JP2009111306A - Electronic device with josephson junction, and method of manufacturing the same - Google Patents

Electronic device with josephson junction, and method of manufacturing the same Download PDF

Info

Publication number
JP2009111306A
JP2009111306A JP2007284729A JP2007284729A JP2009111306A JP 2009111306 A JP2009111306 A JP 2009111306A JP 2007284729 A JP2007284729 A JP 2007284729A JP 2007284729 A JP2007284729 A JP 2007284729A JP 2009111306 A JP2009111306 A JP 2009111306A
Authority
JP
Japan
Prior art keywords
niobium
film
josephson junction
electronic device
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007284729A
Other languages
Japanese (ja)
Inventor
Kenji Hinode
憲治 日野出
Shuichi Nagasawa
秀一 永沢
Tetsuro Sato
哲朗 佐藤
Mutsuo Hidaka
睦夫 日高
Keiichi Tanabe
圭一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Hitachi Ltd
NEC Corp
Original Assignee
International Superconductivity Technology Center
Hitachi Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Hitachi Ltd, NEC Corp filed Critical International Superconductivity Technology Center
Priority to JP2007284729A priority Critical patent/JP2009111306A/en
Publication of JP2009111306A publication Critical patent/JP2009111306A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming an electronic device with a Josephson junction, which is not dependent on process conditions and connection conditions, namely pattern, of a niobium electrode and to provide an electric device with a highly reliable Josephson junction formed by this method. <P>SOLUTION: Hydrogen in niobium film and under niobium interconnection is emitted to obtain a sufficiently low concentration or hydrogen movement from Josephson junction electrode niobium is restricted. Thus, a fixed hydrogen concentration is ensured and thereby bonding property in accordance with a design value is achieved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ジョセフソン接合を備えた電子デバイスおよびその製造方法に係わり、特に超電導集積回路デバイスに適用して効果の大きい電子デバイスとその製造方法に関する。   The present invention relates to an electronic device having a Josephson junction and a manufacturing method thereof, and more particularly, to an electronic device having a large effect when applied to a superconducting integrated circuit device and a manufacturing method thereof.

高集積化された電子デバイスでは、これを構成する要素の特性ばらつきを小さく一定の範囲に収めることが必要である。超電導ジョセフソン素子では、同一の寸法に設計されたジョセフソン接合の臨界電流値が許容範囲を超えてばらつかないような製造プロセスが求められる。これまで、このばらつきを決める最大要因の一つがエッチングであると考えられており、正確な形、寸法のパターン転写ができると考えられるプラズマエッチング技術も検討されている。これは多数の接合の臨界電流値が全体としてばらついている場合であり、0.93平方ミクロンの接合で1.4%のばらつき(標準偏差)が達成できることが報告されている(非特許文献1を参照)。   In a highly integrated electronic device, it is necessary to keep the characteristic variation of elements constituting the device small and within a certain range. A superconducting Josephson element is required to have a manufacturing process in which the critical current value of a Josephson junction designed to have the same size does not vary beyond an allowable range. Up to now, it has been considered that etching is one of the biggest factors that determine this variation, and plasma etching techniques that can transfer patterns with accurate shapes and dimensions are also being studied. This is a case where the critical current values of a large number of junctions vary as a whole, and it has been reported that a variation (standard deviation) of 1.4% can be achieved with a junction of 0.93 square microns (see Non-Patent Document 1).

また、Tolpygoらは多数の接合の臨界電流値全体のばらつきではなく、少数個のみが大きく平均値から外れる現象を報告している(非特許文献2を参照)。たとえ少数個でも許容範囲を大きく超える接合が存在することは多数の接合を集積した大規模な回路の実現が困難になってしまうため、現時点ではこちらのほうが深刻な問題と考えられる。彼らはばらつきの原因を製造プロセス中の変化、すなわち、成膜装置、エッチング装置等、プラズマを使う工程での劣化の可能性が高いとしている。   In addition, Tolpygo et al. Reported a phenomenon in which only a small number of large junctions deviate from the average value, not the variation of the entire critical current value of many junctions (see Non-Patent Document 2). Even if a small number of junctions greatly exceed the allowable range, it becomes difficult to realize a large-scale circuit in which a large number of junctions are integrated, so this is considered to be a more serious problem at this time. They say that the cause of the variation is a change during the manufacturing process, that is, the possibility of deterioration in a process using plasma, such as a film forming apparatus or an etching apparatus.

米国特許7081417号明細書US Pat. No. 7,081,417 特願2003−183879号Japanese Patent Application No. 2003-183879 特願2004−183879号Japanese Patent Application No. 2004-183879 H.Akaike, Y.Kitagawa,T. Satoh, K.Hinode, S.Nagasawa,and M. Hidaka, “Nb/AlOx/Nb junctions fabricated using ECR plasma etching”, Physica C 412-414(2004), p.1442-1446.H. Akaike, Y. Kitagawa, T. Satoh, K. Hinode, S. Nagasawa, and M. Hidaka, “Nb / AlOx / Nb junctions fabricated using ECR plasma etching”, Physica C 412-414 (2004), p. 1442-1446. S.K. Tolpygo, D. Amparo, A. Kirichenko, and D. Yohannes, “Plasma Process-Induced Damage to Josephson Junctions in Superconducting Integrated Circuits”, Extended Abstract of 11th International Superconductive Electronics Conference (2007), 発表番号O-101S.K. Tolpygo, D. Amparo, A. Kirichenko, and D. Yohannes, “Plasma Process-Induced Damage to Josephson Junctions in Superconducting Integrated Circuits”, Extended Abstract of 11th International Superconductive Electronics Conference (2007), Publication Number O-101 E. Schroader, Z. Naturforsch. 12a, 247 (1957),p.247E. Schroader, Z. Naturforsch. 12a, 247 (1957), p.247 G.C. Rauch, R.M. Rose, J. Wulff: Less-Common Metals 8, (1965), p.99G.C.Rauch, R.M.Rose, J. Wulff: Less-Common Metals 8, (1965), p.99 N.M. Jisrawi, M.W. Ruckman, T.R. Thurstion, G.Reisfeld, M.Weinert, and M. Strongin, “Reversible depression in the Tc of thin Nb films due to enhanced hydrogen absorption,” Phys. Rev. B58, (1998), p.6585NM Jisrawi, MW Ruckman, TR Thurstion, G. Reisfeld, M. Weinert, and M. Strongin, “Reversible depression in the Tc of thin Nb films due to enhanced hydrogen absorption,” Phys. Rev. B58, (1998), p. .6585 G. Alefeld and J. Volkl, “Hydrogen in Metals I, II,” Springer-Verlag,(1978),pp.321-348G. Alefeld and J. Volkl, “Hydrogen in Metals I, II,” Springer-Verlag, (1978), pp.321-348 Y. Fukai, “The Metal-Hydrogen System” , Springer-Verlag, (1992), pp.207-299Y. Fukai, “The Metal-Hydrogen System”, Springer-Verlag, (1992), pp.207-299 「金属データブック」、日本金属学会編、丸善、(1993)、pp.20-25"Metal Data Book", edited by the Japan Institute of Metals, Maruzen, (1993), pp.20-25

上述の非特許文献2で開示しているものと同等と思われるジョセフソン接合臨界電流値の変動、ばらつきを本発明者らも観測・検討してきた。検討結果の要旨を以下で説明する。
この文献に述べられているのと同様のテストパターンで測定した1000個の接合での臨界電流値の分布を図12にヒストグラムで示した。1000個の接合は同一寸法、従って同じ臨界電流値を持つように設計してある。ここで用いたジョセフソン素子は、その接合が3.0μm□で、臨界電流値Jが2.5kA/cmである。1000個の接合のほとんど(99%以上)は平均値の周りの±数%の臨界電流値を持つが、大きく(20%程度)ずれたものが少数個、必ず存在する。
The present inventors have also observed and examined fluctuations and variations in the Josephson junction critical current value that are considered to be equivalent to those disclosed in Non-Patent Document 2 described above. The summary of the study results will be described below.
The distribution of critical current values at 1000 junctions measured with the same test pattern as described in this document is shown as a histogram in FIG. The 1000 junctions are designed to have the same dimensions and therefore the same critical current value. The Josephson element used here has a junction of 3.0 μm □ and a critical current value J C of 2.5 kA / cm 2 . Most of the 1000 junctions (99% or more) have a critical current value of ± several percent around the average value, but there are always a small number of those that deviate greatly (about 20%).

もう一つの例を図13で説明する。これは接合部は同じだが接続している配線が少し異なる2種類の接合(STDとCCの記号で区別)、各々1000個の臨界電流値の分布例である。STDと書いたものは図12のものである。ここで用いたジョセフソン素子は、その接合が3.0μm□で、臨界電流値Jが2.5kA/cmである。従来、設計上は区別されず、同じ臨界電流値を持つと考えられている接合が各々のばらつきの範囲を超えて大きく異なる臨界電流値を示している。 Another example will be described with reference to FIG. This is an example of the distribution of 1000 critical current values, each of two types of junctions (identified by STD and CC symbols) with the same junction but a slightly different wiring. What is written as STD is that of FIG. The Josephson element used here has a junction of 3.0 μm □ and a critical current value J C of 2.5 kA / cm 2 . Conventionally, junctions that are not distinguished by design and are considered to have the same critical current value show significantly different critical current values beyond the range of their variations.

これら2例は、極少数ながら大きく臨界電流値の違う接合が存在すること、接合部が同じでも配線接続の仕方による臨界電流値に差があることを示している。実際の回路素子の臨界電流値の分布は(より多種類の接続の仕方があるため)図14に模式的に示したように非常に広い範囲に分布すると推定される。極少数でも10%を超えるような広い範囲に回路要素の特性値がばらつくと数千個〜数万個以上の回路要素を集積した大規模な集積回路を作ることは大変困難になる。従って、大規模集積回路を実現するにはこのような回路要素のばらつきを抑制して狭い範囲に抑えることが必須となる。本発明ではプロセスもしくは素子構造で何らかの改良を加えることでこのようなばらつきを抑制することが目的である。   These two examples show that there are very few junctions with large critical current values, and that there are differences in the critical current values depending on the way of wiring connection even if the junctions are the same. The distribution of critical current values of actual circuit elements is presumed to be distributed in a very wide range as schematically shown in FIG. 14 (because there are more types of connection methods). If the characteristic values of circuit elements vary over a wide range exceeding 10% even with a very small number, it becomes very difficult to produce a large-scale integrated circuit in which several thousand to several tens of thousands of circuit elements are integrated. Therefore, in order to realize a large-scale integrated circuit, it is indispensable to suppress such a variation in circuit elements to a narrow range. The object of the present invention is to suppress such variations by making some improvements in the process or device structure.

上述の非特許文献2では臨界電流値変動がプラズマプロセスが原因となって引き起こされる劣化と推定している。しかし本発明者らの検討によると、変動の根本原因は素子の電極材料であるニオブ中に水素が混入し、素子内で場所による濃度差ができることが原因であることを突き止めた。水素の濃度に応じてニオブ電極の超電導特性が変化するため、水素濃度変化が直接に超電導臨界電流値変動を引き起こしてしまうことがわかった。混入する水素濃度がニオブ膜の成膜装置によって違っていたり、成膜条件、使用状況にも依存することが判明した。また、成膜以外の工程で、水素がニオブ電極に入る場合も、水素がニオブ電極から出る場合もあり、さらにそれがプロセス条件やニオブ電極の接続具合に依存する(パターン依存性)という非常に込み入った仕組みがあり、そのためこの現象が複雑に見えることも分かってきた。   In the above-mentioned Non-Patent Document 2, it is estimated that the critical current fluctuation is caused by the plasma process. However, according to the study by the present inventors, it has been found that the root cause of the fluctuation is that hydrogen is mixed in niobium, which is an electrode material of the device, and a concentration difference depending on the location can be formed in the device. Since the superconducting properties of the niobium electrode change according to the hydrogen concentration, it was found that the change in the hydrogen concentration directly causes the fluctuation of the superconducting critical current value. It has been found that the concentration of mixed hydrogen differs depending on the niobium film deposition apparatus, and also depends on the film deposition conditions and usage conditions. Also, hydrogen may enter the niobium electrode and hydrogen may exit from the niobium electrode in processes other than film formation, and it depends on the process conditions and the connection condition of the niobium electrode (pattern dependence). It has been found that there is an intricate mechanism that makes this phenomenon look complicated.

本発明の目的は、ニオブ電極中の水素濃度ばらつきを十分小さく抑えて、プロセス条件やニオブ電極の接続具合、すなわちパターンに依存しない、設計値どおりの臨界電流値を持ったジョセフソン接合を備えた電子デバイスの形成方法、およびその方法で形成された信頼度の高いジョセフソン接合を備えた電子デバイスを提供することにある。   An object of the present invention is to provide a Josephson junction having a critical current value as designed, which is not dependent on process conditions and connection conditions of niobium electrodes, that is, patterns, while suppressing variations in hydrogen concentration in the niobium electrode. An object of the present invention is to provide a method for forming an electronic device and an electronic device including a highly reliable Josephson junction formed by the method.

本発明者の用いているジョセフソン接合の製造プロセスで作ったニオブ膜中の水素濃度を加熱放出ガス分析法で評価したところ0.4〜5%(原子%)の水素放出があることを測定した。この製造プロセスは代表的なものであるから、現在広く実施されている通常一般のジョセフソン接合の製造工程でも同程度(0.1〜数%)の水素がニオブ中に混入していると考えられる。   When the hydrogen concentration in the niobium film made by the Josephson junction manufacturing process used by the present inventor was evaluated by the heated emission gas analysis method, it was measured that hydrogen emission of 0.4 to 5% (atomic%) was found. did. Since this manufacturing process is representative, it is considered that the same level (0.1 to several percent) of hydrogen is mixed in niobium even in the manufacturing process of a general Josephson junction that is currently widely practiced. It is done.

ニオブの成膜工程、エッチング工程が主なものであり、酸化層のないニオブ面が露出すると、雰囲気中の水素ガスもしくはイオンがニオブ膜内に進入する。雰囲気の水素濃度が十分低い場合にはニオブ内から外部へ放出される。成膜工程、ドライエッチング工程で意図的に水素ガス(もしくはCHFのような分解して水素もしくは水素イオンを生成するガス)を添加していなくても、大気中の水分が残留し、プラズマで分解して水素となるため、水素分圧を無視できないことがある。 The niobium film forming process and the etching process are the main processes. When the niobium surface without the oxide layer is exposed, hydrogen gas or ions in the atmosphere enter the niobium film. When the hydrogen concentration in the atmosphere is sufficiently low, it is released from the niobium to the outside. Even if hydrogen gas (or a gas that decomposes and produces hydrogen or hydrogen ions such as CHF 3 ) is not added intentionally in the film formation process or dry etching process, moisture in the atmosphere remains and the plasma Since it decomposes into hydrogen, the hydrogen partial pressure may not be negligible.

数10%以上の多量の水素を含んだ、いわゆる水素化ニオブの超伝導特性が著しく劣化することは良く知られている(非特許文献3を参照)。   It is well known that the superconducting properties of so-called niobium hydride containing a large amount of hydrogen of several tens of percent or more are significantly deteriorated (see Non-Patent Document 3).

しかしながらα相と呼ばれる、常温で最大5%までの水素を固溶した合金では超伝導特性に変化はないとされてきた(非特許文献4を参照)。
ところが最近になってこのような数%程度の水素の混入でも超伝導特性に変化が生じることが薄膜ニオブについて報告された(非特許文献5を参照)。
However, it has been said that the superconducting property is not changed in an alloy called α phase, which is a solid solution of hydrogen at a maximum temperature of 5% (see Non-Patent Document 4).
Recently, however, it has been reported that thin-film niobium changes in superconducting properties even when hydrogen is mixed in such a few percent (see Non-Patent Document 5).

この報告に従えば水素濃度が高いほどニオブ電極の超電導特性が劣化するため、水素濃度変化が直接に超電導臨界電流値変動を引き起こしてしまう可能性が高い。
現時点までの筆者らの検討で、1%(原子数)程度の水素混入が数10%の超電導臨界電流値変動を引き起こしていると推定される。
したがって、たとえば回路内の臨界電流値を設計値から10%程度のばらつきに抑えるためには、すべてのジョセフソン接合近傍のニオブ電極中の水素濃度を0.1%程度の精度で一定にすることができればよいことになる。最終的に完成する素子の電極・配線のニオブから水素を出来る限り放出させて、濃度を0.1%以下にするのも一つの方法である。
According to this report, the higher the hydrogen concentration, the more the superconducting properties of the niobium electrode deteriorate. Therefore, it is highly possible that the change in the hydrogen concentration directly causes a change in the superconducting critical current value.
According to the study by the authors up to the present time, it is estimated that about 1% (number of atoms) of hydrogen mixing causes a fluctuation of the superconducting critical current value of several tens of percent.
Therefore, for example, in order to suppress the critical current value in the circuit to a variation of about 10% from the design value, the hydrogen concentration in the niobium electrodes in the vicinity of all Josephson junctions should be made constant with an accuracy of about 0.1%. If you can do it. One method is to release as much hydrogen as possible from the niobium of the electrode / wiring of the finally completed device so that the concentration is 0.1% or less.

ニオブ中の水素濃度を一定にする際に考慮しなければならないのは次の点である。
(a)水素は室温でもニオブ中を移動する。いわゆる拡散現象に従っており、拡散距離(移動距離)は時間の1/2乗に比例する。室温での拡散距離の目安は1cm/日 程度である。プロセスは通常数分〜数時間で一つの工程、たとえばニオブのパターニングを実施する。この間に数10〜数100ミクロンの範囲では拡散によって濃度がほぼ均一になるが、チップ全体mmのオーダでは不均一性が残る。島状にパターニングされて他の層のニオブと直接接続されていない(詳細後述、アルミニウム、モリブデンを経由しての接続は水素が拡散しない)ニオブ領域では水素の移動が止まり、その領域固有の水素濃度に決まってしまう。ニオブジョセフソン接合素子で用いられることのある、パラジウム、白金、チタン等でも水素が移動しやすい。
(b)水素は、アルミニウム中はほとんど移動できないので、ジョセフソン接合のバリア膜を超えては移動しない。ジョセフソン接合素子で用いられることのあるモリブデン、タングステンやその窒化物等、またニオブ窒化物でも水素はほとんど移動しない(非特許文献6乃至8を参照)。
The following points must be taken into account when making the hydrogen concentration in niobium constant.
(A) Hydrogen moves in niobium even at room temperature. According to the so-called diffusion phenomenon, the diffusion distance (movement distance) is proportional to the 1/2 power of time. The standard diffusion distance at room temperature is about 1 cm / day. The process usually takes one step, such as niobium patterning, in minutes to hours. During this time, the concentration becomes almost uniform by diffusion in the range of several tens to several hundreds of microns, but non-uniformity remains in the order of the whole chip mm. In the niobium region, which is patterned in the shape of an island and not directly connected to niobium in other layers (details will be described later, hydrogen does not diffuse when connected via aluminum and molybdenum), hydrogen movement stops, and hydrogen inherent to that region It will be determined by the concentration. Hydrogen is likely to move even with palladium, platinum, titanium, and the like, which are sometimes used in niobium Josephson junction elements.
(B) Since hydrogen hardly moves in aluminum, it does not move beyond the barrier film of the Josephson junction. Hydrogen hardly moves even in molybdenum, tungsten, nitrides thereof, or niobium nitride that may be used in Josephson junction elements (see Non-Patent Documents 6 to 8).

これを元に考えると、ニオブの実際のジョセフソン接合素子では、(電気的には接続していても)水素の移動しにくいアルミニウム、モリブデンで区切られた多数のニオブの領域に分けられていることがわかる。プロセス次第ではこれらのニオブ領域の水素濃度に差が生じてしまうわけである。   Based on this, Niobium's actual Josephson junction element is divided into a number of niobium regions separated by aluminum and molybdenum, which are difficult for hydrogen to move (even if they are electrically connected). I understand that. Depending on the process, there will be a difference in the hydrogen concentration of these niobium regions.

水素移動の観点から分割されたニオブの領域の水素濃度を一様にするために次のような方法を考えた。
(1)ニオブに水素放出処理を施し、臨界電流値の変動が無視できる程度まで水素濃度を下げる。
(1−1)水素は水素分圧の十分低い減圧(真空)中でニオブの酸化層のない表面を露出させればニオブ外に放出される。
(1−2)ニオブ表面にパラジウムもしくは白金の層を設ければ水素分圧の低い大気中でも水素は放出される。プロセスの途中でパラジウムもしくは白金の層を形成して水素放出後、パラジウムもしくは白金を除去してから上層を形成する。
(1−3)最終的に素子表面まで貫通する水素抜きの電極を各々の水素移動の観点から分割されたニオブの島ごとに設ける。電極の表面にはパラジウムもしくは白金の層を形成する。
(2)接合近傍に水素が通過しにくい領域を形成して、プロセス中で隣接する領域との水素の流入・流出を止めてしまうことで一様な水素濃度を実現できる場合もある。
In order to make the hydrogen concentration in the divided niobium region uniform from the viewpoint of hydrogen transfer, the following method was considered.
(1) The niobium is subjected to a hydrogen releasing treatment, and the hydrogen concentration is lowered to such an extent that the fluctuation of the critical current value can be ignored.
(1-1) Hydrogen is released out of niobium if the surface of the niobium oxide layer is exposed in a reduced pressure (vacuum) having a sufficiently low hydrogen partial pressure.
(1-2) If a layer of palladium or platinum is provided on the niobium surface, hydrogen is released even in the atmosphere with a low hydrogen partial pressure. In the middle of the process, a palladium or platinum layer is formed, hydrogen is released, and then the palladium or platinum is removed and then the upper layer is formed.
(1-3) A hydrogen-extracting electrode that finally penetrates to the element surface is provided for each niobium island divided from the viewpoint of hydrogen migration. A palladium or platinum layer is formed on the surface of the electrode.
(2) In some cases, a uniform hydrogen concentration can be realized by forming a region in which hydrogen hardly passes in the vicinity of the junction and stopping the inflow and outflow of hydrogen from and to the adjacent region in the process.

実際に作製した素子中で個々の接合電極の水素濃度を測定するのは難しい。ニオブ電極の体積が微小であるため、直接水素濃度を測ることは実際上無理である。そこで実接合と同じ構造で室温での接合抵抗が測定できるケルビン型4端子テストパターンを同一ウエハ上に作製し、このテストパターンの抵抗値から水素濃度ばらつきを推定した。その際の推定手順を以下で説明する。
(2−1)テストパターンの室温抵抗値の変動量は素子動作温度(代表的には液体ヘリウム温度4.2K)での接合臨界電流値の変動量にほぼ等しいことを確認した。
(2−2)テストパターン(接合)室温抵抗変動量は同じ濃度が含まれたニオブ配線抵抗変動量の約5倍になることを確認した(図15)。
(2−3)ニオブ配線抵抗変動量はニオブ中の水素濃度(原子%)の約7倍になることを確認した(図16)。
(2−4)上記の関係から実素子の接合の臨界電流密度を±5%の範囲に収めるには、電極の水素濃度はほぼ±0.15%、望ましくは±0.1%の範囲に制御すればよいことがわかる。
(2−5)水素濃度がこの範囲に制御されているかどうかは素子の臨界電流値が±5%の範囲に収まっているかどうかで判定できる。
It is difficult to measure the hydrogen concentration of each junction electrode in an actually fabricated device. Since the volume of the niobium electrode is very small, it is practically impossible to measure the hydrogen concentration directly. Therefore, a Kelvin type four-terminal test pattern having the same structure as that of the actual bonding and capable of measuring the bonding resistance at room temperature was fabricated on the same wafer, and the hydrogen concentration variation was estimated from the resistance value of the test pattern. The estimation procedure at that time will be described below.
(2-1) It was confirmed that the variation amount of the room temperature resistance value of the test pattern was almost equal to the variation amount of the junction critical current value at the element operating temperature (typically, the liquid helium temperature of 4.2 K).
(2-2) Test pattern (junction) It was confirmed that the room temperature resistance fluctuation amount was about five times the niobium wiring resistance fluctuation amount including the same concentration (FIG. 15).
(2-3) It was confirmed that the niobium wiring resistance fluctuation amount was about 7 times the hydrogen concentration (atomic%) in niobium (FIG. 16).
(2-4) From the above relationship, in order to keep the critical current density of the actual device junction within the range of ± 5%, the hydrogen concentration of the electrode is about ± 0.15%, preferably within the range of ± 0.1%. It can be seen that control is required.
(2-5) Whether or not the hydrogen concentration is controlled within this range can be determined by whether or not the critical current value of the element is within a range of ± 5%.

本発明によれば、ニオブ電極の接続具合、すなわちパターンに依存したジョセフソン接合の臨界電流値の設計値からのずれを抑制でき、大規模で高性能のジョセフソン接合LSIを実現することが可能になる。   According to the present invention, it is possible to suppress the deviation from the design value of the critical current value of the Josephson junction depending on the connection state of the niobium electrode, that is, the pattern, and it is possible to realize a large-scale and high-performance Josephson junction LSI. become.

<実施例1>
図1は本発明を適用して効果のある超伝導ジョセフソン接合素子の一例を示す断面図である。1はシリコン基板、2はシリコン熱酸化膜による絶縁膜、3はスパッタにより形成したSiOによる各層の絶縁膜、Nb(図1中で、Nb11、Nb31、Nb51などで示す。)は超伝導配線のニオブ層、Alは酸化アルミニウムの層、Moはモリブデンの層である。図では、絶縁膜SiO層3は、図が煩雑になるので、参照符号は最下層に付した。他の層は、同じ右下がりのハッチングを付すことで絶縁膜SiO層を表示することとした。同様に、以下の図面においても、シリコン基板は右下がりの太いハッチング、シリコン熱酸化膜による絶縁膜は左下がりの細いハッチング、絶縁膜SiO層は右下がりの細いハッチング、ニオブ層は左下がりの太いハッチング、酸化アルミニウム層は太い塗りつぶしの線、Mo層は太い左下がりのハチングで表示する。
<Example 1>
FIG. 1 is a cross-sectional view showing an example of a superconducting Josephson junction element effective by applying the present invention. 1 is a silicon substrate, 2 is an insulating film made of a silicon thermal oxide film, 3 is an insulating film of each layer made of SiO 2 formed by sputtering, and Nb (indicated by Nb 11, Nb 31, Nb 51, etc. in FIG. 1). The niobium layer of the superconducting wiring, Al 2 O 3 is an aluminum oxide layer, and Mo is a molybdenum layer. In the figure, the insulating film SiO 2 layer 3 is complicated in the figure, so that the reference numeral is attached to the lowermost layer. For the other layers, the insulating film SiO 2 layer is displayed by applying the same right-down hatching. Similarly, in the following drawings, the silicon substrate has a downward-thick and thick hatching, the insulating film formed by the silicon thermal oxide film has a thin left-down hatching, the insulating film SiO 2 layer has a right-bottom thin hatching, and the niobium layer has a left-downward hatching. The thick hatching, the aluminum oxide layer is indicated by a thick line, and the Mo layer is indicated by a thick left downward hatching.

図1に示す素子は、例えば、以下の要領で形成される。シリコン基板1の上に形成されたシリコン熱酸化膜2の上にニオブ層Nb11,Nb12の配線パターンを形成する。その上に絶縁膜SiO層3を形成した後に平坦化する。次いで、ニオブ層Nbの配線パターンを形成し、その上に絶縁膜SiO層3を形成した後平坦化し、ニオブ層Nbの配線パターンとニオブ層Nb31およびNb31の配線パターンを接続するための開口を絶縁膜SiO層3の該当位置に形成する。そして、全面に3層積層のニオブNb膜-酸化アルミニウムAl膜-ニオブNb膜を形成した後パターニングによって、ジョセフソン接合電極、Nb41およびNb42を形成する。これらのジョセフソン接合をそれぞれJJ1、JJ2と呼ぶことにする。引き続きパターニングを行い、酸化アルミニウムAl膜のパターンを所定の位置に形成、さらにパターニングを続けてニオブ層Nb31,Nb32およびNb33の配線パターンを形成する。この段階で、3層積層のニオブNb膜-酸化アルミニウムAl膜-ニオブNb膜のパターニングが終わり、ニオブ層Nbと接続されたニオブ配線パターンと層Nb31およびNb33が形成される。 The element shown in FIG. 1 is formed in the following manner, for example. Wiring patterns of niobium layers Nb 11 and Nb 12 are formed on the silicon thermal oxide film 2 formed on the silicon substrate 1. An insulating film SiO 2 layer 3 is formed thereon and then planarized. Next, a wiring pattern of the niobium layer Nb 2 is formed, an insulating film SiO 2 layer 3 is formed thereon and then planarized, and the wiring pattern of the niobium layer Nb 2 and the wiring patterns of the niobium layers Nb 31 and Nb 31 are connected. An opening for this purpose is formed in the corresponding position of the insulating film SiO 2 layer 3. Then, after forming a three-layered niobium Nb film-aluminum oxide Al 2 O 3 film-niobium Nb film on the entire surface, Josephson junction electrodes, Nb 41 and Nb 42 are formed by patterning. These Josephson junctions will be referred to as JJ1 and JJ2, respectively. Subsequently, patterning is performed to form an aluminum oxide Al 2 O 3 film pattern at a predetermined position. Further, patterning is continued to form wiring patterns of the niobium layers Nb 31 , Nb 32 and Nb 33 . At this stage, the patterning of the three-layer laminated niobium Nb film-aluminum oxide Al 2 O 3 film-niobium Nb film is finished, and the niobium wiring pattern connected to the niobium layer Nb 2 and the layers Nb 31 and Nb 33 are formed. .

次いで、その上に絶縁膜SiO層3を形成した後平坦化する。ニオブ層Nb51をNb41に、ニオブ層Nb52をNb42に接続するため、所定の位置の絶縁膜SiO層3に開口を形成する。そして、ニオブ膜を基板全面に形成したのち、ニオブ層Nb51、ニオブ層Nb51の配線をパターニングする。 Next, an insulating film SiO 2 layer 3 is formed thereon and then planarized. In order to connect the niobium layer Nb 51 to the Nb 41 and the niobium layer Nb 52 to the Nb 42 , an opening is formed in the insulating film SiO 2 layer 3 at a predetermined position. Then, after forming the niobium film over the entire surface of the substrate, the niobium layer Nb 51, patterned wiring niobium layer Nb 51.

この図でニオブはいくつかの領域に分断されている。水素はニオブNb中は高速で移動し均一な濃度になるが、酸化アルミニウムAl23およびモリブデンMoが水素を通さないので、水素濃度の観点からニオブは次の6つの領域に分かれる。( )内のNb領域が同じ濃度になる。プロセスによってはこれら6つの領域の水素濃度がすべて異なる可能性もある。
(Nb11)、(Nb12)、
(Nb31、Nb、Nb33)、(Nb32)、
(Nb51、Nb41)、(Nb52、Nb42
この中で、ジョセフソン接合の特性を決めるのは、
JJ1では、(Nb32)と(Nb51、Nb41)、
JJ2では、(Nb31、Nb、Nb33)と(Nb52、Nb42)である。
In this figure, niobium is divided into several regions. Hydrogen moves at a high speed in niobium Nb and has a uniform concentration. However, since aluminum oxide Al 2 O 3 and molybdenum Mo do not pass through hydrogen, niobium is divided into the following six regions from the viewpoint of hydrogen concentration. The Nb region in () has the same concentration. Depending on the process, the hydrogen concentrations in these six regions may all be different.
(Nb 11 ), (Nb 12 ),
(Nb 31 , Nb 2 , Nb 33 ), (Nb 32 ),
(Nb 51 , Nb 41 ), (Nb 52 , Nb 42 )
Among these, the characteristics of the Josephson junction are determined
In JJ1, (Nb 32 ) and (Nb 51 , Nb 41 ),
In JJ2, a (Nb 31, Nb 2, Nb 33) and (Nb 52, Nb 42).

従来の方法、構造で出製造された回路の動作を調べた結果、動作範囲が設計値から大きくずれる、マージンが狭くなる、極端な場合には動作しないか誤動作をするといった不良が頻発していることがわかった。このような状況では多くのジョセフソン接合を集積した大規模な回路の実現は非常に困難であった。
これは、従来、ニオブ中の水素について全く考慮されておらず、上記のような領域ごとに水素濃度が異なり、接合特性、臨界電流密度が設計値からずれてばらつくことが原因であろうと推察される。
As a result of investigating the operation of the circuit manufactured and manufactured by the conventional method and structure, defects such as the operation range greatly deviating from the design value, the margin is narrowed, the device does not operate or malfunctions in extreme cases, are frequent. I understood it. Under such circumstances, it has been very difficult to realize a large-scale circuit in which many Josephson junctions are integrated.
Conventionally, the hydrogen in niobium has not been considered at all, and it is assumed that the hydrogen concentration is different for each region as described above, and that the junction characteristics and critical current density vary from the design values. The

そこで水素濃度を一様にして、ばらつきの少ない設計値どおりの臨界電流値を持ったジョセフソン接合を持った素子を実現するために、次に示す方法で素子を作成した。   Therefore, in order to realize a device having a Josephson junction with a uniform hydrogen concentration and a critical current value as designed with little variation, the device was fabricated by the following method.

試料ウエハを5枚用意し、図1に示す素子の製造工程でニオブ膜を形成した後、パターニング前に図2に示す(1)〜(4)の4通りの脱水素処理を施した。1枚は本発明の処理を施さない従来法で形成した。
具体的にはNb11、Nb12となる1層目のニオブ層形成後、Nbとなる2層目のニオブ層の形成後、Nb51、Nb52となる5層目のニオブ形成後に処理を施した。Nb31、Nb32、Al、Nb41、Nb42となる層は3層の積層膜として形成しており、ここでは処理を施していない。
例として、最上層の5層目のニオブ形成後のウエハ断面状態を図3に示した。このようにウエハ表面全体をニオブ膜が覆っている状態で図2に示す(1)〜(4)の処理を施すわけである。
After preparing five sample wafers and forming a niobium film in the device manufacturing process shown in FIG. 1, four types of dehydrogenation treatments (1) to (4) shown in FIG. 2 were performed before patterning. One sheet was formed by a conventional method without the treatment of the present invention.
Specifically, after forming the first niobium layer to be Nb 11 and Nb 12 , forming the second niobium layer to be Nb 2, and then forming the fifth niobium layer to be Nb 51 and Nb 52 gave. The layers to be Nb 31 , Nb 32 , Al 2 O 3 , Nb 41 , and Nb 42 are formed as a three-layered film and are not processed here.
As an example, FIG. 3 shows a wafer cross-sectional state after the formation of the uppermost fifth layer of niobium. Thus, the processes (1) to (4) shown in FIG. 2 are performed in a state where the entire surface of the wafer is covered with the niobium film.

ここで(1)〜(4)の処理について説明する。
(1)純アルゴンガスを流して非酸化性に保ったベーク炉で300℃―5分の熱処理をする。アルゴンでなく真空でも良いが、水素ガス分圧が十分低いことが必要(ニオブ中に残留する水素の濃度を1%より十分少なくするには、室温では少なくとも10−4Pa程度以下)。なお、上記のベーク炉で温度150℃以上、ベーク時間は3分以上で明確な効果が確認できた。より高温で長時間の処理ほど効果が大きいのは言うまでも無いが、600℃以上、30分程度以上の処理をしても著しい改善はない。
Here, the processes (1) to (4) will be described.
(1) Heat treatment is performed at 300 ° C. for 5 minutes in a bake furnace kept non-oxidizing by flowing pure argon gas. Vacuum may be used instead of argon, but the hydrogen gas partial pressure needs to be sufficiently low (at least about 10 −4 Pa or less at room temperature to make the concentration of hydrogen remaining in niobium sufficiently lower than 1%). In addition, a clear effect could be confirmed in the above baking furnace at a temperature of 150 ° C. or higher and a baking time of 3 minutes or longer. Needless to say, the treatment at a higher temperature for a longer time is more effective, but even if the treatment is performed at 600 ° C. or more for about 30 minutes or more, there is no significant improvement.

一方、Nb−Al−Nbの接合構造は、200℃以上の高温にすると劣化する。したがって接合構造を形成した後は処理温度を150℃まで下げた。本実施例では最上層5層目のニオブの処理の場合である。
(2)ロードロック型の真空装置(到達真空度:10−5Pa台)にニオブ膜を成膜したウエハを導入し、0.5Paのアルゴンガスを導入して500Wで10分RF放電した。この処理はウエハ表面をクリーニングする処理として行うもので、ニオブ膜を形成しただけの段階で行うことはない。クリーニングを目的とする場合にはニオブや絶縁膜(SiO等)のスパッタエッチ速度が速いほうが望ましいが、今回のエッチングレートは1nm/分と非常に遅くしてあり、表面に酸化性の吸着物が吸着するのを防げる範囲で遅いほうが望ましい。ニオブの目減り量を減らすためである。
On the other hand, the junction structure of Nb—Al 2 O 3 —Nb deteriorates when the temperature is higher than 200 ° C. Therefore, after forming the junction structure, the processing temperature was lowered to 150 ° C. In this embodiment, the uppermost layer, the fifth layer of niobium, is processed.
(2) A wafer on which a niobium film was formed was introduced into a load-lock type vacuum device (degree of ultimate vacuum: 10-5 Pa level), 0.5 Pa of argon gas was introduced, and RF discharge was performed at 500 W for 10 minutes. This process is performed as a process for cleaning the wafer surface, and is not performed at the stage where the niobium film is formed. For the purpose of cleaning, it is desirable that the sputter etch rate of niobium or insulating film (SiO 2 etc.) is high, but this time the etching rate is very slow at 1 nm / min, and the surface has an oxidizing adsorbate. It is desirable that it is slow as long as it can prevent adsorption. This is to reduce the amount of niobium loss.

この場合も長時間の処理が大きな効果をもたらすことはいうまでもない。3分程度から明瞭な効果が確認でき、本発明のように1ミクロン程度の厚さのニオブの膜の場合は、アルゴンガスによるクリーニング時間は20分程度で効果は飽和する。
(3)上記(2)の処理で、ウエハ温度を150℃に上げて実施した。時間は2分程度と短時間で(2)と同等程度の効果が得られている。
In this case as well, it goes without saying that a long-time treatment has a great effect. A clear effect can be confirmed from about 3 minutes. In the case of a niobium film having a thickness of about 1 micron as in the present invention, the effect is saturated after about 20 minutes of cleaning with argon gas.
(3) The wafer temperature was raised to 150 ° C. in the processing of (2) above. The time is about 2 minutes, and the effect equivalent to (2) is obtained in a short time.

この場合も高温で長時間の処理が大きな効果をもたらすことはいうまでもない。150℃以上で短時間化効果が明瞭になり、1分以下の処理でも効果が確認でき、3分程度で効果は飽和した。短時間化効果はより高温で処理するほど大きくなるが、300℃以上で1分以下になると思われる。
(4)上記(2)の装置で、ニオブ膜の表面を10nm程度アルゴンガスのクリーニング除去して真空を破らず直ぐに極薄い厚さ5nmのパラジウム膜をスパッタ法でウエハ表面に成膜した。そのまま真空もしくはアルゴンガスの雰囲気で10分保持した後、再度アルゴンガスのスパッタクリーニングですべてのパラジウム膜を除去してニオブを完全に露出させる。
In this case as well, it goes without saying that long-time treatment at a high temperature has a great effect. The effect of shortening the time became clear at 150 ° C. or more, and the effect could be confirmed even by treatment for 1 minute or less, and the effect was saturated in about 3 minutes. The effect of shortening the time becomes larger as the treatment is performed at a higher temperature, but it is considered that the effect is shortened to 1 minute or less at 300 ° C. or higher.
(4) Using the apparatus of (2) above, the surface of the niobium film was cleaned and removed by about 10 nm of argon gas, and a very thin 5 nm thick palladium film was formed on the wafer surface by sputtering without breaking the vacuum. After holding for 10 minutes in an atmosphere of vacuum or argon gas as it is, all the palladium film is removed again by sputter cleaning with argon gas to completely expose niobium.

この場合に重要な点はパラジウムの膜厚である。パラジウムを2nm以下に薄くすると効果が急激に減少した(パラジウムの連続膜が形成できていない可能性がある)。従って実際上は3nm以上の膜厚があればいいと判断できる。膜厚形成時間との兼ね合いで、ここでは上限の膜厚を50nm程度としている。また長時間、保持するほど効果がおおきいことは言うまでも無いが、2分で明瞭な効果があり20分以上で効果が飽和する。   In this case, the important point is the film thickness of palladium. When palladium was thinned to 2 nm or less, the effect was drastically reduced (a continuous film of palladium may not be formed). Therefore, in practice, it can be determined that a film thickness of 3 nm or more is sufficient. In consideration of the film formation time, the upper limit film thickness is about 50 nm here. Further, it goes without saying that the effect is greater as it is held for a longer time, but a clear effect is obtained in 2 minutes, and the effect is saturated in 20 minutes or more.

作成した素子を4.2Kの液体ヘリウム中に保持して接合の臨界電流値を測定した。図1に示す2種類の接続構造の違う接合をそれぞれ10試料づつ測定し、ばらつきの範囲を求めた。結果を図17の表1に示す。   The fabricated device was held in 4.2K liquid helium, and the critical current value of the junction was measured. Ten different samples of the two types of connection structures shown in FIG. 1 were measured, and the range of variation was determined. The results are shown in Table 1 in FIG.

従来法で作成した接合の臨界電流値は20%程度もの広い範囲にばらついていたが、本発明の方法で作成したものでは±5%程度の範囲に収まっており、制御性が向上していることがわかる。
また、臨界電流値の分布を詳細にみると、従来法では頻発していた大きく臨界電流値がずれた接合(説明図1のIcが大きく20%程度ずれたもの)の発生がまったくなくなっていることが確認できた。
Although the critical current value of the junction prepared by the conventional method varies in a wide range of about 20%, the junction created by the method of the present invention is within a range of about ± 5%, and the controllability is improved. I understand that.
In addition, when the distribution of critical current values is examined in detail, the occurrence of junctions with large critical current values that frequently occur in the conventional method (Ic in FIG. 1 having a large deviation of about 20%) is completely eliminated. I was able to confirm.

上述の(4)の処理では一旦形成したパラジウム膜をスパッタクリーニングで完全に除去した後、次のパターニング工程に進んだ。しかし、ニオブ上にパラジウム膜を残したままでパターニングすることもできる。最初にスパッタクリーニング法もしくはイオンミリング法でパラジウム層をエッチングした後、反応性エッチングでニオブ層をパターニングすればよい。ここでは通常のリソグラフィー法を用いてレジストのパターンを形成した後、イオンミリング法で20nm程度のエッチングをし、引き続いて六フッ化イオウガスの反応性プラズマエッチングでニオブ層をパターニングした。パラジウム層は十分薄いため、レジストパターンは両方のエッチング処理の間になくなることはなかった。この処理法ではニオブ層の上層にパラジウム層が積層されて残る。さらにこの上に接続孔、上層ニオブ配線を形成することも特に問題にならない。接続孔底のパラジウムは上層ニオブ膜を形成する前に十分スパッタクリーニングすれば除くことが可能で、超電導特性をそこなうことはない。たとえ残存した場合でも素子が超電導動作状態になれば近接効果により超電導電流が流れる。
このようにして作製した素子の特性は、ほぼ(4)と同等で従来法より優れていた。
本実施例の脱水素処理は実施できるすべてのニオブ層に対して施しているが、接合と直接ニオブでつながらない層に対しては不要である。接合近傍で処理によって特に水素濃度が高くなる特定の層にだけ施しても有効であることは言うまでもない。
In the process (4) described above, the palladium film once formed was completely removed by sputtering cleaning, and then proceeded to the next patterning step. However, patterning can also be performed while leaving the palladium film on niobium. After the palladium layer is first etched by a sputter cleaning method or an ion milling method, the niobium layer may be patterned by reactive etching. Here, after a resist pattern was formed using a normal lithography method, etching was performed at about 20 nm by an ion milling method, and then the niobium layer was patterned by reactive plasma etching with sulfur hexafluoride gas. The palladium layer was thin enough that the resist pattern was not lost during both etching processes. In this treatment method, a palladium layer is left on top of the niobium layer. Furthermore, it is not a problem to form a connection hole and an upper layer niobium wiring thereon. The palladium at the bottom of the connection hole can be removed by sufficient sputter cleaning before forming the upper niobium film, and the superconducting properties are not impaired. Even if it remains, a superconducting current flows due to the proximity effect if the element enters a superconducting operating state.
The characteristics of the device thus fabricated were almost the same as (4) and superior to the conventional method.
The dehydrogenation treatment of this embodiment is performed for all the niobium layers that can be carried out, but is not necessary for the layer that is not directly connected to the junction with niobium. Needless to say, it is effective to apply only to a specific layer where the hydrogen concentration is particularly increased by the treatment in the vicinity of the junction.

<実施例2>
本実施例は、実施例1と同様の脱水素処理をニオブ膜をパターニングした後、ニオブが島状になった状態で施すものである。実施例1と同等の処理のフローを図4に示した。特に、特許文献1、もしくは特許文献2、3に記載のニオブ多層配線の平坦化法を用いる場合は水素を含むガス、たとえばCHF等によるSiOのエッチング処理が必要になるが、その処理によって水素がパターニングされたニオブ配線に侵入し高濃度化するため、特に有効である。このような平坦化エッチングを施さない場合はニオブ配線をパターニングした後、引き続いて実施すればよい。平坦化エッチングを実施する場合は平坦化エッチングに引き続いて、もしくはさらにCMP等で平坦化が完了した後に実施すればよい。
<Example 2>
In this embodiment, the same dehydrogenation treatment as that in Embodiment 1 is performed after the niobium film is patterned and then niobium is in an island shape. A flow of processing equivalent to that in Example 1 is shown in FIG. In particular, when using the niobium multilayer wiring planarization method described in Patent Document 1 or Patent Documents 2 and 3, an etching process of SiO 2 with a gas containing hydrogen, for example, CHF 3 is required. This is particularly effective because hydrogen penetrates into the patterned niobium wiring and increases its concentration. When such flattening etching is not performed, the niobium wiring may be patterned and subsequently performed. The planarization etching may be performed after the planarization etching or after the planarization is further completed by CMP or the like.

図5は上記特許もしくは出願の平坦化法のフローを示したもので、配線層一層分の平坦化工程を示している。図を順に追いながら説明する。
図5Aに示すように、シリコン基板1上に絶縁膜として絶縁膜SiO層2を形成した。最初の金属層としてニオブ層3(300nm厚)をスパッタリング法で形成した。
FIG. 5 shows a flow of the planarization method of the above-mentioned patent or application, and shows a planarization process for one wiring layer. This will be described with reference to the drawings.
As shown in FIG. 5A, an insulating film SiO 2 layer 2 was formed on the silicon substrate 1 as an insulating film. A niobium layer 3 (300 nm thickness) was formed as a first metal layer by a sputtering method.

次に図5Bに示すように、通常のフォトリソグラフィー法、ドライエッチング法を使って所望の形状にパターニングした。その上に絶縁膜層としてスパッタ法で絶縁膜SiO層3a(SiO;300nm厚)を成膜した。その際、下地にニオブ配線層101の無い領域に形成された絶縁膜SiO層3aの表面がニオブ配線層3の表面とほぼ同じ位置になるように絶縁膜SiO層の厚さを調整し、350nmの絶縁膜SiO層3aを形成した。50nmほど厚くしたのはニオブ層3のパターンニングの際、Nb下地の絶縁膜SiO層2が50nm程度エッチングされているのを補うためである。 Next, as shown in FIG. 5B, patterning was performed in a desired shape using a normal photolithography method and a dry etching method. An insulating film SiO 2 layer 3a (SiO 2 ; thickness of 300 nm) was formed thereon as an insulating film layer by sputtering. At that time, the thickness of the insulating film SiO 2 layer is adjusted so that the surface of the insulating film SiO 2 layer 3 a formed in the region where the niobium wiring layer 101 is not formed is substantially the same position as the surface of the niobium wiring layer 3. An insulating film SiO 2 layer 3a having a thickness of 350 nm was formed. The reason why the thickness is increased by about 50 nm is to compensate for etching of the insulating film SiO 2 layer 2 under the Nb layer by about 50 nm during the patterning of the niobium layer 3.

ニオブ層3で出来ている下地段差が小さい場合は通常のスパッタ法を用いることも可能であるが、ニオブ層3による配線の間を隙間なく埋めて、絶縁信頼性の良い配線系を作るには段差被覆性の優れたバイアススパッタ法が適している。   If the underlying step formed by the niobium layer 3 is small, it is possible to use a normal sputtering method. However, in order to make a wiring system with good insulation reliability by filling the space between the wirings of the niobium layer 3 without any gaps. A bias sputtering method with excellent step coverage is suitable.

図5Bで形成した絶縁膜SiO層3aの凸部を除去するためのマスクをレジスト膜により形成した結果を図5Cに示した。これは、図5Bの状態で全面にレジスト膜を設け、ニオブ配線層Nb101の配線パターンのほぼ逆パターンとなるようフォトリソグラフィー技術により形成した結果である。 FIG. 5C shows a result of forming a mask for removing the convex portions of the insulating film SiO 2 layer 3a formed in FIG. 5B using a resist film. This is a result of forming a resist film on the entire surface in the state of FIG. 5B and forming it by a photolithography technique so as to have a pattern almost opposite to the wiring pattern of the niobium wiring layer Nb101.

図5Dは上記フォトレジストマスク53によって絶縁膜SiO層3aをエッチングし、必要な部分として領域3bのみを残した状態を示している。エッチングガスとしてCHFを用いた。これにより、ニオブ層Nb101のエッチングレートは絶縁膜SiO2層3aのエッチングレートの1/10〜1/20に小さくすることが出来る。その結果、十分なオーバーエッチング時間をとることが出来、絶縁膜SiO層3aのエッチング厚さが場所によって、少々異なってもニオブ層Nb101の表面までエッチングして止めることが出来た。図5Dを参照して分かるように、逆パターンを太らせることで、オーバーエッチング時間を大きくとっても、パターンのずれによる絶縁膜SiO層3aの望ましくないエッチングを防止できる。 FIG. 5D shows a state where the insulating film SiO 2 layer 3a is etched by the photoresist mask 53 and only the region 3b is left as a necessary portion. CHF 3 was used as an etching gas. Thereby, the etching rate of the niobium layer Nb101 can be reduced to 1/10 to 1/20 of the etching rate of the insulating film SiO2 layer 3a. As a result, a sufficient over-etching time can be taken, and even if the etching thickness of the insulating film SiO 2 layer 3a differs slightly depending on the location, the surface of the niobium layer Nb101 can be etched and stopped. As can be seen with reference to FIG. 5D, by thickening the reverse pattern, it is possible to prevent unwanted etching of the insulating film SiO 2 layer 3a due to the shift of the pattern even when the over-etching time is increased.

図5Eは、図5Dの処理後、フォトレジストマスク53を除去した状態を示している。この段階で残っている絶縁膜SiOの領域3bの段差はニオブ層Nb101による配線パターンの周辺部3cだけになる。これらのパターンの幅は概ね0.5μm以下である。すなわち、本発明によれば、ニオブ配線パターンNb101の部分にもともと存在する幅の広い絶縁膜SiO層3aの表面凸部を、図5Eに示すように、配線の周辺部だけの幅が狭い表面凸部3cに変えることが出来た。しかも、これらの幅が狭い表面凸部3cの密度は低く、通常パターンでは凸部の割合は10%程度以下に出来る。 FIG. 5E shows a state where the photoresist mask 53 is removed after the processing of FIG. 5D. The step in the region 3b of the insulating film SiO 2 remaining at this stage is only the peripheral portion 3c of the wiring pattern formed by the niobium layer Nb 101 . The width of these patterns is approximately 0.5 μm or less. That is, according to the present invention, the wide surface of the insulating film SiO 2 layer 3a, which originally exists in the niobium wiring pattern Nb 101 , has a narrow width only at the periphery of the wiring as shown in FIG. 5E. It was possible to change to the surface convex portion 3c. In addition, the density of the surface convex portions 3c having a narrow width is low, and the ratio of the convex portions can be reduced to about 10% or less in the normal pattern.

図5Fは図5Eに示した構造に対して、CMP(Chemical Mechanical Polishing、化学機械研磨)処理を施し、突起部を研磨除去して平坦化したものである。   FIG. 5F shows a structure obtained by subjecting the structure shown in FIG. 5E to a CMP (Chemical Mechanical Polishing) process, and polishing and removing the protrusions to make the structure flat.

このフローの中で図5Eもしくは5Fのどちらかの段階で本発明の処理を施せばよい。本実施例では図5Fの状態のウエハに対して脱水素処理を施した。一層毎に上述の平坦化処理を施しており、その度に毎回、脱水素処理を施した。   In this flow, the processing of the present invention may be performed at either stage of FIG. 5E or 5F. In this example, dehydrogenation processing was performed on the wafer in the state of FIG. 5F. The above-described planarization treatment was performed for each layer, and dehydrogenation treatment was performed each time.

試料ウエハを5枚用意し、図1に示す素子の製造工程でニオブ膜を形成した後、パターニング後に図4に示す(1)〜(4)の4通りの脱水素処理を施した。1枚は本発明の処理を施さない従来法で形成した。   Five sample wafers were prepared, a niobium film was formed in the device manufacturing process shown in FIG. 1, and after patterning, four types of dehydrogenation treatments (1) to (4) shown in FIG. 4 were performed. One sheet was formed by a conventional method without the treatment of the present invention.

ここでの(1)〜(4)の処理について説明する。
(1)純アルゴンガスを流して非酸化性に保ったベーク炉で300℃―5分の熱処理をする。実施例1の処理(1)と同様である。
(2)ロードロック型の真空装置(到達真空度:10−5Pa台)にニオブ膜を成膜したウエハを導入し、0.5Paのアルゴンガスを導入してVdc〜100Vで20分RF放電した。放電パワーは0.1W/cm程度である。この条件ではニオブのエッチングレートは非常に小さく、0.1nm/分程度で、この処理によるニオブの目減り量は初期膜厚の200nmに比べて無視できる量である。
ニオブの一部をスパッタ除去することでニオブ表面をクリーニング(清浄化)する場合は高いエッチングレートで処理する。少なくとも数nm/分程度、これを達成するために通常はVdcが数100Vの条件のアルゴンプラズマを用いる。
The processes (1) to (4) here will be described.
(1) Heat treatment is performed at 300 ° C. for 5 minutes in a bake furnace kept non-oxidizing by flowing pure argon gas. This is the same as the process (1) of the first embodiment.
(2) A wafer on which a niobium film was formed was introduced into a load-lock type vacuum apparatus (degree of ultimate vacuum: 10-5 Pa level), 0.5 Pa of argon gas was introduced, and RF discharge was performed at Vdc to 100 V for 20 minutes. . The discharge power is about 0.1 W / cm 2 . Under these conditions, the niobium etching rate is very small, about 0.1 nm / min, and the amount of niobium reduced by this treatment is negligible compared to the initial film thickness of 200 nm.
When cleaning (cleaning) the niobium surface by removing a part of niobium by sputtering, the niobium surface is processed at a high etching rate. In order to achieve this at least on the order of several nanometers / minute, argon plasma with a condition of Vdc of several hundred volts is usually used.

Vdcを小さくしすぎると表面に吸着が起こり水素除去の効果がなくなる。また、Vdcを大きくするとニオブ膜の目減り量が大きくなり不都合である。実際にはVdc=50〜150Vの範囲で両者の許容範囲を見出すことができた。
(3)上記(2)の処理をウエハ温度を150℃に上げて実施した。時間は5分程度と短時間で(2)と同等程度の効果が得られている。
(4)実施例1の処理(4)と同様である。
作製した素子を4.2Kの液体ヘリウム中に保持して接合の臨界電流値を測定した。図1に示す2種類の接続構造の違う接合をそれぞれ10試料づつ測定し、ばらつきの範囲を求めた。結果を図18の表2に示す。
従来法で作成した接合の臨界電流値は20%程度もの広い範囲にばらついていたが、本発明の方法で作成したものでは±5%程度の範囲に収まっており、制御性が向上していることがわかる。
If Vdc is too small, adsorption occurs on the surface and the effect of removing hydrogen is lost. Also, increasing Vdc is disadvantageous because the amount of niobium film loss increases. Actually, the allowable range of both was found in the range of Vdc = 50 to 150V.
(3) The processing of (2) was performed with the wafer temperature raised to 150 ° C. The time is about 5 minutes, and the effect equivalent to (2) is obtained in a short time.
(4) Same as the process (4) in the first embodiment.
The fabricated device was held in 4.2 K liquid helium, and the critical current value of the junction was measured. Ten different samples of the two types of connection structures shown in FIG. 1 were measured, and the range of variation was determined. The results are shown in Table 2 in FIG.
Although the critical current value of the junction prepared by the conventional method varies in a wide range of about 20%, the junction created by the method of the present invention is within a range of about ± 5%, and the controllability is improved. I understand that.

また、臨界電流値の分布を詳細にみると、従来法では頻発していた大きく臨界電流値がずれた接合(説明図1のIcが大きく20%程度ずれたもの)の発生がまったくなくなっていることが前述の実施例同様に確認できた。   In addition, when the distribution of critical current values is examined in detail, the occurrence of junctions with large critical current values that frequently occur in the conventional method (Ic in FIG. 1 having a large deviation of about 20%) is completely eliminated. This could be confirmed in the same manner as in the previous examples.

本実施例の脱水素処理は実施できるすべてのニオブ層に対して施しているが、接合と直接ニオブでつながらない層に対しては不要である。接合近傍で処理によって特に水素濃度が高くなる特定の層にだけ施しても有効であることは言うまでもない。   The dehydrogenation treatment of this embodiment is performed for all the niobium layers that can be carried out, but is not necessary for the layer that is not directly connected to the junction with niobium. Needless to say, it is effective to apply only to a specific layer where the hydrogen concentration is particularly increased by the treatment in the vicinity of the junction.

<実施例3>
この実施例は実施例2と同様の脱水素処理を接合層形成工程の途中、上層ニオブ膜をパターニングしてニオブが島状になっており、下層のニオブ層はパターニング前でウエハの全面に残っている状態で施すものである。図6を使い順を追って処理を説明する。
<Example 3>
In this example, the same dehydrogenation treatment as in Example 2 was performed. During the bonding layer forming process, the upper niobium film was patterned to form niobium islands, and the lower niobium layer remained on the entire surface of the wafer before patterning. It is to be applied in the state. The processing will be described in order using FIG.

図6は、実施例1で説明した図1の構造を作る途中、ジョセフソン接合の形成工程を詳細に示している。
図6Aは、平坦化された下地絶縁膜SiO層の所定の位置に接続孔を開口しニオブ−アルミ−ニオブ(Nb−Al23−Nb)の三層膜を形成した状態を示している。この状態のウエハに通常のフォトリソグラフィーおよびエッチング処理を施し、上層ニオブNbをパターニングしてニオブNb41、Nb42を形成する。ニオブ層のドライエッチングにはSFガスを用いた。アルミニウムAl23はこのガスによりほとんどエッチングされない。図6Bがその状態を示している。引き続いてウエハ全面にSiO層を形成し、前述と同様のフォトリソグラフィーおよびエッチング処理を施して先に形成したニオブ電極Nb41、Nb42を覆う領域SiO41,SiO42を形成する。さらにこのSiO領域をマスクにしてアルミニウム層(実際には上層を酸化し、酸化アルミニウムAl23−アルミニウムAlの2層構造になっている。簡単のため単にアルミニウム、もしくはAl23と略記する)もアルゴンスパッタリングによりエッチングする。図6Cはこの状態を表している。
FIG. 6 shows in detail a process for forming a Josephson junction in the course of making the structure of FIG. 1 described in the first embodiment.
FIG. 6A shows a state in which a connection hole is opened at a predetermined position of the planarized base insulating film SiO 2 layer to form a niobium-aluminum-niobium (Nb 4 -Al 2 O 3 -Nb 3 ) three-layer film. Show. The wafer in this state is subjected to normal photolithography and etching, and the upper niobium Nb 4 is patterned to form niobium Nb 41 and Nb 42 . SF 6 gas was used for dry etching of the niobium layer. Aluminum Al 2 O 3 is hardly etched by this gas. FIG. 6B shows this state. Subsequently, an SiO 2 layer is formed on the entire surface of the wafer, and the regions SiO 2 41 and SiO 2 42 covering the previously formed niobium electrodes Nb 41 and Nb 42 are formed by performing the same photolithography and etching processes as described above. Further, the SiO 2 region is used as a mask to form an aluminum layer (actually, the upper layer is oxidized to form a two-layer structure of aluminum oxide Al 2 O 3 -aluminum Al. For simplicity, aluminum or Al 2 O 3 (Abbreviated) is also etched by argon sputtering. FIG. 6C shows this state.

この段階の試料ウエハを5枚用意し、図7に示す(1)〜(4)の4通りの本発明の脱水素処理を施した。1枚は本発明の処理を施さない従来法で形成した。   Five sample wafers at this stage were prepared and subjected to the dehydrogenation treatment of the present invention in four ways (1) to (4) shown in FIG. One sheet was formed by a conventional method without the treatment of the present invention.

ここでの(1)〜(4)の処理について説明する。
(1)純アルゴンガスを流して非酸化性に保ったベーク炉で150℃―60分の熱処理をする。この段階ではジョセフソン接合層が形成されているため他の配線層のような高温(実施例1、2では300℃)の処理は接合特性を劣化させてしまう。150℃で60分という比較的長時間保持する処理である。
(2)ロードロック型の真空装置(到達真空度:10−5Pa台)にニオブ膜を成膜したウエハを導入し、0.5Paのアルゴンガスを導入してVdc〜100Vで20分RF放電した。放電パワーは0.1W/cm程度である。この条件ではニオブのエッチングレートは非常に小さく、0.1nm/分程度で、この処理によるニオブの目減り量は初期膜厚の200nmに比べて無視できる量である。
ニオブの一部をスパッタ除去することでニオブ表面をクリーニング(清浄化)する場合は高いエッチングレートで処理する。少なくとも数nm/分程度、これを達成するために通常はVdcが数100Vの条件のアルゴンプラズマを用いる。実施例2の(2)と同じ処理である。
(3)上記(2)の処理をウエハ温度を150℃に上げて実施した。時間は5分程度と短時間で(2)と同等程度の効果が得られている。実施例2の(3)と同じ処理である。
(4)実施例2の処理(4)と同様である。
The processes (1) to (4) here will be described.
(1) Heat treatment is performed at 150 ° C. for 60 minutes in a baking furnace kept pure by flowing pure argon gas. At this stage, since the Josephson junction layer is formed, the treatment at a high temperature (300 ° C. in Examples 1 and 2) like other wiring layers deteriorates the junction characteristics. This is a process of holding at 150 ° C. for 60 minutes for a relatively long time.
(2) A wafer on which a niobium film was formed was introduced into a load-lock type vacuum apparatus (degree of ultimate vacuum: 10-5 Pa level), 0.5 Pa of argon gas was introduced, and RF discharge was performed at Vdc to 100 V for 20 minutes. . The discharge power is about 0.1 W / cm 2 . Under these conditions, the niobium etching rate is very small, about 0.1 nm / min, and the amount of niobium reduced by this treatment is negligible compared to the initial film thickness of 200 nm.
When cleaning (cleaning) the niobium surface by removing a part of niobium by sputtering, the niobium surface is processed at a high etching rate. In order to achieve this at least on the order of several nanometers / minute, argon plasma with a condition of Vdc of several hundred volts is usually used. This is the same processing as (2) of the second embodiment.
(3) The processing of (2) was performed with the wafer temperature raised to 150 ° C. The time is about 5 minutes, and the effect equivalent to (2) is obtained in a short time. This is the same process as (3) of the second embodiment.
(4) Same as the process (4) of the second embodiment.

作成した素子を4.2Kの液体ヘリウム中に保持して接合の臨界電流値を測定した。図1に示す2種類の接続構造の違う接合をそれぞれ10試料づつ測定し、ばらつきの範囲を求めた。結果を図19の表3に示す。   The fabricated device was held in 4.2K liquid helium, and the critical current value of the junction was measured. Ten different samples of the two types of connection structures shown in FIG. 1 were measured, and the range of variation was determined. The results are shown in Table 3 in FIG.

これまでの実施例と同様に、従来法で作成した接合の臨界電流値は20%程度もの広い範囲にばらついていたが、本発明の方法で作成したものでは実施例1、2の結果ほどではないもののばらつきは比較的狭い範囲に収まっており、制御性が向上していることがわかる。   As in the previous examples, the critical current values of the junctions prepared by the conventional method varied in a wide range of about 20%, but the results of Examples 1 and 2 were not as high as those prepared by the method of the present invention. The variation of the non-existing ones is within a relatively narrow range, indicating that the controllability is improved.

また、臨界電流値の分布を詳細にみると、従来法では頻発していた大きく臨界電流値がずれた接合(説明図1のIcが大きく20%程度ずれたもの)の発生がまったくなくなっていることが前述の実施例同様に確認できた。   In addition, when the distribution of critical current values is examined in detail, the occurrence of junctions with large critical current values that frequently occur in the conventional method (Ic in FIG. 1 having a large deviation of about 20%) is completely eliminated. This could be confirmed in the same manner as in the previous examples.

本実施例の脱水素処理は接合形成層のパターニングの途中で実施できるもので、他の配線層に対しては実施例1または2だけが実施できる。   The dehydrogenation process of the present embodiment can be performed during the patterning of the junction formation layer, and only the first or second embodiment can be performed on the other wiring layers.

<実施例4>
この実施例は実施例1〜3と同じ目的で行う処理方法とその方法で作られる素子構造を示すものである。図9を使ってその構造を説明する。
図1に示したジョセフソン接合をニオブ配線で接続した構造をウエハ上に形成し、図9Aに示すように、表面をSiO膜で覆った後、接合の両側の電極ニオブに接続できるような接続孔を開口する。今の場合、接合JJ1の上部電極Nb51と下部電極Nb53への接続孔をフォトリソグラフィーおよびドライエッチングによって形成する。下部電極Nb53は接合JJ1の形成時の下部電極Nb32への接続のために設けたものである。
<Example 4>
This embodiment shows a processing method performed for the same purpose as those of Embodiments 1 to 3, and an element structure made by the method. The structure will be described with reference to FIG.
A structure in which the Josephson junction shown in FIG. 1 is connected by niobium wiring is formed on a wafer, and the surface is covered with a SiO 2 film as shown in FIG. 9A, and then can be connected to the electrode niobium on both sides of the junction. Open the connection hole. In this case, connection holes to the upper electrode Nb 51 and the lower electrode Nb 53 of the junction JJ1 are formed by photolithography and dry etching. The lower electrode Nb 53 is provided for connection to the lower electrode Nb 32 when the junction JJ1 is formed.

この接続孔は個々のジョセフソン接合の電極毎に形成しなければならないが、いくつかのジョセフソン接合が並列もしくは直列に接続されていて一つの連続したニオブの領域になっている場合は共通の接続孔を設ければよい。しかし、ニオブ領域の体積が非常に大きくなっている場合は多数の接続孔を設ける方が効果は顕著である。これは先に説明したように、ニオブ中の水素拡散にある程度の時間がかかるためである。   This connection hole must be formed for each Josephson junction electrode, but it is common if several Josephson junctions are connected in parallel or in series to form one continuous niobium region. A connection hole may be provided. However, when the volume of the niobium region is very large, it is more effective to provide a large number of connection holes. This is because, as explained above, hydrogen diffusion in niobium takes a certain amount of time.

SiO膜の開口後、ウエハ全面にパラジウム層Pdをスパッタリング法で形成する。図9Bはこの段階でのウエハ断面の構造を示している。パラジウムは水平方向のハッチングを入れた領域である。パラジウムを直接形成するのでなく、パラジウム層の下に薄くチタンの層を酸化膜との接着性改善のために設けても良い。ここでは5nmのチタン層の上に50nmのパラジウム層を形成している。チタン層はあからさまに表示していない。
この状態で基板を数時間〜数週間室温もしくは100〜200℃程度に保持する。保持環境の水素分圧が低い(室温では10−8Pa程度以下)ことが必要だが、特に水素の使用場所に近い等でなければ通常の実験室で十分である。保持時間は素子内の水素がニオブ中を拡散移動しパラジウムの領域から大気中に放出され、ニオブ内の水素濃度が十分低くなるよう十分長く取る必要がある。保持温度、素子の配線構造の複雑さ等にも依存する。ニオブ配線のどの位置からでも最近傍のパラジウム接続位置までの距離を1mm程度以下になるように接続部を設けた場合には室温で1週間程度あれば十分であった。100ミクロン程度まで高頻度に接続部が形成できる場合には数時間程度まで短くすることができた。この場合の距離は水素の拡散経路であるからニオブ配線内の道のりとして算出した長さである。
After opening the SiO 2 film, a palladium layer Pd 1 is formed on the entire surface of the wafer by sputtering. FIG. 9B shows the structure of the wafer cross section at this stage. Palladium is a region with horizontal hatching. Instead of directly forming palladium, a thin titanium layer may be provided under the palladium layer to improve adhesion to the oxide film. Here, a 50 nm palladium layer is formed on a 5 nm titanium layer. The titanium layer is not clearly displayed.
In this state, the substrate is held at room temperature or about 100 to 200 ° C. for several hours to several weeks. Although it is necessary that the hydrogen partial pressure in the holding environment is low (about 10-8 Pa or less at room temperature), a normal laboratory is sufficient unless it is close to the place where hydrogen is used. The holding time must be long enough so that the hydrogen in the element diffuses and moves in niobium and is released from the palladium region into the atmosphere, and the hydrogen concentration in niobium is sufficiently low. It also depends on the holding temperature, the complexity of the element wiring structure, and the like. In the case where the connecting portion is provided so that the distance from any position of the niobium wiring to the nearest palladium connecting position is about 1 mm or less, it is sufficient that it takes about one week at room temperature. In the case where the connection portion can be formed with a high frequency up to about 100 microns, it can be shortened to about several hours. The distance in this case is a length calculated as a path in the niobium wiring because it is a hydrogen diffusion path.

また、次の図9Cに示す構造まで加工した後に大気中に保持してもよい。図9Cは、引き続き通常のフォトリソグラフィー法を用いてNb層との接続孔近傍にパラジウムを残すようなフォトレジストパターンを形成する。さらに引き続いて、アルゴンイオンのミリング法を利用してパラジウム層とチタン層の積層膜(もしくはパラジウム層)をパターニングし、パラジウム電極Pd11、Pd12をつくったものである。水素放出部の面積が図9Bに比べて桁違いに小さいが、必要な保持時間は大差なかった。
通常のジョセフソン接合を備えた素子の使用環境、保持環境の水素分圧は十分低い場合がほとんどであるから、図9Cの構造で素子製造を終えても良い。今の場合、念のため万一、水素を含む環境に曝された場合にも素子性能の劣化を起こさないよう、図9Dに示すように表面をSiO層4aで覆った。
Alternatively, the structure shown in FIG. 9C may be processed and held in the atmosphere. In FIG. 9C, a photoresist pattern is formed so as to leave palladium in the vicinity of the connection hole with the Nb layer using a normal photolithography method. Subsequently, a palladium film and a titanium film (or palladium layer) are patterned by using an argon ion milling method to produce palladium electrodes Pd 11 and Pd 12 . Although the area of the hydrogen releasing part was much smaller than that in FIG. 9B, the required holding time was not much different.
In most cases, the hydrogen partial pressure of the use environment and the holding environment of the element having a normal Josephson junction is sufficiently low, and thus the element manufacture may be finished with the structure of FIG. 9C. In this case, as a precaution, the surface was covered with the SiO 2 layer 4a as shown in FIG. 9D so as not to deteriorate the device performance even when exposed to an environment containing hydrogen.

図9Cのパラジウム−チタン電極Pd13、Pd14、は最終的に必要ではないので図9Eに示すようにすべてミリングにて除去してもよい。さらに表面をSiO層4で覆った図9Fに示す構造にすれば、後で水素雰囲気に曝されても素子特性の変動がない。 Since the palladium-titanium electrodes Pd 13 and Pd 14 in FIG. 9C are not finally required, they may all be removed by milling as shown in FIG. 9E. Further, if the structure shown in FIG. 9F with the surface covered with the SiO 2 layer 4 is used, there is no change in device characteristics even if it is exposed to a hydrogen atmosphere later.

以上説明した方法で作成したジョセフソン接合の臨界電流値を従来構造のものと比較したところ実施例1〜3の方法(4)と同等の非常に良い制御性が得られた。ばらつきは設計値から±数%の範囲に収めることができた。
また、臨界電流値の分布を詳細にみると、従来法では頻発していた大きく臨界電流値がずれた接合(説明図1のIcが大きく20%程度ずれたもの)の発生がまったくなくなっていることが前述の実施例同様に確認できた。
When the critical current value of the Josephson junction prepared by the method described above was compared with that of the conventional structure, very good controllability equivalent to the method (4) of Examples 1 to 3 was obtained. The variation was within the range of ± several% from the design value.
In addition, when the distribution of critical current values is examined in detail, the occurrence of junctions with large critical current values that frequently occur in the conventional method (Ic in FIG. 1 having a large deviation of about 20%) is completely eliminated. This could be confirmed in the same manner as in the previous examples.

この構造によってより多数のジョセフソン接合を形成した際のばらつきも小さく抑えることができるようになったため、数万〜数10万個の接合を集積した大規模回路素子の製造が可能になった。   With this structure, variation when a larger number of Josephson junctions are formed can be suppressed to a small value, and thus it is possible to manufacture a large-scale circuit element in which tens of thousands to hundreds of thousands of junctions are integrated.

本発明により接合特性のばらつきが抑制できるようになっただけでなく、個々の接合の超伝導特性も改善されている。その一例を図20の表4に示した。ギャップ電圧、Vm、Ic・Rn等超伝導回路作成の際重要な特性値が本発明の方法と構造により大きな値となっており、接合特性が改善されていることがわかる。
また、多数のジョセフソン接合が備わった回路だけでなく、接合数は少なくても個々の接合の特性が優れたものが求められる素子にも本発明は有効である。
Not only can the variation in bonding characteristics be suppressed by the present invention, but also the superconducting characteristics of individual bonds are improved. An example is shown in Table 4 of FIG. It can be seen that important characteristic values such as gap voltage, Vm, and Ic / Rn are large values due to the method and structure of the present invention, and the junction characteristics are improved.
Further, the present invention is effective not only for a circuit having a large number of Josephson junctions but also for an element that is required to have excellent individual junction characteristics even if the number of junctions is small.

<実施例5>
本実施例は、実施例1〜4のようにニオブ中に取り込まれた水素をニオブ外に放出させて接合特性改善を目指すものではなく、水素濃度の異なる層との接続部に水素の拡散しにくい構造を設け、接合製造後の特性変動を抑制するものである。図10を使ってその構造を説明する。
<Example 5>
This embodiment does not aim to improve the junction characteristics by releasing the hydrogen taken into niobium out of niobium as in the first to fourth embodiments, but diffuses hydrogen into the connection with the layers having different hydrogen concentrations. A difficult structure is provided to suppress fluctuations in characteristics after manufacturing the joint. The structure will be described with reference to FIG.

図10は図1、図8と同類のジョセフソン接合をニオブ配線で接続した回路の一部の断面構造を示している。製造方法は実施例1〜4に記載した従来方法によるものである。図10には3つのジョセフソン接合、JJ11、JJ12、JJ13が示されているが、実際の回路動作用に臨界電流値を設計してあるのは中央のJJ12だけである。両側のJJ11とJJ13は、JJ12の臨界電流値の2倍の臨界電流値を持つように接合面積を決めている。後に述べる水素濃度変化、それによる臨界電流値の変動が生じた場合にも回路を流れうる最大電流値以上になるように設定しておけば、特に2倍である必要はなく、素子面積の観点からは小さいほうが望ましい。回路動作上、これら二つの接合の臨界電流値を超える電流がこの回路に流れることはないので、これら二つの接合は単なるニオブ配線として働く。   FIG. 10 shows a partial cross-sectional structure of a circuit in which Josephson junctions similar to FIGS. 1 and 8 are connected by niobium wiring. The manufacturing method is based on the conventional method described in Examples 1 to 4. FIG. 10 shows three Josephson junctions, JJ11, JJ12, and JJ13, but only the central JJ12 has a critical current value designed for actual circuit operation. The junction area is determined so that JJ11 and JJ13 on both sides have a critical current value twice that of JJ12. Even if a change in the hydrogen concentration described later and a change in the critical current value due to the change occur, if it is set so that it exceeds the maximum current value that can flow through the circuit, it does not need to be doubled, and the element area It is desirable to be smaller. In circuit operation, current exceeding the critical current value of these two junctions does not flow through this circuit, so these two junctions act as mere niobium wiring.

しかしながら、水素移動の経路としてみると両側の二つの接合は水素移動をせき止め、実際に回路動作する接合JJ12の上部と下部の両電極の水素濃度を一定に保つ働きをする。JJ12の上部電極配線Nb42、Nb52を介して直接Nb32に接続すると、それに接続しているNb21と水素の行き来が生じる。また、JJ12の下部電極配線Nb31に直接、Nb51、Nb61、Pd11を接続するとこの経路を通じてNb中の水素が外部に放出され、水素濃度は大きく減少する。実回路中には接続の仕方の異なる接合があり、水素濃度のばらつき、従って接合特性のばらつきが生じてしまうことになる。本実施例のようにJJ11とJJ13の接合特性は変動するが、JJ12の特性は接合が完成した時点から変動せず、実回路内で多数ある接合を設計値どおり作成することが出来る。 However, when viewed as a hydrogen transfer path, the two junctions on both sides block the hydrogen transfer and function to keep the hydrogen concentrations of both the upper and lower electrodes of the junction JJ12 that actually operates as a circuit constant. When directly connected to Nb 32 via the upper electrode wirings Nb 42 and Nb 52 of JJ12, hydrogen flows between Nb 21 connected thereto and hydrogen. Further, when Nb 51 , Nb 61 , and Pd 11 are directly connected to the lower electrode wiring Nb 31 of JJ 12, hydrogen in Nb is released to the outside through this path, and the hydrogen concentration is greatly reduced. In an actual circuit, there are junctions with different connection methods, which causes variations in hydrogen concentration, and hence junction characteristics. Although the junction characteristics of JJ11 and JJ13 vary as in this embodiment, the characteristics of JJ12 do not vary from the time when the junction is completed, and a large number of junctions in the actual circuit can be created as designed.

以上、ジョセフソン接合における水素拡散を抑制するバリア層として用いた構造について説明したが、これはアルミニウムがニオブと違って水素の拡散係数が非常に小さいことを利用しているものである。従って、水素の拡散を抑制できるものであれば、接合に限らず利用できる。非常に薄いアルミニウム層(一部が酸化されていなくてもよい)、窒化ニオブ層等でも同様の構造が出来る。また、回路に抵抗成分が入ることが許容できる場合はモリブデンのような、動作条件で超伝導にならない材料を使うことも可能なことはいうまでもない。   Although the structure used as a barrier layer for suppressing hydrogen diffusion in the Josephson junction has been described above, this utilizes the fact that aluminum has a very small hydrogen diffusion coefficient unlike niobium. Therefore, any material that can suppress the diffusion of hydrogen can be used without being limited to bonding. A very thin aluminum layer (which may not be partly oxidized), a niobium nitride layer, or the like can have the same structure. Needless to say, it is also possible to use a material that does not become superconductive under operating conditions, such as molybdenum, if it is acceptable for the resistance component to enter the circuit.

<実施例6>
本実施例は、実施例1〜4と同じ目的で行う処理方法とその方法で作られる素子構造を示すものである。図11を使ってその構造を説明する。
図1に示したジョセフソン接合をニオブ配線で接続した構造をウエハ上に形成し、図11Aに示すように、表面をSiO膜5で覆う。このSiO膜5の所定の位置に開口部を通常のフォトエッチング法で形成する。層間の接続配線を形成する通常の開口部(V1)以外に、上層への接続の無い開口部(DV1)を設ける(図11B)。引き続き、図11Cに示すように、ウエハ全面にニオブ層(Nb)をスパッタリング法で形成した。通常は引き続いてこのニオブ層をパターニングするが、ここでは約1日、室温で放置した。この間にニオブ層(Nb)を通じて水素が拡散し、直接つながっていなかったニオブ層の水素濃度が一様になる。この場合は下層ニオブ(Nb32)と電極二オブ(Nb41)間で水素が行き来し、一様になるわけである。上層部への接続の無い水素拡散のためだけの開口部を狭い間隔で設ければ、短時間で一様な水素濃度に達することができる。ここでは500ミクロン程度の間隔で開口部を設けたため1日程度の放置時間をとった。ジョセフソン接合が劣化しない程度の100度程度の温度に加熱しても放置時間を短くすることが出来ることはいうまでもない。
<Example 6>
The present embodiment shows a processing method performed for the same purpose as those of Embodiments 1 to 4 and an element structure made by the method. The structure will be described with reference to FIG.
A structure in which Josephson junctions shown in FIG. 1 are connected by niobium wiring is formed on a wafer, and the surface is covered with a SiO 2 film 5 as shown in FIG. 11A. An opening is formed at a predetermined position of the SiO 2 film 5 by a normal photoetching method. In addition to the normal opening (V1) for forming the connection wiring between the layers, an opening (DV1) having no connection to the upper layer is provided (FIG. 11B). Subsequently, as shown in FIG. 11C, a niobium layer (Nb 6 ) was formed on the entire surface of the wafer by a sputtering method. Normally, this niobium layer is subsequently patterned, but here it was left at room temperature for about 1 day. During this time, hydrogen diffuses through the niobium layer (Nb 6 ), and the hydrogen concentration of the niobium layer that is not directly connected becomes uniform. In this case, hydrogen moves back and forth between the lower niobium (Nb 32 ) and the electrode niobium (Nb 41 ), and becomes uniform. A uniform hydrogen concentration can be reached in a short time by providing openings only for hydrogen diffusion without connection to the upper layer at narrow intervals. Here, since the openings were provided at intervals of about 500 microns, a standing time of about one day was taken. It goes without saying that the standing time can be shortened by heating to a temperature of about 100 ° C. at which the Josephson junction does not deteriorate.

その後通常のフォトエッチング法でニオブ層をパターニングし配線Nb54を形成する。特に上層への接続のない開口部(DV1)のニオブはエッチング除去した。このエッチングの際、下層のニオブ(Nb32)にエッチングが及んで劣化するのを避けるため、図11Eに示すように、この部分にニオブの島(Nb55)を残しても良い。
前述した実施例と同様に、この方法および構造によってより多数のジョセフソン接合を形成した際のばらつきも小さく抑えることができるようになったため、数万〜数10万個の接合を集積した大規模回路素子の製造が可能になった。
Thereafter, the niobium layer is patterned by a normal photoetching method to form the wiring Nb 54 . In particular, niobium in the opening (DV1) without connection to the upper layer was removed by etching. In this etching, in order to avoid deterioration due to etching on the lower layer of niobium (Nb 32 ), a niobium island (Nb 55 ) may be left in this portion as shown in FIG. 11E.
Similar to the above-described embodiments, this method and structure can suppress the variation when a larger number of Josephson junctions are formed, so that a large scale in which tens of thousands to hundreds of thousands of junctions are integrated is integrated. Circuit elements can be manufactured.

本発明を適用した超伝導多層配線の一例を示す断面図。Sectional drawing which shows an example of the superconducting multilayer wiring to which this invention is applied. 本発明の製造工程のプロセスフローを示す図。The figure which shows the process flow of the manufacturing process of this invention. 本発明の処理を適用した一例を示す断面図。Sectional drawing which shows an example to which the process of this invention is applied. 本発明の製造工程の別のプロセスフローを示す図。The figure which shows another process flow of the manufacturing process of this invention. 本発明の処理を施すウエハの製造途中工程での素子断面。The element cross section in the manufacture middle process of the wafer which performs the process of this invention. 本発明の処理を施すウエハの製造途中工程での素子断面。The element cross section in the manufacture middle process of the wafer which performs the process of this invention. 本発明の処理を施すウエハの製造途中工程での素子断面。The element cross section in the manufacture middle process of the wafer which performs the process of this invention. 本発明の処理を施すウエハの製造途中工程での素子断面。The element cross section in the manufacture middle process of the wafer which performs the process of this invention. 本発明の処理を施すウエハの製造途中工程での素子断面。The element cross section in the manufacture middle process of the wafer which performs the process of this invention. 本発明の処理を施すウエハの製造途中工程での素子断面。The element cross section in the manufacture middle process of the wafer which performs the process of this invention. 本発明の処理を施すウエハの製造途中工程での素子断面。The element cross section in the manufacture middle process of the wafer which performs the process of this invention. 本発明の処理を施すウエハの製造途中工程での素子断面。The element cross section in the manufacture middle process of the wafer which performs the process of this invention. 本発明の処理を施すウエハの製造途中工程での素子断面。The element cross section in the manufacture middle process of the wafer which performs the process of this invention. 本発明の製造工程のさらに別のプロセスフローを示す図。The figure which shows another process flow of the manufacturing process of this invention. 本発明の構造を示す素子断面図(途中工程)。Sectional drawing (element process) which shows the structure of this invention. 本発明の構造を示す素子断面図(最終工程)。Sectional drawing (final process) which shows the structure of this invention. 本発明の構造を示す素子断面図(最終工程)。Sectional drawing (final process) which shows the structure of this invention. 本発明の別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明の別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明の別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明の別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明の別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明の別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明の別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明のさらに別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明のさらに別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明のさらに別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明のさらに別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. 本発明のさらに別の構造を示す素子断面図。The element sectional view showing another structure of the present invention. テストパターンで測定した接合での臨界電流値の分布図。Distribution diagram of critical current value at the junction measured with the test pattern. 別のテストパターンで測定した接合での臨界電流値の分布図。The distribution diagram of critical current values at junctions measured with different test patterns. 実際の回路における接合での臨界電流値分布の模式図。The schematic diagram of critical current value distribution in the junction in an actual circuit. 接合抵抗変動量とニオブ配線抵抗変動量との相関図。The correlation diagram of junction resistance variation and niobium wiring resistance variation. ニオブ配線抵抗変動量とニオブ中の水素濃度との相関図。The correlation diagram of niobium wiring resistance fluctuation amount and the hydrogen concentration in niobium. Nb成膜後の各種水素放出処理法に対応する実測臨界電流値を示す表。The table | surface which shows the measured critical current value corresponding to the various hydrogen desorption processing methods after Nb film-forming. Nbパターニング後の各種水素放出処理法に対応する実測臨界電流値を示す表。The table | surface which shows the measured critical current value corresponding to the various hydrogen-release process methods after Nb patterning. Nbパターニング後の各種水素放出処理法に対応する実測臨界電流値を示す表。The table | surface which shows the measured critical current value corresponding to the various hydrogen-release process methods after Nb patterning. 各種水素放出処理法に対応するジョセフソン接合特性を示す表。A table showing Josephson junction characteristics corresponding to various hydrogen release treatment methods.

符号の説明Explanation of symbols

1…シリコン基板、
2…シリコン熱酸化膜、
3,3a,3b,3c,4,4a…シリコン酸化膜、SiO41,SiO42…シリコン酸化膜(SiO)、
Nb,Nb,Nby…ニオブ層、
Nb11,Nb,Nb31,Nb32,Nb33,Nb41,Nb42,Nb51,Nb52,Nb53,Nb101…ニオブ配線層(パターン)、
Al…表面を酸化したアルミニウムパターン、
Mo…Moパターン、
JJ1,JJ2,JJ11,JJ12,JJ13…ジョセフソン接合部、
53…フォトレジスト、
Pd…パラジウム層、
Pd11,Pd12,Pd13,Pd14…パラジウム電極。
1 ... silicon substrate,
2 ... Silicon thermal oxide film,
3, 3a, 3b, 3c, 4, 4a ... silicon oxide film, SiO 2 41, SiO 2 42 ... silicon oxide film (SiO 2 ),
Nb 3 , Nb 4 , Nby ... niobium layer,
Nb 11, Nb 2, Nb 31 , Nb 32, Nb 33, Nb 41, Nb 42, Nb 51, Nb 52, Nb 53, Nb101 ... niobium wiring layer (pattern),
Al 2 O 3 ... aluminum pattern with oxidized surface,
Mo ... Mo pattern,
JJ1, JJ2, JJ11, JJ12, JJ13 ... Josephson junction,
53. Photoresist,
Pd 1 ... palladium layer,
Pd 11 , Pd 12 , Pd 13 , Pd 14 ... Palladium electrode.

Claims (18)

基板上に絶縁膜を形成する第1の工程と、
前記絶縁膜上にニオブ膜を形成する第2の工程と、
前記第1のニオブ膜上に形成されたレジストをマスクとして前記ニオブ膜を所望の形状にパターニングすることにより、ニオブ配線を形成する第3の工程とを備え、
前記第2の工程が完了し、前記第3の工程を開始する前に、前記のニオブ膜表面に対する表面処理工程を有することを特徴とするジョセフソン接合を備えた電子デバイスの製造方法。
A first step of forming an insulating film on the substrate;
A second step of forming a niobium film on the insulating film;
And a third step of forming a niobium wiring by patterning the niobium film into a desired shape using a resist formed on the first niobium film as a mask,
A method for manufacturing an electronic device having a Josephson junction, comprising: a surface treatment step for the niobium film surface before the second step is completed and the third step is started.
前記表面処理工程は、アルゴンスパッタリングを用いて、3〜20分間処理することを特徴とする請求項1記載のジョセフソン接合を備えた電子デバイスの製造方法。   The method for manufacturing an electronic device with a Josephson junction according to claim 1, wherein the surface treatment step is performed using argon sputtering for 3 to 20 minutes. 前記表面処理工程は、アルゴンスパッタリングを用いて、処理温度150〜300℃で、1〜3分間処理することを特徴とする請求項1記載のジョセフソン接合を備えた電子デバイスの製造方法。   2. The method of manufacturing an electronic device with a Josephson junction according to claim 1, wherein the surface treatment step is performed using argon sputtering at a treatment temperature of 150 to 300 ° C. for 1 to 3 minutes. 前記表面処理工程は、純アルゴン中で、処理温度150〜600℃で、3〜30分間処理することを特徴とする請求項1記載のジョセフソン接合を備えた電子デバイスの製造方法。   2. The method of manufacturing an electronic device with a Josephson junction according to claim 1, wherein the surface treatment step is performed in pure argon at a treatment temperature of 150 to 600 ° C. for 3 to 30 minutes. 前記表面処理工程は、アルゴンスパッタリングにより前記のニオブ膜の表面を概ね10nmクリーニング除去し、その後に前記のニオブ膜の表面上にパラジウム膜を3〜50nm堆積し、さらに2〜20分間真空中またはアルゴン中に晒し、その後にアルゴンスパッタリングにより前記パラジウム膜の表面を概ね10nmクリーニング除去することを特徴とする請求項1記載のジョセフソン接合を備えた電子デバイスの製造方法。   In the surface treatment step, the surface of the niobium film is cleaned and removed by approximately 10 nm by argon sputtering, and then a palladium film is deposited on the surface of the niobium film by 3 to 50 nm, and further in vacuum or argon for 2 to 20 minutes. 2. The method of manufacturing an electronic device having a Josephson junction according to claim 1, wherein the surface of the palladium film is exposed to about 10 nm by argon sputtering, and thereafter the surface of the palladium film is cleaned and removed by approximately 10 nm. 基板上に絶縁膜を形成する第1の工程と、
前記絶縁膜上にニオブ膜を形成する第2の工程と、
前記のニオブ膜上に形成されたレジストをマスクとして前記のニオブ膜を所望の形状にパターニングする第ことにより、ニオブ配線を形成する第3の工程とを備え、
前記第3の工程が完了した後に、前記のニオブ配線表面に対する表面処理工程を有することを特徴とするジョセフソン接合を備えた電子デバイスの製造方法。
A first step of forming an insulating film on the substrate;
A second step of forming a niobium film on the insulating film;
A third step of forming a niobium wiring by patterning the niobium film into a desired shape using the resist formed on the niobium film as a mask,
A method of manufacturing an electronic device having a Josephson junction, comprising: a surface treatment step for the niobium wiring surface after the third step is completed.
前記表面処理工程は、DCバイアス条件がVdc=50〜100Vであるアルゴンスパッタリングを用いて、3〜20分間処理することを特徴とする請求項6記載のジョセフソン接合を備えた電子デバイスの製造方法。   The method of manufacturing an electronic device with a Josephson junction according to claim 6, wherein the surface treatment step is performed using argon sputtering in which a DC bias condition is Vdc = 50 to 100V for 3 to 20 minutes. . 前記表面処理工程は、DCバイアス条件がVdc=50〜100Vであるアルゴンスパッタリングを用いて、処理温度150〜300℃で、1〜3分間処理することを特徴とする請求項6記載のジョセフソン接合を備えた電子デバイスの製造方法。   The Josephson junction according to claim 6, wherein the surface treatment step is performed using argon sputtering with a DC bias condition of Vdc = 50 to 100 V at a treatment temperature of 150 to 300 ° C. for 1 to 3 minutes. A method of manufacturing an electronic device comprising: 前記表面処理工程は、純アルゴン中で、処理温度150〜600℃で、3〜30分間処理することを特徴とする請求項6記載のジョセフソン接合を備えた電子デバイスの製造方法。   7. The method of manufacturing an electronic device with a Josephson junction according to claim 6, wherein the surface treatment step is performed in pure argon at a treatment temperature of 150 to 600 [deg.] C. for 3 to 30 minutes. 前記表面処理工程は、アルゴンスパッタリングにより前記のニオブ膜の表面を概ね10nmクリーニング除去し、その後に前記のニオブ膜の表面上にパラジウム膜を3〜50nm堆積し、さらに2〜20分間真空中またはアルゴン中に晒し、その後にアルゴンスパッタリングにより前記パラジウム膜の表面を概ね10nmクリーニング除去することを特徴とする請求項6記載のジョセフソン接合を備えた電子デバイスの製造方法。   In the surface treatment step, the surface of the niobium film is cleaned and removed by about 10 nm by argon sputtering, and then a palladium film is deposited on the surface of the niobium film by 3 to 50 nm, and further in vacuum or argon for 2 to 20 minutes. 7. The method of manufacturing an electronic device having a Josephson junction according to claim 6, wherein the surface of the palladium film is exposed to about 10 nm and then removed by argon sputtering. 基板上に絶縁膜を形成する第1の工程と、
前記絶縁膜上に第1のニオブ膜を形成する第2の工程と、
前記第1のニオブ膜上に極薄絶縁膜を形成する第3の工程と、
前記極薄絶縁膜上に第2のニオブ膜を形成する第4の工程と、
を有し、
前記第2のニオブ膜に形成されたレジストをマスクとして前記第2のニオブ膜を所望の形状にパターニングする第5の工程と、パターニングされた前記第2のニオブ膜上および前記パターニングにより露出した前記極薄絶縁膜上に形成されたレジストをマスクとして前記極薄絶縁膜を所望の形状にパターニングする第6の工程と、前記パターニングされた前記第2のニオブ膜および前記極薄絶縁膜と、前記第1のニオブ膜上に形成されたレジストをマスクとして前記第1のニオブ膜を所望の形状にパターニングする第7の工程とにより、ニオブジョセフソン接合を有する素子部を形成する工程と、を備え、
前記第6の工程が完了し、第7の工程を開始する前に、前記第1のニオブ膜表面に対する表面処理工程を有することを特徴とするジョセフソン接合を備えた電子デバイスの製造方法。
A first step of forming an insulating film on the substrate;
A second step of forming a first niobium film on the insulating film;
A third step of forming a very thin insulating film on the first niobium film;
A fourth step of forming a second niobium film on the ultrathin insulating film;
Have
A fifth step of patterning the second niobium film into a desired shape using the resist formed on the second niobium film as a mask; and the pattern exposed on the patterned second niobium film and exposed by the patterning. A sixth step of patterning the ultrathin insulating film into a desired shape using a resist formed on the ultrathin insulating film as a mask; the patterned second niobium film; and the ultrathin insulating film; Forming a device portion having a niobium Josephson junction by a seventh step of patterning the first niobium film into a desired shape using a resist formed on the first niobium film as a mask. ,
A method of manufacturing an electronic device having a Josephson junction, comprising: a surface treatment step for the surface of the first niobium film before the sixth step is completed and the seventh step is started.
前記表面処理工程は、DCバイアス条件がVdc=50〜100Vであるアルゴンスパッタリングを用いて、3〜20分間処理することを特徴とする請求項11記載のジョセフソン接合を備えた電子デバイスの製造方法。   12. The method of manufacturing an electronic device with a Josephson junction according to claim 11, wherein the surface treatment step is performed for 3 to 20 minutes using argon sputtering in which a DC bias condition is Vdc = 50 to 100V. . 前記表面処理工程は、DCバイアス条件がVdc=50〜100Vであるアルゴンスパッタリングを用いて、処理温度150〜300℃で、1〜3分間処理することを特徴とする請求項11記載のジョセフソン接合を備えた電子デバイスの製造方法。   The Josephson junction according to claim 11, wherein the surface treatment step is performed using argon sputtering with a DC bias condition of Vdc = 50 to 100 V at a treatment temperature of 150 to 300 ° C. for 1 to 3 minutes. A method of manufacturing an electronic device comprising: 前記表面処理工程は、純アルゴン中で、処理温度150℃以下で、30〜60分間処理することを特徴とする請求項11記載のジョセフソン接合を備えた電子デバイスの製造方法。   12. The method of manufacturing an electronic device with a Josephson junction according to claim 11, wherein the surface treatment step is performed in pure argon at a treatment temperature of 150 [deg.] C. or less for 30 to 60 minutes. 前記表面処理工程は、アルゴンスパッタリングにより前記第1のニオブ膜の表面を概ね10nmクリーニング除去し、その後に前記第1のニオブ膜の表面上にパラジウム膜を3〜50nm堆積し、さらに2〜20分間真空中またはアルゴン中に晒し、その後にアルゴンスパッタリングにより前記パラジウム膜の表面を概ね10nmクリーニング除去することを特徴とする請求項11記載のジョセフソン接合を備えた電子デバイスの製造方法。   In the surface treatment process, the surface of the first niobium film is cleaned and removed by approximately 10 nm by argon sputtering, and then a palladium film is deposited on the surface of the first niobium film by 3 to 50 nm, and further for 2 to 20 minutes. 12. The method for manufacturing an electronic device with a Josephson junction according to claim 11, wherein the surface of the palladium film is exposed to vacuum or argon, and thereafter the surface of the palladium film is removed by cleaning by approximately 10 nm by argon sputtering. 基板に設けられた絶縁膜と、
前記絶縁膜上に第1のニオブ膜と、極薄絶縁膜と、第2のニオブ膜とがこの順に前記基板側から積層されてなる第1の接合面積を有する第1のジョセフソン接合部と、
前記第1の接合面積より大きい接合面積を有する第2のジョセフソン接合部とを有し、
前記第1のジョセフソン接合の第1もしくは第2のニオブ膜と前記第2のジョセフソン接合の第1もしくは第2のニオブ膜が互いに接続され、かつ他のニオブ配線とは互いに分離されていることを特徴とするジョセフソン接合を備えた電子デバイス。
An insulating film provided on the substrate;
A first Josephson junction having a first junction area in which a first niobium film, an ultrathin insulating film, and a second niobium film are stacked in this order from the substrate side on the insulating film; ,
A second Josephson junction having a larger junction area than the first junction area;
The first or second niobium film of the first Josephson junction and the first or second niobium film of the second Josephson junction are connected to each other and separated from other niobium wirings. An electronic device having a Josephson junction.
基板に設けられた絶縁膜と、
前記絶縁膜上に第1のニオブ膜と、極薄絶縁膜と、第2のニオブ膜とがこの順に前記基板側から積層されてなる第ジョセフソン接合部と、を有し、
前記第1のニオブ膜が、直接もしくは前記第1のニオブ膜が延在する領域上に設けられた第3のニオブ膜を介してパラジウム膜と接続され、このパラジウム膜上に導体がないことを特徴とするジョセフソン接合を備えた電子デバイス。
An insulating film provided on the substrate;
A first Josephson junction formed by laminating a first niobium film, an ultrathin insulating film, and a second niobium film on the insulating film in this order from the substrate side;
The first niobium film is connected to a palladium film directly or via a third niobium film provided on a region where the first niobium film extends, and there is no conductor on the palladium film. An electronic device with a featured Josephson junction.
基板に設けられた絶縁膜と、
前記絶縁膜上に第1のニオブ膜と、極薄絶縁膜と、第2のニオブ膜とがこの順に前記基板側から積層されてなる第ジョセフソン接合部と、を有し、
前記第2のニオブ膜が、直接もしくは前記第2のニオブ膜が延在する領域上にもうけられた第3のニオブ膜を介してパラジウム膜に接続されこのパラジウム膜上に導体がないことを特徴とするジョセフソン接合を備えた電子デバイス。
An insulating film provided on the substrate;
A first Josephson junction formed by laminating a first niobium film, an ultrathin insulating film, and a second niobium film on the insulating film in this order from the substrate side;
The second niobium film is connected to a palladium film directly or via a third niobium film provided on a region where the second niobium film extends, and there is no conductor on the palladium film. An electronic device with a Josephson junction.
JP2007284729A 2007-11-01 2007-11-01 Electronic device with josephson junction, and method of manufacturing the same Pending JP2009111306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284729A JP2009111306A (en) 2007-11-01 2007-11-01 Electronic device with josephson junction, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284729A JP2009111306A (en) 2007-11-01 2007-11-01 Electronic device with josephson junction, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009111306A true JP2009111306A (en) 2009-05-21

Family

ID=40779449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284729A Pending JP2009111306A (en) 2007-11-01 2007-11-01 Electronic device with josephson junction, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009111306A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511067A (en) * 2012-03-08 2015-04-13 ディー−ウェイブ システムズ,インコーポレイテッド System and method for fabrication of superconducting integrated circuits
JP2019527942A (en) * 2016-08-16 2019-10-03 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Wiring structure of superconducting device
JP2020520554A (en) * 2017-05-17 2020-07-09 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Precleaning and deposition methods for superconductor interconnects
US10763419B2 (en) 2017-06-02 2020-09-01 Northrop Grumman Systems Corporation Deposition methodology for superconductor interconnects
US10985059B2 (en) 2018-11-01 2021-04-20 Northrop Grumman Systems Corporation Preclean and dielectric deposition methodology for superconductor interconnect fabrication
US11856871B2 (en) 2018-11-13 2023-12-26 D-Wave Systems Inc. Quantum processors
US11957065B2 (en) 2017-02-01 2024-04-09 1372934 B.C. Ltd. Systems and methods for fabrication of superconducting integrated circuits

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613481A (en) * 1984-06-15 1986-01-09 Nippon Telegr & Teleph Corp <Ntt> Tunnel type josephson element and manufacture thereof
JPS63200578A (en) * 1987-02-17 1988-08-18 Nec Corp Superconducting circuit device
JPS6453586A (en) * 1987-08-25 1989-03-01 Sumitomo Electric Industries Analog/digital converter
JPH01152775A (en) * 1987-12-10 1989-06-15 Agency Of Ind Science & Technol Forming method of pattern of josephson junction device
JPH03174781A (en) * 1988-12-23 1991-07-29 Nippon Steel Corp Radiation detecting element and josephson element
JPH05211355A (en) * 1990-08-27 1993-08-20 Fujitsu Ltd Manufacture of josephson integrated circuit
JPH0613666A (en) * 1992-06-24 1994-01-21 Fujitsu Ltd Nb josephson junction device and its manufacture
JPH11177157A (en) * 1997-12-08 1999-07-02 Agency Of Ind Science & Technol Cuperconducting integrated circuit structure and its manufacture
JP2000299505A (en) * 1999-04-12 2000-10-24 Agency Of Ind Science & Technol Flip-chip connection method of superconducting integrated circuit
JP2001257392A (en) * 2000-03-13 2001-09-21 Toshiba Corp Superconducting element and producing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613481A (en) * 1984-06-15 1986-01-09 Nippon Telegr & Teleph Corp <Ntt> Tunnel type josephson element and manufacture thereof
JPS63200578A (en) * 1987-02-17 1988-08-18 Nec Corp Superconducting circuit device
JPS6453586A (en) * 1987-08-25 1989-03-01 Sumitomo Electric Industries Analog/digital converter
JPH01152775A (en) * 1987-12-10 1989-06-15 Agency Of Ind Science & Technol Forming method of pattern of josephson junction device
JPH03174781A (en) * 1988-12-23 1991-07-29 Nippon Steel Corp Radiation detecting element and josephson element
JPH05211355A (en) * 1990-08-27 1993-08-20 Fujitsu Ltd Manufacture of josephson integrated circuit
JPH0613666A (en) * 1992-06-24 1994-01-21 Fujitsu Ltd Nb josephson junction device and its manufacture
JPH11177157A (en) * 1997-12-08 1999-07-02 Agency Of Ind Science & Technol Cuperconducting integrated circuit structure and its manufacture
JP2000299505A (en) * 1999-04-12 2000-10-24 Agency Of Ind Science & Technol Flip-chip connection method of superconducting integrated circuit
JP2001257392A (en) * 2000-03-13 2001-09-21 Toshiba Corp Superconducting element and producing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511067A (en) * 2012-03-08 2015-04-13 ディー−ウェイブ システムズ,インコーポレイテッド System and method for fabrication of superconducting integrated circuits
US11930721B2 (en) 2012-03-08 2024-03-12 1372934 B.C. Ltd. Systems and methods for fabrication of superconducting integrated circuits
JP2019527942A (en) * 2016-08-16 2019-10-03 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Wiring structure of superconducting device
US11957065B2 (en) 2017-02-01 2024-04-09 1372934 B.C. Ltd. Systems and methods for fabrication of superconducting integrated circuits
JP2020520554A (en) * 2017-05-17 2020-07-09 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Precleaning and deposition methods for superconductor interconnects
US10763419B2 (en) 2017-06-02 2020-09-01 Northrop Grumman Systems Corporation Deposition methodology for superconductor interconnects
US10985059B2 (en) 2018-11-01 2021-04-20 Northrop Grumman Systems Corporation Preclean and dielectric deposition methodology for superconductor interconnect fabrication
US11856871B2 (en) 2018-11-13 2023-12-26 D-Wave Systems Inc. Quantum processors

Similar Documents

Publication Publication Date Title
US10833243B1 (en) System and method for providing multi-conductive layer metallic interconnects for superconducting integrated circuits
JP2009111306A (en) Electronic device with josephson junction, and method of manufacturing the same
CN102334206B (en) For manufacturing the system and method for superconducting integrated circuit
US9741918B2 (en) Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
US10483460B2 (en) Method of manufacturing a magnetoresistive stack/ structure using plurality of encapsulation layers
Abelson et al. Superconductor integrated circuit fabrication technology
US9324767B1 (en) Superconducting junctions
US6764960B2 (en) Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film
JP4810074B2 (en) Manufacturing method of multilayer wiring for superconducting device
KR101696526B1 (en) Low temperature resistor for superconductor circuits
JPH0321001A (en) Method of forming molybdenum resistor in superconductive integrated circuit
US5477061A (en) Josephson device having an overlayer structure with improved thermal stability
JP3957856B2 (en) Manufacturing method of semiconductor device
US6320264B1 (en) Interconnect wiring with sidewalls and inter-wiring insulation composed of fluorine
JPH05211355A (en) Manufacture of josephson integrated circuit
JPH05243628A (en) Josephson device and manufacture thereof
JPS61144892A (en) Production of josephson integrated circuit
CN117542839A (en) Method for producing superconducting qubits, test junction, and production and use thereof
JPH03263884A (en) Manufacture of josephson integrated circuit
JPH09219118A (en) Superconducting wiring
JPH03131032A (en) Semiconductor device
JPH0634417B2 (en) Method for manufacturing josephson junction device
JPS58220447A (en) Manufacture of semiconductor device
JPS63224272A (en) Superconductor switching device
JPS61241988A (en) Manufacture of josephson integrated circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025