JPH09208206A - Impact resistant vitreous carbon material - Google Patents

Impact resistant vitreous carbon material

Info

Publication number
JPH09208206A
JPH09208206A JP8037159A JP3715996A JPH09208206A JP H09208206 A JPH09208206 A JP H09208206A JP 8037159 A JP8037159 A JP 8037159A JP 3715996 A JP3715996 A JP 3715996A JP H09208206 A JPH09208206 A JP H09208206A
Authority
JP
Japan
Prior art keywords
cross
section
carbon material
surface layer
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8037159A
Other languages
Japanese (ja)
Other versions
JP3734298B2 (en
Inventor
Tomio Hata
都美雄 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP03715996A priority Critical patent/JP3734298B2/en
Publication of JPH09208206A publication Critical patent/JPH09208206A/en
Application granted granted Critical
Publication of JP3734298B2 publication Critical patent/JP3734298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a vitreous carbon material having a uniform structure in the cross section in the thickness direction and having excellent shock resistance by forming such a structure that the difference of the average lattice distance of graphite hexagonal mesh layers between in the surface layer part and in the center part of the cross section to a specified range. SOLUTION: This impact resistant vitreous carbon is produced to satisfy such requirement that the difference of the average lattice distance d002 , in the graphite hexagonal mash layers is within 0.01nm between in the surface layer part and in the center part in the cross section or that the difference of the grain size Lc (002) is within 1.5nm in the surface layer part and in the center part of the cross section. The obtd. material shows a uniform structure for both of the inner and outer layers in the cross section and has little inner stress or residual stress, so that stress fracture due to an external impact can effectively be reduced. Further, by controlling the average lattice distance of the graphite hexagonal mesh layers in the cross section to 0.345-0.365nm and controlling the grain size in the center part to 1.3-4.0nm, the shock resistance is further improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、厚み方向の断面が
均一な組織構造を有し、苛酷な機械加工や熱衝撃に対し
て材質損傷を生じることが少ない耐衝撃性に優れたガラ
ス状カーボン材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glassy carbon excellent in impact resistance having a uniform structure in a cross section in the thickness direction and hardly causing material damage to severe machining or thermal shock. Regarding materials

【0002】ガラス状カーボンは、熱硬化性樹脂を炭化
して得られる巨視的に無孔組織の硬質炭素物質で、高強
度、低化学反応性、ガス不透過性、自己潤滑性、堅牢性
などに優れているため、その特異な物性を利用して半導
体分野や電解化学分野の各種部材として広く実用に供さ
れている。ところが、ガラス状カーボン材は本質的にア
モルファス炭素質組織により構成されているので酸化等
の腐食に対して十分な耐久性に乏しいうえ、ガラス質特
有の脆弱性があって機械的および熱的な衝撃により容易
に損傷を受ける材質的な欠点がある。
Glassy carbon is a hard carbon material having a macroscopically non-porous structure obtained by carbonizing a thermosetting resin, and has high strength, low chemical reactivity, gas impermeability, self-lubricating property, robustness, etc. Because of its excellent properties, it has been widely put into practical use as various members in the fields of semiconductors and electrolytic chemistry by utilizing its unique physical properties. However, since the glassy carbon material is essentially composed of an amorphous carbonaceous structure, it does not have sufficient durability against corrosion such as oxidation, and has a brittleness peculiar to glassy material, which causes mechanical and thermal damage. There is a material defect that is easily damaged by impact.

【0003】[0003]

【従来の技術】このうち、酸化等の腐食に対する耐久性
の改善については、比重1.50以上、総灰分700pp
m 以下、総硫黄分500ppm 以下、結晶面間隔0.37
5nm以下、結晶子の大きさ1.3nm以上の材質性状を備
える高耐食性ガラス状カーボン材が本出願人により提案
されている(特開平5−208867号公報) 。しかし、機械
的および熱的な衝撃に対する抵抗性についてガラス状カ
ーボンの組織性状面から検討された例はない。
2. Description of the Related Art Among them, for improvement of durability against corrosion such as oxidation, specific gravity is 1.50 or more, total ash content is 700 pp
m or less, total sulfur content 500 ppm or less, crystal plane spacing 0.37
A highly corrosion-resistant glassy carbon material having a material property of 5 nm or less and a crystallite size of 1.3 nm or more has been proposed by the present applicant (JP-A-5-208867). However, there has been no example in which the resistance to mechanical and thermal shocks has been examined from the structural properties of glassy carbon.

【0004】[0004]

【発明が解決しようとする課題】機械的あるいは熱的な
衝撃によるガラス状カーボン材の損傷は、材質組織が均
質でない場合に衝撃を受けて組織内部に応力の偏りが生
じる現象が主因となって発生する。特にガラス状カーボ
ン材の厚さが5mmを越える厚肉サイズであると材質の内
外組織に差が生じ、これが原因となって機械加工を行っ
たり、熱衝撃を伴う条件で使用する際に破損やチッピン
グ等の損傷現象が発生し易い。
The damage of the glassy carbon material due to mechanical or thermal shock is mainly caused by a phenomenon in which the stress is biased inside the structure when the structure of the material is not uniform and the structure is not uniform. Occur. Especially when the thickness of the glassy carbon material is thicker than 5 mm, there is a difference in the internal and external structures of the material, which causes damage or damage during machining or when used under conditions involving thermal shock. Damage phenomena such as chipping are likely to occur.

【0005】本発明者は、衝撃によりガラス状カーボン
材に損傷が発生する原因を材質組織面から検討を加えた
結果、ガラス状カーボン材の断面組織の不均一性、とく
に表層部と断面中心部の黒鉛結晶度合の差が大きく影響
すること、そしてこの結晶性状差を特定範囲内に抑制す
ると耐衝撃性が著しく改善され、厚肉サイズのガラス状
カーボン材であっても機械加工時や使用時の熱衝撃によ
る損傷現象を効果的に抑制し得る事実を解明した。
The present inventor has studied the cause of damage to the glassy carbon material due to impact from the viewpoint of the material structure, and as a result, found that the cross-sectional structure of the glassy carbon material is nonuniform, particularly the surface layer part and the center part of the cross section. The impact of the difference in the crystallinity of graphite is significant, and controlling this difference in crystallinity within a specific range significantly improves impact resistance, and even thick glass-like carbon materials can be used during machining or use. We have clarified the fact that the damage phenomenon due to the thermal shock of the can be effectively suppressed.

【0006】本発明は上記の知見に基づいて完成された
もので、その目的とする課題は、厚肉サイズであって
も、苛酷な機械的・熱的衝撃に対して材質損傷を生じる
ことが少ない耐衝撃性ガラス状カーボン材を提供するこ
とにある。
The present invention has been completed based on the above findings, and the object of the present invention is to cause material damage to severe mechanical and thermal shocks even with a thick wall size. An object of the present invention is to provide a glass material having a low impact resistance and vitreous properties.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めの第1の本発明による耐衝撃性ガラス状カーボン材
は、黒鉛六角網面層の平均格子面間隔d00 2 が、表層部
と断面中心部において0.01nm以内の範囲差にある組
織構造を備えることを構成上の特徴とする。
The impact-resistant glassy carbon material according to the first aspect of the present invention for solving the above-mentioned problems is such that the average lattice spacing d 00 2 of the graphite hexagonal mesh plane layer is the same as that of the surface layer portion. A structural feature is that the center portion of the cross section has a tissue structure with a range difference of 0.01 nm or less.

【0008】この場合、断面中心部における黒鉛六角網
面層の平均格子面間隔d00 2 が0.345〜0.365
nmの範囲にあることが好ましい。
In this case, the average lattice spacing d 00 2 of the graphite hexagonal mesh plane layer in the center of the cross section is 0.345 to 0.365.
It is preferably in the range of nm.

【0009】第2の本発明による耐衝撃性ガラス状カー
ボン材は 結晶子の大きさLc(002)が、表層部と断面中
心部において1.5nm以内の範囲差にある組織構造を備
えることを構成上の特徴とする。
The impact-resistant vitreous carbon material according to the second aspect of the present invention has a texture structure in which the crystallite size Lc (002) is within a range of 1.5 nm in the surface layer portion and the center of the cross section. This is a feature of the configuration.

【0010】この場合、断面中心部における結晶子の大
きさLc(002)が1.3〜4.0nmの範囲にあることが好
ましい。
In this case, the crystallite size Lc (002) at the center of the cross section is preferably in the range of 1.3 to 4.0 nm.

【0011】本発明において、黒鉛六角網面層の平均格
子面間隔d002 および結晶子の大きさLc(002)は日本学
術振興会第117委員会作成の「人造黒鉛の格子定数お
よび結晶子の大きさの測定法」に準拠するX線回折法で
測定され、板状の試片を用いて低角部のベースライン上
昇を加味して直線のベースラインを引き、35〜15de
g 付近の測定で得られるプロードなC(002) 回折線から
算出した値とする。
In the present invention, the average lattice spacing d 002 and the crystallite size Lc (002) of the graphite hexagonal mesh plane layer are “Lattice constant of artificial graphite and crystallite of crystallite” prepared by the 117th Committee of the Japan Society for the Promotion of Science. X-ray diffractometry according to "Measurement method of size" is used to draw a straight base line by taking into account the rise of the low-angle base line using a plate-shaped test piece.
It is a value calculated from the broad C (002) diffraction line obtained by measurement in the vicinity of g.

【0012】また、本発明においてガラス状カーボン材
の表層部とは材料の表面を指し、断面中心部とは前記表
面から断面厚みの1/2まで片面研磨した位置の断層面
を指すものとする。
In the present invention, the surface layer of the glassy carbon material means the surface of the material, and the center of the cross section means the tomographic plane at the position where one side is polished from the surface to half the thickness of the cross section. .

【0013】[0013]

【発明の実施の形態】本発明の耐衝撃性ガラス状カーボ
ン材は、その製造履歴には特に限定されないが、黒鉛六
角網面層の平均格子面間隔d00 2 が表層部と断面中心部
において0.01nm以内の差であるか、もしくは結晶子
の大きさLc(002)が表層部と断面中心部において1.5
nm以内の差であることが、必須の物性的要件となる。こ
の物性的要件を満たすガラス状カーボン材は、厚み方向
の断面が内外層共に均質な組織構造を呈しており、内部
応力や残留応力が極めて少ないため外部からの衝撃に対
する応力破壊が効果的に減少する。
BEST MODE FOR CARRYING OUT THE INVENTION The impact resistant glassy carbon material of the present invention is not particularly limited in its production history, but the average lattice spacing d 00 2 of the graphite hexagonal mesh plane layer in the surface layer portion and the cross-sectional center portion is The difference is within 0.01 nm, or the crystallite size Lc (002) is 1.5 at the surface layer and the center of the cross section.
It is an essential physical property requirement that the difference is within nm. The glass-like carbon material that meets these physical property requirements has a uniform structure structure in the inner and outer layers in the thickness direction, and since internal stress and residual stress are extremely small, stress fracture due to external impact is effectively reduced. To do.

【0014】しかしながら、表層部と断面中心部におけ
る黒鉛六角網面層の平均格子面間隔d00 2 の差が0.0
1nmを越え、また結晶子の大きさLc(002)の差が1.5
nmを上回ると、内外構造差が大きくなって機械的または
熱的な衝撃に対する抵抗性が減退し、材質破損やチッピ
ング等が増大する。
However, the difference in the average lattice spacing d 00 2 between the graphite hexagonal mesh plane layer in the surface layer portion and the center portion of the cross section is 0.0.
It exceeds 1 nm, and the difference in crystallite size Lc (002) is 1.5.
When the thickness exceeds nm, the difference between the inner and outer structures becomes large, and the resistance to mechanical or thermal shock decreases, and the material damage or chipping increases.

【0015】上記の物性的要件に加え、断面中心部にお
ける黒鉛六角網面層の平均格子面間隔d002 が0.34
5〜0.365nmの範囲にあり、また断面中心部におけ
る結晶子の大きさLc(002)が1.3〜4.0nmの範囲に
あると、一層耐衝撃性の改善に寄与する。
In addition to the above physical properties, the average lattice plane spacing d 002 of the graphite hexagonal mesh plane layer at the center of the cross section is 0.34.
When it is in the range of 5 to 0.365 nm and the crystallite size Lc (002) in the center of the cross section is in the range of 1.3 to 4.0 nm, it further contributes to the improvement of impact resistance.

【0016】ガラス状カーボン材における内外組織の不
均一は、材料の厚みが増すほど顕著になり、特に肉厚が
5mm以上の場合に耐衝撃性が低下し易くなる。したがっ
て、厚肉サイズのガラス状カーボン材においても十分な
機械的・熱的な耐衝撃性が付与されねばならない。5mm
以上の厚肉サイズにおいて本発明の物性的要件を満たす
ガラス状カーボン材は、例えば分子量100以上、ゲル
化時間5〜60分のフェノール樹脂にフランあるいはそ
の誘導体化合物を混合して粘度1〜100ポイズ、樹脂
分50重量%以上の樹脂組成物を形成し、該樹脂組成物
を成形、硬化したのち非酸化性雰囲気中で焼成炭化する
プロセスにおいて、樹脂組成物の硬化昇温速度、最終硬
化温度、焼成炭化時の昇温速度、最終焼成温度等を厳密
に制御することによって製造することができる。
The non-uniformity of the internal and external structures in the glassy carbon material becomes more remarkable as the thickness of the material increases, and the impact resistance tends to decrease particularly when the thickness is 5 mm or more. Therefore, sufficient mechanical and thermal shock resistance must be imparted to the thick glassy carbon material. 5mm
The glassy carbon material satisfying the physical property requirements of the present invention in the above thick size is, for example, a phenol resin having a molecular weight of 100 or more and a gelation time of 5 to 60 minutes and furan or a derivative compound thereof mixed with a viscosity of 1 to 100 poises. In the process of forming a resin composition having a resin content of 50% by weight or more, molding and curing the resin composition, and then firing and carbonizing the resin composition in a non-oxidizing atmosphere, the curing temperature rising rate of the resin composition, the final curing temperature, It can be produced by strictly controlling the rate of temperature rise during firing and carbonization, the final firing temperature, and the like.

【0017】具体的な製造工程は次のようになる。ま
ず、精製したフェノールおよびホルマリンを原料として
縮合反応させて得られた分子量100以上、ゲル化時間
5〜60分のフェノール樹脂初期縮合物に、フランある
いはその誘導体化合物を混合して炭化収率が65〜75
%の2成分系樹脂組成物を形成する。この際、用いるフ
ラン誘導体化合物としては、フルフリルアルコール、フ
ルフラール、フランカルボン酸メチルエステルなどフェ
ノール樹脂と相溶性のあるものが単独もしくは2種以上
混合して使用に供される。フェノール樹脂に対するフラ
ン系成分の混合比率は樹脂性状に応じて適宜に設定さ
れ、粘度1〜100ポイズ、樹脂分50%以上の性状を
整える。
The specific manufacturing process is as follows. First, a phenolic resin initial condensation product having a molecular weight of 100 or more and a gelation time of 5 to 60 minutes obtained by subjecting purified phenol and formalin to a condensation reaction as raw materials is mixed with furan or a derivative compound thereof to obtain a carbonization yield of 65. ~ 75
% Two-component resin composition is formed. As the furan derivative compound to be used at this time, furfuryl alcohol, furfural, methyl furan carboxylic acid ester or the like having compatibility with the phenol resin may be used alone or in combination of two or more. The mixing ratio of the furan-based component to the phenol resin is appropriately set according to the resin properties, and the properties are adjusted to have a viscosity of 1 to 100 poise and a resin content of 50% or more.

【0018】ついで、樹脂組成物を最終的に得られるガ
ラス状カーボン材の肉厚が5mm以上になるように注型成
形あるいは多重塗布成形して所望の形状に成形し、加熱
硬化する。この段階の硬化成形体に組織構造上の内外差
があると最終的に得られるガラス状カーボン材にも同様
に炭素結晶の発達度合に内外差が発現することから、硬
化の条件を厳密に制御する必要がある。一般に熱硬化性
樹脂の硬化は発熱反応であって、厚肉になるほど内部蓄
熱が増す関係で、表層部に比べ蓄熱度の高い内部の方が
硬化が進行し易い。このような硬化の不均一性を避ける
ために、加熱硬化時の昇温速度を10℃/hr以下、好ま
しくは5℃/hr以下、更に好ましくは2℃/hr以下に調
整する。ついで、加熱温度を硬化反応が終了する温度ま
で上昇し、十分な時間保持して完全に硬化させる。硬化
温度は、樹脂の組成、硬化剤の種類、配合等によって異
なるが、通常140〜200℃の温度範囲に保持され
る。最終硬化温度が低い場合には長時間の保持が必要で
あり、高温硬化温度であっても3時間以上の温度維持が
好ましい。
Then, the resin composition is cast-molded or multiple-coating-molded so that the finally obtained glassy carbon material has a wall thickness of 5 mm or more, molded into a desired shape, and heat-cured. If there is an internal / external difference in the structure of the cured molded product at this stage, the glassy carbon material finally obtained will also have an internal / external difference in the degree of development of carbon crystals, so the curing conditions are strictly controlled. There is a need to. Generally, the thermosetting resin is an exothermic reaction, and as the thickness increases, the internal heat storage increases. Therefore, the inside of the resin having a higher heat storage degree than the surface layer is more likely to cure. In order to avoid such non-uniformity of curing, the rate of temperature rise during heat curing is adjusted to 10 ° C./hr or less, preferably 5 ° C./hr or less, more preferably 2 ° C./hr or less. Then, the heating temperature is raised to a temperature at which the curing reaction ends, and the heating temperature is maintained for a sufficient time to completely cure. The curing temperature varies depending on the composition of the resin, the type of the curing agent, the composition, etc., but is usually maintained in the temperature range of 140 to 200 ° C. When the final curing temperature is low, it is necessary to hold for a long time, and it is preferable to maintain the temperature for 3 hours or more even at a high curing temperature.

【0019】硬化後の樹脂成形体は、非酸化性雰囲気に
保持された加熱炉に詰め、800℃以上の温度域で焼成
炭化処理してガラス状カーボンに転化する。樹脂硬化物
は熱伝導率が低いので、厚肉となると焼成炭化の過程で
表層部近傍に対して内部組織の分解炭化反応に遅れが生
じる。このため、表層部近傍における炭化の先行に伴っ
て内部が緊張を受けた状態で炭化が進行する結果、表層
部と内部とで結晶構造に差が発生する。このような現象
を緩和するためには焼成炭化の昇温速度を4℃/hr以下
に設定し、緩徐に温度上昇させることにより内外層は均
等な速度で炭化が進行するようになる。同時に昇温の過
程で、炭化分解の激しい温度域、ガス発生の激しい温度
域、炭化が終了して構造変化が起きる温度域の各段階に
おいて温度保持を行うことが内外構造差を低減化に有効
である。具体的には、300〜400℃、400〜50
0℃および500〜600℃の各温度段階においてそれ
ぞれ5時間以上保持する。更に、均熱処理を達成するた
めには、樹脂成形体を黒鉛板の間に挟んだ状態で黒鉛ル
ツボに詰めて焼成炭化する方法も効果がある。
The cured resin molded body is packed in a heating furnace kept in a non-oxidizing atmosphere, and is carbonized by firing in a temperature range of 800 ° C. or higher to be converted into glassy carbon. Since the cured resin has a low thermal conductivity, when it becomes thick, the decomposition and carbonization reaction of the internal structure is delayed with respect to the vicinity of the surface layer portion during the process of firing and carbonization. Therefore, as a result of the progress of carbonization in a state where the inside is under tension due to the preceding carbonization in the vicinity of the surface layer portion, a difference occurs in the crystal structure between the surface layer portion and the inside. In order to mitigate such a phenomenon, the heating rate of the firing carbonization is set to 4 ° C./hr or less, and the temperature is slowly raised so that the inner and outer layers are carbonized at a uniform rate. At the same time, in the process of raising the temperature, it is effective to reduce the internal / external structural difference by maintaining the temperature at each stage of the temperature range where the carbonization is severe, the temperature where the gas is generated, and the temperature where the carbonization ends and the structure changes. Is. Specifically, 300 to 400 ° C., 400 to 50
Hold at each temperature stage of 0 ° C. and 500 to 600 ° C. for 5 hours or more. Further, in order to achieve the soaking treatment, a method of packing a resin molded body in a graphite crucible in a state of being sandwiched between graphite plates and firing and carbonizing is also effective.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明するが、本発明の実施態様はこれら実施例に
限定されるものではない。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples, but the embodiments of the present invention are not limited to these examples.

【0021】実施例1〜5、比較例1〜3 (1)ガラス状カーボン材の製造 減圧蒸留により精製したフェノールおよびホルマリンを
アンモニアの存在下で縮合反応させ、分子量132、ゲ
ル化時間14分のフェノール樹脂初期縮合物を調製し
た。このフェノール樹脂100重量部に対しフルフリル
アルコール30重量部を添加混合して粘度40ポイズ、
樹脂分55%の樹脂組成物を得た。この樹脂組成物をポ
リエチレン製のバットに流し込み、真空デシケータに入
れて10Torrの減圧下で脱泡処理を行ったのち、電気オ
ーブンに移し、表1に示す昇温速度および最終硬化条件
により硬化処理を施して板状成形体に成形した。
Examples 1 to 5 and Comparative Examples 1 to 3 (1) Production of glassy carbon material Phenol and formalin purified by vacuum distillation were subjected to a condensation reaction in the presence of ammonia to give a molecular weight of 132 and a gelation time of 14 minutes. A phenol resin precondensate was prepared. To 100 parts by weight of this phenol resin, 30 parts by weight of furfuryl alcohol was added and mixed to obtain a viscosity of 40 poise,
A resin composition having a resin content of 55% was obtained. This resin composition was poured into a polyethylene vat, placed in a vacuum desiccator to perform defoaming treatment under a reduced pressure of 10 Torr, then transferred to an electric oven, and cured by the heating rate and final curing conditions shown in Table 1. It was applied and molded into a plate-shaped molded body.

【0022】ついで、各板状成形体の両側面を厚さ10
mmの黒鉛板〔東海カーボン(株)製、G347〕で挟み
付けて黒鉛ルツボに入れ、これを電気炉中に詰めて周囲
を黒鉛粉で充填被包した状態で焼成炭化処理を行った。
焼成炭化の条件は、表1に示すように昇温速度を1〜1
0℃/hrの範囲で変動させ、焼成途中の350℃、45
0℃および550℃の各温度段階でそれぞれ5時間保持
し、最終的に所定の温度まで昇温した。得られたガラス
状カーボン板は、縦横80mm、厚さ6mmのサイズであっ
た。
Then, the thickness of each plate-shaped molded body is 10
A graphite plate of mm (Tokai Carbon Co., Ltd., G347) was sandwiched and put into a graphite crucible. The graphite crucible was packed in an electric furnace, and the surroundings were filled with graphite powder and encased in a graphite carbonization treatment.
As shown in Table 1, the conditions for calcination and carbonization are a heating rate of 1 to 1
Varying within the range of 0 ° C / hr, 350 ° C during firing, 45
Each temperature step of 0 ° C. and 550 ° C. was maintained for 5 hours, and finally the temperature was raised to a predetermined temperature. The glassy carbon plate obtained had a size of 80 mm in length and width and 6 mm in thickness.

【0023】各条件(表1)で得られたガラス状カーボ
ン板の表層部および断面中心部における黒鉛六角網面層
の平均格子面間隔d002 および結晶子Lc(002)を測定
し、それぞれの内外差とともに表2に示した。
The average lattice spacing d 002 and the crystallite Lc (002) of the graphite hexagonal mesh plane layer in the surface layer portion and the center portion of the cross section of the glassy carbon plate obtained under each condition (Table 1) were measured, and It is shown in Table 2 together with the internal and external differences.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】(2)ガラス状カーボン材の耐衝撃性 表1の物性を有するガラス状カーボン板を、ダイヤモン
ド工具を用いてM3(JIS B0205)によりボル
ト(首下10mm) を200個切り出した。この機械加工に
より材質破損およびチッピング現象を生じない加工品の
歩留りを表3に示した。また、更にこのM3ボルトを5
00℃に保持されたマッフル炉に1時間入れたのち、2
0℃の水中に素早く浸漬する条件で熱衝撃試験を行っ
た。この試験を100個の試片について行った際に材質
に割れが発生した割合を測定し、結果を表3に併載し
た。
(2) Impact resistance of glassy carbon material From a glassy carbon plate having the physical properties shown in Table 1, 200 bolts (10 mm under neck) were cut out by M3 (JIS B0205) using a diamond tool. Table 3 shows the yields of processed products which are free from material damage and chipping phenomenon due to this machining. In addition, this M3 bolt is 5
Place in a muffle furnace kept at 00 ° C for 1 hour, then 2
The thermal shock test was performed under the condition of being rapidly immersed in water at 0 ° C. When this test was performed on 100 test pieces, the ratio of cracks in the material was measured, and the results are also shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】表3の結果から、実施例によるガラス状カ
ーボンは板は本発明の物性的要件を外れる比較例品に比
べて機械的衝撃ならびに熱的衝撃に対する抵抗性が高
く、加工歩留りおよび使用時の耐熱衝撃性が優れている
ことが判る。
From the results shown in Table 3, the glassy carbon sheets according to the Examples have higher resistance to mechanical impact and thermal impact than the Comparative Examples which deviate from the physical property requirements of the present invention. It can be seen that the thermal shock resistance of is excellent.

【0029】[0029]

【発明の効果】以上のとおり、本発明によれば表層部と
断面中心部における黒鉛六角網面層の平均格子面間隔d
002 または結晶子の大きさLc(002)を特定の範囲差以内
に抑制することにより機械的・熱的衝撃に対して抵抗性
の高いガラス状カーボン材を提供することができる。特
に厚さが5mmを越える厚肉サイズのガラス状カーボン材
においても十分な耐衝撃性を発揮するから、機械加工時
の歩留り、苛酷な熱履歴を伴う使用条件に供する各種の
ガラス状カーボン部材として極めて有用である。
As described above, according to the present invention, the average lattice spacing d of the graphite hexagonal mesh plane layer in the surface layer portion and the central portion of the cross section is d.
By suppressing 002 or the crystallite size Lc (002) within a specific range difference, it is possible to provide a glassy carbon material having high resistance to mechanical and thermal shocks. In particular, as it exhibits sufficient impact resistance even for thick glassy carbon materials with a thickness of over 5 mm, it can be used as various glassy carbon members that are subject to yields during machining and usage conditions with severe thermal history. Extremely useful.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛六角網面層の平均格子面間隔d00 2
が、表層部と断面中心部において0.01nm以内の範囲
差にある組織構造を備えることを特徴とする耐衝撃性ガ
ラス状カーボン材。
1. The average lattice spacing d 00 2 of the graphite hexagonal mesh plane layer.
However, the impact resistant glassy carbon material is characterized by having a texture structure within a range of 0.01 nm in the surface layer portion and the center portion of the cross section.
【請求項2】 断面中心部における黒鉛六角網面層の平
均格子面間隔d00 2が、0.345〜0.365nmの範
囲にある請求項1記載の耐衝撃性ガラス状カーボン材。
Wherein the cross-sectional center portion average lattice spacing d 00 2 graphite hexagonal plane layer of the impact resistant vitreous carbon material according to claim 1, wherein in the range of 0.345~0.365Nm.
【請求項3】 結晶子の大きさLc(002)が、表層部と断
面中心部において1.5nm以内の範囲差にある組織構造
を備えることを特徴とする耐衝撃性ガラス状カーボン
材。
3. An impact-resistant vitreous carbon material characterized by having a texture structure in which a crystallite size Lc (002) is within a range of 1.5 nm in a surface layer portion and a center portion of a cross section.
【請求項4】 断面中心部における結晶子の大きさLc
(002)が、1.3〜4.0nmの範囲にある請求項3記載
の耐衝撃性ガラス状カーボン材。
4. The crystallite size Lc at the center of the cross section
The impact-resistant glassy carbon material according to claim 3, wherein (002) is in the range of 1.3 to 4.0 nm.
JP03715996A 1996-01-31 1996-01-31 Impact resistant glassy carbon material Expired - Fee Related JP3734298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03715996A JP3734298B2 (en) 1996-01-31 1996-01-31 Impact resistant glassy carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03715996A JP3734298B2 (en) 1996-01-31 1996-01-31 Impact resistant glassy carbon material

Publications (2)

Publication Number Publication Date
JPH09208206A true JPH09208206A (en) 1997-08-12
JP3734298B2 JP3734298B2 (en) 2006-01-11

Family

ID=12489826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03715996A Expired - Fee Related JP3734298B2 (en) 1996-01-31 1996-01-31 Impact resistant glassy carbon material

Country Status (1)

Country Link
JP (1) JP3734298B2 (en)

Also Published As

Publication number Publication date
JP3734298B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP3751020B2 (en) Needle coke for graphite electrode and manufacturing method thereof
CN1880511A (en) High-density semi-graphite cathode carbon block and method for producing same
JP4430448B2 (en) Method for producing isotropic graphite material
JPH10172738A (en) Glass like carbon heating element
JP5303103B2 (en) Silicon carbide sintered body and method for producing the same
JP3734298B2 (en) Impact resistant glassy carbon material
JP3616829B2 (en) Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body
JP2000109367A (en) Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide
JP2777903B2 (en) Heat-resistant and corrosion-resistant inorganic material and method for producing the same
KR101223845B1 (en) Binder composition for carbon based refractory, carbon based refractory composition, carbon based refractory and method for producing the same
JP2623026B2 (en) Method for producing high-purity glassy carbon material
CN108623313A (en) A kind of preparation method of silicon nitride combined silicon carbide composite refractory
KR101927615B1 (en) Manufacturing method of petroleum-based binder pitch with high quinoline-insoluble content
JP5130099B2 (en) Method for producing sintered silicon carbide
JP2000154063A (en) Production of silicon carbide sintered body
JPH0463028B2 (en)
JPH04362063A (en) Production of high density and high purity glassy carbon material
JP2003055035A (en) Silica brick for hot repair and method of manufacturing the same
JPH111376A (en) Jig material for producing glass vessel
JP3736887B2 (en) Electrode plate for plasma etching
JP3434538B2 (en) Method for producing glassy carbon material
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP4627577B2 (en) Method for producing sintered silicon carbide
JPH03188222A (en) Hearth roller for heat treatment furnace
CN107512929A (en) A kind of surface treatment method of carbon fibre reinforced ceramics based composites

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees