposited, the temperature of the entire sample rises to about 180 ° C, but the first superconducting wiring 3
Since there is the first wiring protection layer 4 on the first superconducting wiring 3,
The niobium forming the film is less likely to be oxidized by reacting with oxygen in silicon dioxide during film formation. Therefore, the decrease in the superconducting critical current value of the first superconducting wiring 3 is small. The surface of the sample is sputter-etched using an argon gas having a pressure of 2 mTorr, and the first wiring protection layer 4 on the first superconducting wiring 3 is formed.
After removing the exposed part of the above, niobium (360 nm) and aluminum (5 nm) were continuously deposited without breaking vacuum by a direct current magnetron sputtering method using argon gas at a pressure of 1.3 Pa to oxidize aluminum. A two-layer film of niobium and aluminum oxide is formed. 2 above
A photoresist pattern containing a 1 μm wide wiring and a 1 μm wide space is formed on the layer film, and a part of aluminum oxide and niobium (made into a film thickness) is formed by an ion beam etching method using argon gas. 10 nm) is etched to form a second wiring protection layer 7 made of aluminum oxide, and the photoresist is removed. Using the second wiring protection layer 7 as a mask, niobium is etched by the reactive ion etching method using CF 4 gas at a pressure of 13 Pa to form the second superconducting wiring 6. First superconducting wire 3 and second
The planar dimension of the contact portion of the superconducting wiring 6 is 0.7 μm square. Further, 440 nm of silicon dioxide is deposited by a high frequency magnetron sputtering method using an argon gas having a pressure of 1.3 Pa to form a protective insulating layer 8. When the silicon dioxide is deposited, the temperature of the entire sample rises to about 200 ° C.
Since the wiring protection layer 7 is provided, niobium forming the second superconducting wiring 6 is less likely to be oxidized by reacting with oxygen in the silicon dioxide during film formation. Therefore, the decrease in the superconducting critical current value of the second superconducting wiring 6 is small. As described above, the superconducting wiring according to the example of the present invention could be manufactured.

【0012】上記の超電導配線を液体ヘリウムを用いて
4.2Kに冷却すれば、第1超電導配線3から第2超電
導配線6を通じて流すことのできる超電導臨界電流値は
40mAとなり、上記の超電導配線をジョセフソン接合
素子を使った超電導集積回路中で用いることができる。
If the above-mentioned superconducting wiring is cooled to 4.2K using liquid helium, the superconducting critical current value that can flow from the first superconducting wiring 3 through the second superconducting wiring 6 becomes 40 mA, and the above-mentioned superconducting wiring is It can be used in superconducting integrated circuits using Josephson junction devices.

【0013】上記の実施例に対して、ニオブで成る超電
導体の上に接した配線保護層がない場合の超電導配線の
一部を示す断面図が図2である。図2の超電導配線を液
体ヘリウムを用いて4.2Kに冷却した場合、第1超電
導配線13から第2超電導配線15を通じて流すことの
できる超電導臨界電流値は、20mAである。従って、
図2と同じ構造で40mAの臨界電流値を得るために
は、超電導配線の幅を本発明の実施例の場合の2倍程度
に拡げる必要がある。
FIG. 2 is a sectional view showing a part of the superconducting wiring in the case where there is no wiring protective layer in contact with the superconductor made of niobium in the above embodiment. When the superconducting wire of FIG. 2 is cooled to 4.2K using liquid helium, the superconducting critical current value that can flow through the first superconducting wire 13 and the second superconducting wire 15 is 20 mA. Therefore,
In order to obtain a critical current value of 40 mA with the same structure as in FIG. 2, it is necessary to widen the width of the superconducting wiring to about twice the width of the embodiment of the present invention.

【0014】[0014]

【発明の効果】以上説明した如く本発明によれば、超電
導集積回路中に設けた超電導配線において、該超電導配
線を形成した後に高温の工程を経た場合においても、超
電導臨界電流値が低下することが少なく、超電導集積回
路の動作に支障をきたすことがない。また、集積回路の
動作不良を防止するため,高温の工程を経ることによる
臨界電流値低下の分を予め考慮して超電導配線の線幅や
膜厚を大きくする必要がないので、超電導集積回路全体
の集積化を図ることができる。
As described above, according to the present invention, in the superconducting wiring provided in the superconducting integrated circuit, the superconducting critical current value is lowered even when a high temperature process is performed after the superconducting wiring is formed. There is little, and it does not interfere with the operation of the superconducting integrated circuit. Moreover, in order to prevent malfunction of the integrated circuit, it is not necessary to increase the line width and film thickness of the superconducting wiring in consideration of the amount of decrease in the critical current value due to the high temperature process. Can be integrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による超電導配線の一部を示す
断面図。
FIG. 1 is a sectional view showing a part of a superconducting wiring according to an embodiment of the present invention.

【図2】従来の方法を用いて作製した超電導配線の一部
を示す断面図。
FIG. 2 is a cross-sectional view showing a part of a superconducting wire manufactured by using a conventional method.

【符号の説明】[Explanation of symbols]

1…シリコン基板、2…下地絶縁層、3…第1超電導配
線、4…第1配線保護層、5…層間絶縁層、6…第2超
電導配線、7…第2配線保護層、8…保護絶縁層、11
…シリコン基板、12…下地絶縁層、13…第1超電導
配線、14…層間絶縁層、15…第2超電導配線、16
…保護絶縁層。
DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 2 ... Base insulating layer, 3 ... 1st superconducting wiring, 4 ... 1st wiring protective layer, 5 ... Interlayer insulating layer, 6 ... 2nd superconducting wiring, 7 ... 2nd wiring protective layer, 8 ... Protection Insulating layer, 11
... Silicon substrate, 12 ... Base insulating layer, 13 ... First superconducting wiring, 14 ... Interlayer insulating layer, 15 ... Second superconducting wiring, 16
… Protective insulation layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超電導集積回路中に設け、超電導電流を流
すことのできる超電導配線において、該超電導配線の少
なくとも一部は、超電導配線を構成する超電導体に接し
た形で該超電導体の上面に、酸化アルミニウム膜、酸化
マグネシウム膜、酸化ジルコニウム膜、酸化ハフニウム
膜、及び酸化タンタル膜のうちの少なくとも1つを有す
ることを特徴とする超電導配線。
1. In a superconducting wiring which is provided in a superconducting integrated circuit and is capable of flowing a superconducting current, at least a part of the superconducting wiring is in contact with a superconductor constituting the superconducting wiring and is on the upper surface of the superconductor. A superconducting wire comprising at least one of an aluminum oxide film, a magnesium oxide film, a zirconium oxide film, a hafnium oxide film, and a tantalum oxide film.
【請求項2】特許請求項1に記載の超電導配線におい
て、該超電導配線を構成する超電導体は、ニオブ、窒化
ニオブ、および炭素窒素ニオブから選ばれたることを特
徴とする超電導配線。
2. The superconducting wiring according to claim 1, wherein the superconductor forming the superconducting wiring is selected from niobium, niobium nitride, and niobium carbon nitrogen.
【請求項3】特許請求項1に記載の超電導配線におい
て、該超電導配線は、ジョセフソン接合素子を用いた超
電導集積回路中に設けることを特徴とする超電導配線。
3. The superconducting wiring according to claim 1, wherein the superconducting wiring is provided in a superconducting integrated circuit using a Josephson junction element.
JP8023661A 1996-02-09 1996-02-09 Superconducting wiring Pending JPH09219118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8023661A JPH09219118A (en) 1996-02-09 1996-02-09 Superconducting wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8023661A JPH09219118A (en) 1996-02-09 1996-02-09 Superconducting wiring

Publications (1)

Publication Number Publication Date
JPH09219118A true JPH09219118A (en) 1997-08-19

Family

ID=12116689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8023661A Pending JPH09219118A (en) 1996-02-09 1996-02-09 Superconducting wiring

Country Status (1)

Country Link
JP (1) JPH09219118A (en)

Similar Documents

Publication Publication Date Title
JP2005039244A (en) Electronic device and method of forming multilayer wiring
JP2009111306A (en) Electronic device with josephson junction, and method of manufacturing the same
JP2584003B2 (en) Superconducting element and manufacturing method thereof
JPH09219118A (en) Superconducting wiring
JP2827572B2 (en) Layered superconductor circuit and manufacturing method thereof
JPH10150228A (en) Superconductive circuit and its manufacture
JPS58213449A (en) Semiconductor integrated circuit device
JPH05211355A (en) Manufacture of josephson integrated circuit
JPH0322711B2 (en)
JP2825374B2 (en) Superconducting element
JP3099381B2 (en) Semiconductor device and manufacturing method thereof
JP2003198007A (en) Method of forming tunnel junction and tunnel junction device
JPS60250682A (en) Superconductive element
JPH03263884A (en) Manufacture of josephson integrated circuit
JPH10112559A (en) Josephson junction device
JPH0235731A (en) Manufacture of semiconductor device
JPH05308072A (en) Manufacture of semiconductor integrated circuit
JPS61241987A (en) Wiring for josephson integrated circuit
JPH03131032A (en) Semiconductor device
JPH0366128A (en) Multilayer interconnection structure body and its manufacture
JPS6224677A (en) Formation of ground plane for superconducting circuit
JP2004247540A (en) Superconductive element, method for manufacturing the same and superconductive apparatus
JPS58168241A (en) Manufacture of integrated circuit device of thin film structure
JPS63224273A (en) Josephson junction element and its manufacture
JPH05315660A (en) Manufacture of semiconductor integrated circuit device