JPH09206361A - Storage method of adsorbent particle - Google Patents

Storage method of adsorbent particle

Info

Publication number
JPH09206361A
JPH09206361A JP8290149A JP29014996A JPH09206361A JP H09206361 A JPH09206361 A JP H09206361A JP 8290149 A JP8290149 A JP 8290149A JP 29014996 A JP29014996 A JP 29014996A JP H09206361 A JPH09206361 A JP H09206361A
Authority
JP
Japan
Prior art keywords
adsorbent particles
adsorbent
particles
porous
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8290149A
Other languages
Japanese (ja)
Inventor
Hiroaki Takayanagi
弘昭 高柳
Naoko Takasaki
直子 高崎
Takashi Mikawa
隆 三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8290149A priority Critical patent/JPH09206361A/en
Publication of JPH09206361A publication Critical patent/JPH09206361A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable to sterilize adsorbent particles consisting of porous particles made of synthetic polymer without harming the porous structure of adsorbent particles and to be stored for a long period, by irradiating preliminarily tightly sealed adsorbent particles by a radioactive ray and storing it as the tightly sealed condition is kept. SOLUTION: Adsorbent particles consisting of porous particles made of synthetic polymer are tightly sealed, radioactive rays are irradiated to the adsorbent particles in the tightly sealed condition, and the adsorbent particles are stored under the tightly sealed condition. At that time, the porous particles must have 10-1,500m<2> /g of the specific surface area, 0.1-3ml/g of the pore volume, and 5-1,000μm of the particle diameter. Synthetic polymer is to be styrene- divinylbenzene, and the radioactive rays treatment must be carried out by the dose of 5-20kGy of a radioactive rays. The radioactive rays are to be γ-ray whose radiation source must be cobalt 60 and seal packaging is carried out using a bag made of a thermoplastic resin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、合成高分子製多孔
質粒子よりなる吸着剤粒子の保管方法に関する。
TECHNICAL FIELD The present invention relates to a method for storing adsorbent particles composed of synthetic polymer porous particles.

【0002】[0002]

【従来の技術】スチレン−ジビニルベンゼン共重合体、
メチルメタクリレート・エチレングリコールジメタクリ
レート共重合体等の架橋合成高分子の多孔質粒子は、従
来から、その大きな比表面積を利用することにより、液
体中の溶質分子、例えば抗生物質、蛋白質因子の医薬や
気体分子の吸着捕集に有効であり、吸着剤粒子として気
体あるいは液から有害な不要物の除去や有用物の回収、
濃縮分離等の用途に幅広く利用されている(USP36
49456、USP3716482、USP34589
76、USP4199449、USP379458
4)。しかし、多孔質粒子は、その吸着性ゆえに多孔質
粒子の搬送中、又は保管中、包装中に真菌類等の微生物
を表面に吸着しやすく、また、高表面積のためこれらの
増殖を助長する傾向がある。多孔質粒子の表面域あるい
は多孔質粒子の内表面において、真菌類、胞子等の微生
物がひとたび増殖を開始すると、多孔質粒子の表面ある
いは細孔が微生物体により汚染遮蔽され、吸着剤として
の機能が著しく低下し、実質的に使用することができな
くなる。また、吸着剤粒子中に発生した微生物は吸着剤
粒子表面上に濃縮した有機物を分解変性したり、あるい
は微生物から産出される代謝物等により吸着された有用
物、例えば抗生物質、蛋白質因子が汚染される等、吸着
剤粒子の使用の面で大きな障害となっていた。
PRIOR ART Styrene-divinylbenzene copolymer,
Conventionally, porous particles of cross-linked synthetic polymers such as methyl methacrylate / ethylene glycol dimethacrylate copolymer have been used by taking advantage of their large specific surface areas, solute molecules in liquids such as antibiotics and protein factor drugs. It is effective for adsorption and collection of gas molecules, and it removes harmful unwanted substances from gas or liquid as adsorbent particles and collects useful substances.
Widely used for applications such as concentration and separation (USP36
49456, USP3716482, USP34589.
76, USP4199449, USP379458
4). However, the porous particles tend to adsorb microorganisms such as fungi on the surface during transportation, storage, or packaging of the porous particles due to their adsorptivity, and also tend to promote their growth due to their high surface area. There is. Once microorganisms such as fungi and spores start to grow on the surface area of the porous particles or on the inner surface of the porous particles, the surfaces or pores of the porous particles are contaminated and shielded by the microorganisms, and they function as an adsorbent. Is significantly reduced, making it virtually unusable. In addition, the microorganisms generated in the adsorbent particles decompose or modify the organic substances concentrated on the surface of the adsorbent particles, or the useful substances adsorbed by the metabolites produced by the microorganisms, such as antibiotics and protein factors, are contaminated. This has been a major obstacle to the use of adsorbent particles.

【0003】吸着剤粒子の真菌類、胞子等による汚染
は、吸着剤粒子に付着した菌体、胞子等の微小生物体が
増殖することにより発生する。吸着剤粒子を長期保管す
る方法として、高濃度の塩化ナトリウム水溶液中に吸着
剤粒子を保管して微生物体の増殖を停止させる方法、あ
るいは水酸化ナトリウムや次亜塩素酸ナトリウム水溶液
で吸着剤粒子を洗浄して微生物体を死滅させる方法等の
薬剤による処理が行われてきた。しかし、吸着剤粒子に
対して、これらの薬剤を使用する方法では吸着剤粒子に
付着した微生物体を完全に除去することはできず、ま
た、防菌処理後にクリーニングして薬剤を除去すると、
搬送や包装時に空気中あるいは水中からの再汚染を防ぐ
ことが困難であった。さらに、薬剤による処理は、しば
しば吸着剤粒子の基材である合成樹脂を腐食分解させた
り多孔性を変化させ、その吸着機能が実質的に失われる
原因となっていた。
Contamination of the adsorbent particles with fungi, spores and the like occurs when microscopic organisms such as fungi and spores attached to the adsorbent particles grow. As a method of storing the adsorbent particles for a long period of time, a method of storing the adsorbent particles in a high-concentration sodium chloride aqueous solution to stop the growth of microorganisms, or a method of storing the adsorbent particles with sodium hydroxide or sodium hypochlorite aqueous solution Treatment with chemicals such as a method of washing to kill microbial bodies has been performed. However, with respect to the adsorbent particles, it is not possible to completely remove the microorganisms adhering to the adsorbent particles by the method of using these agents, and if the agent is removed by cleaning after the antibacterial treatment,
It was difficult to prevent recontamination from air or water during transportation and packaging. Further, the treatment with a chemical often causes the synthetic resin, which is the base material of the adsorbent particles, to be decomposed by corrosion or to change the porosity, and the adsorption function thereof is substantially lost.

【0004】[0004]

【発明が解決しようとする課題】本発明は、合成高分子
製多孔質粒子よりなる吸着剤粒子を確実且つ長期にわた
って汚染することなく保管する方法を提供することにあ
る。即ち、多孔質粒子に残存する真菌類等の微小生物体
を実質上死滅させ、さらに長期にわたって真菌類等によ
る汚染を防止する保管方法を提供することを課題とす
る。本発明者らは、かかる課題を解決する方法として放
射線照射による方法を検討した。吸着剤粒子のような機
能性の多孔質粒子については、吸着剤粒子に直接放射線
を照射すると照射による化学反応あるいは発熱による作
用のために、多孔質粒子の吸着性能が失活したり、強度
が低下したりするおそれがあった。我々は、種々検討の
結果、吸着剤粒子を包装材で密封状態で放射線を照射す
ることにより、吸着剤粒子の多孔質構造を損なうことな
く、真菌類等に対し防菌処理でき、長期に亘って保管す
ることができることを見出し、本発明を完成させた。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for reliably and long-term storage of adsorbent particles made of synthetic polymer porous particles without contamination. That is, it is an object of the present invention to provide a storage method that substantially kills microscopic organisms such as fungi remaining on the porous particles and prevents contamination with fungi or the like for a long period of time. The present inventors have examined a method using radiation irradiation as a method for solving such a problem. For functional porous particles such as adsorbent particles, when the adsorbent particles are directly irradiated with radiation, the adsorption performance of the porous particles may be deactivated or the strength may decrease due to the chemical reaction or heat generation effect of the irradiation. There was a risk of a drop. As a result of various investigations, we have shown that by irradiating the adsorbent particles in a sealed state with radiation, it is possible to perform fungicidal treatment against fungi and the like without impairing the porous structure of the adsorbent particles, and for a long period of time. The present invention has been completed based on the finding that they can be stored as

【0005】[0005]

【課題を解決するための手段】本発明は、合成高分子製
多孔質粒子よりなる吸着剤粒子を予め密封包装し、この
密封状態の吸着剤粒子に放射線を照射し、この密封状態
を保ったままで吸着剤粒子を保管する方法を提供するも
のである。
According to the present invention, adsorbent particles made of synthetic polymer porous particles are sealed and packaged in advance, and the sealed adsorbent particles are irradiated with radiation to keep the sealed state. The present invention also provides a method for storing adsorbent particles.

【0006】[0006]

【作用】密封状態で吸着剤粒子は放射線照射され、その
密封状態を保ったままで吸着剤粒子は保管されるので、
真菌類の発生を防止できる。又、吸着剤粒子の保管中、
密封されているので、包装材の外部からの汚染が防止さ
れる。
[Function] Since the adsorbent particles are irradiated with radiation in a sealed state and the adsorbent particles are stored while maintaining the sealed state,
The generation of fungi can be prevented. Also, during storage of the adsorbent particles,
Since it is hermetically sealed, external contamination of the packaging material is prevented.

【0007】[0007]

【発明の実施の形態】以下に本発明を詳細に説明する。
多孔質粒子の基材の合成高分子は吸着剤として使用でき
る架橋された合成高分子粒子である。かかる合成高分子
としては、例えば、スチレン−ジビニルベンゼン共重合
体及びその臭素化反応物、エチレングリコールジメタク
リレート重合体、メチルメタクリレート−エチレングリ
コールジメタクリレート共重合体、ステアリルメタクリ
レート−トリメチロールプロパントリメタクリレート共
重合体等の架橋ポリスチレン粒子または架橋ポリメタク
リレート粒子、アクリロニトリル−ジビニルベンゼン共
重合体、及びフェノール−ホルマリン縮合物からなるも
のが挙げられる。これらの中でもスチレン−ジビニルベ
ンゼン共重合体が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The synthetic polymer of the base material of the porous particles is a crosslinked synthetic polymer particle that can be used as an adsorbent. Examples of such synthetic polymers include styrene-divinylbenzene copolymer and its brominated reaction product, ethylene glycol dimethacrylate polymer, methyl methacrylate-ethylene glycol dimethacrylate copolymer, stearyl methacrylate-trimethylolpropane trimethacrylate copolymer. Examples include crosslinked polystyrene particles or crosslinked polymethacrylate particles such as polymers, acrylonitrile-divinylbenzene copolymers, and phenol-formalin condensates. Of these, a styrene-divinylbenzene copolymer is preferable.

【0008】本発明における多孔質の吸着剤粒子は、比
表面積が10〜1,500m2 /g、好ましくは300
〜1,200m2 /g、細孔容積が0.1〜3ml/
g、好ましくは0.5〜2ml/gの多孔性を有し、多
孔質粒子の粒子径が5〜1,000μm、好ましくは5
0〜600μmのものが好ましい。これらの合成高分子
製多孔質粒子よりなる吸着剤粒子は、例えば、スチレン
−ジビニルベンゼン共重合体系のものは、三菱化学
(株)よりDIAION HP20、DIAION H
P21、DIAION HP20SS、Rohm&Ha
as社よりAmberlite XAD4、Amber
lite XAD16の商品名で、又、ポリメタクリレ
ート系のものは、三菱化学(株)よりDIAION H
P2MG、Rohm&Haas社よりAmberlit
e XAD7の商品名で入手することができる。
The porous adsorbent particles in the present invention have a specific surface area of 10 to 1,500 m 2 / g, preferably 300.
~ 1,200 m 2 / g, pore volume 0.1-3 ml /
g, preferably 0.5 to 2 ml / g, and the porous particles have a particle size of 5 to 1,000 μm, preferably 5
It is preferably from 0 to 600 μm. The adsorbent particles composed of these synthetic polymer porous particles are, for example, those of styrene-divinylbenzene copolymer type, manufactured by Mitsubishi Chemical Co., Ltd. DIAION HP20, DIAION H.
P21, DIAION HP20SS, Rohm & Ha
Amberlite XAD4, Amber from as
lite XAD16, a polymethacrylate type, is available from Mitsubishi Chemical Corporation as DIAION H
Amberlit from P2MG, Rohm & Haas
e It is available under the trade name of XAD7.

【0009】照射する放射線の線種としては、コバルト
60を線源として使用するγ線照射が実用的であり好ま
しい。放射線の照射線量は、線源の量及び線源からの距
離によって、あるいは照射時間を制御することによっ
て、照射線量率を連続的に適宜調整することができる。
照射線量は、2〜40kGy(放射線吸収量:グレイ)
が好ましく、5〜20kGyがより好ましい。この範囲
を外れると、長期安定性の付与が不十分であったり、γ
線量が必要以上に照射されたり、多孔質粒子が変質した
りするので好ましくない。
As the radiation type of the irradiation, γ-ray irradiation using cobalt 60 as a radiation source is practical and preferable. The irradiation dose of the radiation can be continuously and appropriately adjusted by adjusting the amount of the radiation source and the distance from the radiation source or by controlling the irradiation time.
Irradiation dose is 2-40 kGy (Radiation absorption: Gray)
Is preferable, and 5-20 kGy is more preferable. If it deviates from this range, the long-term stability may be insufficiently imparted or γ
It is not preferable because the dose is irradiated more than necessary and the porous particles are altered.

【0010】放射線照射による保存安定効果を長時間に
わたって持続させるためには、照射を行う前に多孔質粒
子を包装材で密封包装する。この密封包装の際には、窒
素ガス、イオン交換水等の不活性物で袋や容器の内部を
置換して吸着剤粒子を密封してもよい。包装としては、
胞子等の微生物体が外部から直接侵入し付着するのを防
止できる機能が必要であり、具体的にはポリエチレン、
ポリプロピレン等のポリオレフィンやポリエチレンテレ
フタレート等の樹脂フィルムまたは袋、容器等の樹脂成
形体、並びにガラス瓶、缶または樽等の包装材が用いら
れる。照射処理には、既知の設備をそのまま使用するこ
とができる。即ち、乾燥した、あるいは水等で湿潤した
多孔質粒子包装材で密封梱包した後、放射線照射設備に
移送し上記の照射条件で処理し、そのままの密封状態を
保って保管する。袋のフィルムの肉厚は、8〜300μ
m、好ましくは20〜120μm、容器の壁厚は、0.
3〜2mmが好ましい。−50〜+50℃、より好まし
くは−15℃〜常温である。
In order to maintain the storage stability effect of irradiation with radiation for a long time, the porous particles are hermetically packed with a packaging material before irradiation. At the time of this hermetic packaging, the adsorbent particles may be hermetically sealed by substituting the interior of the bag or container with an inert material such as nitrogen gas or ion-exchanged water. As for packaging,
It is necessary to have a function to prevent microbial bodies such as spores from invading and adhering directly from the outside. Specifically, polyethylene,
Resin films or bags such as polyolefins such as polypropylene and polyethylene terephthalate, resin moldings such as containers, and packaging materials such as glass bottles, cans or barrels are used. Known equipment can be used as it is for the irradiation treatment. That is, after being sealed and packed with a porous particle packaging material that is dried or moistened with water or the like, it is transferred to a radiation irradiation facility, processed under the irradiation conditions described above, and stored in the same sealed state. The film thickness of the bag is 8-300μ
m, preferably 20 to 120 μm, and the wall thickness of the container is 0.
It is preferably 3 to 2 mm. -50 to + 50 ° C, more preferably -15 ° C to room temperature.

【0011】[0011]

【実施例】以下に、本発明の方法について代表的な実施
例および比較例を示し、更に具体的に説明する。なお、
これらは単なる例示であり、本発明は、特にこれらの実
施例によって、限定されるものではない。
EXAMPLES Hereinafter, the method of the present invention will be described in more detail by showing representative examples and comparative examples. In addition,
These are merely examples, and the present invention is not limited to these examples in particular.

【0012】実施例1〜7、比較例1 下記の実験は、初期条件の制御として、菌体を吸着剤粒
子と一緒に包装して行った。Aspergillus
niger MCI 1528菌を培養したスラント4
本に減菌水14mlを加え、胞子を掻き採って得た懸濁
液を、遠心チューブに移し、12,000回転で10分
間遠心分離を行い、上澄み液を取り除いた。この操作を
3回繰り返すことにより菌胞子の洗浄を行って菌胞子を
回収し、10mlの減菌水中に加え、分散させて溶液と
したものを菌液とした。
Examples 1 to 7 and Comparative Example 1 The following experiment was carried out by wrapping bacterial cells together with adsorbent particles as a control of initial conditions. Aspergillus
slant 4 culturing Niger MCI 1528
14 ml of sterilized water was added to the book, and the suspension obtained by scraping off the spores was transferred to a centrifuge tube and centrifuged at 12,000 rpm for 10 minutes to remove the supernatant. By repeating this operation three times, the spores were washed to collect the spores, and the spores were added to 10 ml of sterilized water and dispersed to obtain a solution, which was used as a bacterium solution.

【0013】市販のスチレン−ジビニルベンゼン共重合
体の合成吸着剤“ダイヤイオンHP20”(三菱化学
(株)製 比表面積617m2 /g、平均細孔容積1.
34ml/g、平均粒子径約500μm)を水膨潤状態
で100mlポリエチレン製袋に計量した。吸着剤10
0mlに対して前記菌液1mlを添加した後、ポリエチ
レン袋の開放口をヒートシール法により密閉し、菌を吸
着剤中に均一に分散付着させた。この密封したポリエチ
レン袋に、コバルト60線源を有する照射装置により、
下記表1に示す照射線量率及び照射時間でγ線照射を行
った。
Commercially available synthetic adsorbent of styrene-divinylbenzene copolymer "Diaion HP20" (manufactured by Mitsubishi Chemical Co., Ltd., specific surface area 617 m 2 / g, average pore volume 1.
34 ml / g, average particle diameter of about 500 μm) was weighed in a 100 ml polyethylene bag in a water swollen state. Adsorbent 10
After adding 1 ml of the bacterial solution to 0 ml, the opening of the polyethylene bag was sealed by a heat seal method to uniformly disperse and adhere the bacteria in the adsorbent. In this sealed polyethylene bag, with an irradiation device having a cobalt 60 radiation source,
Gamma ray irradiation was performed at the irradiation dose rate and irradiation time shown in Table 1 below.

【0014】照射処理後の細孔容積をマイクロメティッ
ク社製のアサップ2400により、および比表面積を
(株)島津製作所製のフローソーブによりそれぞれ測定
した。また、菌の生存の有無を菌培養法によって、比較
した。その結果、合成吸着剤菌胞子植え付け品のγ線照
射試験の実施例1〜7において、γ線照射の有無によっ
て、水分量、比表面積及び細孔容積には実質的に変化が
なく、しかもγ線照射により菌の胞子は死滅しているこ
とが確認された。結果を表1に示す。
The pore volume after the irradiation treatment was measured with an Asap 2400 manufactured by Micrometics, and the specific surface area was measured with a flowsorb manufactured by Shimadzu Corporation. In addition, the presence or absence of bacterium survival was compared by the bacterium culture method. As a result, in Examples 1 to 7 of the γ-ray irradiation test of the synthetic adsorbent fungal spore-implanted products, the water content, the specific surface area and the pore volume did not substantially change depending on the presence or absence of γ-ray irradiation, and γ It was confirmed that the spores of the fungus were killed by the irradiation. The results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例8 市販のスチレン−ジビニルベンゼン共重合体の合成吸着
剤“ダイヤイオンHP20SS”(三菱化学(株)製
比表面積540m2 /g、細孔容積1.29ml/g、
平均粒子径約120μm)を水膨潤状態で100ml計
量し、ポリエチレン製袋に密封した。この袋に、コバル
ト60線源を有する照射装置を用いて、10kGyのγ
線照射を行った。γ線照射処理前後の合成吸着剤の細孔
容積をマイクロメティック社製のアサップ2400によ
り、比表面積をマイクロメティック社製のフローソープ
2300により、それぞれ測定した。その結果、合成吸
着剤のγ線照射試験において、表2に示すように、γ線
照射処理前後における比表面積、細孔容積は実質的に変
化がないことが確認された。これらを用いて、実施例1
と同様に、水分量の測定、菌の胞子存在の経時変化を調
べた。結果を表2に示す。
Example 8 Commercially available styrene-divinylbenzene copolymer synthetic adsorbent "Diaion HP20SS" (manufactured by Mitsubishi Chemical Corporation)
Specific surface area 540 m 2 / g, pore volume 1.29 ml / g,
100 ml of an average particle diameter of about 120 μm) was weighed in a water-swelled state and sealed in a polyethylene bag. In this bag, an irradiation device having a cobalt 60 radiation source was used to obtain a γ of 10 kGy.
Irradiation was performed. The pore volume of the synthetic adsorbent before and after the γ-ray irradiation treatment was measured by an Asap 2400 manufactured by Micrometrics, and the specific surface area was measured by a flow soap 2300 manufactured by Micrometrics. As a result, in the γ-ray irradiation test of the synthetic adsorbent, as shown in Table 2, it was confirmed that the specific surface area and the pore volume before and after the γ-ray irradiation treatment did not substantially change. Using these, Example 1
Similarly to the above, the water content was measured and the change over time in the presence of spores of the bacterium was examined. Table 2 shows the results.

【0017】[0017]

【表2】 [Table 2]

【0018】実施例9 スチレン−ジビニルベンゼン系吸着剤粒子である“ダイ
ヤイオンHP20SS”5kgを大気開放下でポリエチ
レン袋に入れ開口部をヒートシールにより密閉した。こ
の袋に60Coを線源とする放射線10kGyを照射した
後、24ケ月間室温で保管した。無菌室にてこの袋を開
封し、吸着剤0.2gをカビ用シャーレ(ポテトデキス
トロース寒天培地)に接種し、10日間、27℃で培養
した。培養シャーレを顕微鏡下で観察したが、Peni
cillium属のカビ(空気中に浮遊しているカビの
一種)の生育は見られず胞子が死滅していることが確認
された。
Example 9 5 kg of "Diaion HP20SS", which is a styrene-divinylbenzene-based adsorbent particle, was placed in a polyethylene bag under the atmosphere and the opening was sealed by heat sealing. This bag was irradiated with 10 kGy of radiation having 60 Co as a radiation source and then stored at room temperature for 24 months. The bag was opened in a sterile room, and 0.2 g of the adsorbent was inoculated into a fungal dish (potato dextrose agar medium) and cultured at 27 ° C. for 10 days. The culture petri dish was observed under a microscope.
No growth of mold of the genus Cillium (a type of mold floating in the air) was observed, and it was confirmed that the spores were dead.

【0019】比較例2 放射線の照射を行わなかった以外は実施例10と同様に
して吸着剤を袋内に密封し、24カ月後、袋より吸着剤
を取り出し、カビ培養シャーレにとり観察したところ、
カビの生育が見られ吸着剤中で胞子が死滅していなかっ
たことが確認された。
Comparative Example 2 The adsorbent was sealed in a bag in the same manner as in Example 10 except that radiation was not applied, and after 24 months, the adsorbent was taken out from the bag and observed in a mold culture dish.
Mold growth was observed and it was confirmed that the spores were not killed in the adsorbent.

【0020】[0020]

【発明の効果】密封状態で放射線照射処理された吸着剤
粒子は、長期に亘って防菌効果があり、且つ、吸着性能
の低下することがない。
The adsorbent particles that have been subjected to radiation treatment in a sealed state have a bactericidal effect for a long period of time, and the adsorption performance does not deteriorate.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 合成高分子の多孔質粒子からなる吸着剤
粒子を密封包装し、この密封包装した状態の吸着剤粒子
に放射線を照射し、該密封包装状態で吸着剤粒子を保管
する方法。
1. A method in which adsorbent particles composed of porous particles of a synthetic polymer are hermetically packaged, the adsorbent particles in the hermetically sealed state are irradiated with radiation, and the adsorbent particles are stored in the hermetically sealed state.
【請求項2】 吸着剤粒子は、比表面積が10〜1,5
00m2 /g、細孔容積が0.1〜3ml/g、粒子径
が5〜1,000μmの多孔質粒子である、請求項1記
載の吸着剤粒子の保管方法。
2. The adsorbent particles have a specific surface area of 10 to 1,5.
The method for storing adsorbent particles according to claim 1, wherein the adsorbent particles are porous particles having a particle size of 00 m 2 / g, a pore volume of 0.1 to 3 ml / g, and a particle size of 5 to 1,000 μm.
【請求項3】 合成高分子が、スチレン−ジビニルベン
ゼン共重合体である、請求項1記載の吸着剤粒子の保管
方法。
3. The method for storing adsorbent particles according to claim 1, wherein the synthetic polymer is a styrene-divinylbenzene copolymer.
【請求項4】 放射線の処理が5〜20kGyの線量の
放射線である、請求項1に記載の吸着剤粒子の保管方
法。
4. The method for storing adsorbent particles according to claim 1, wherein the radiation treatment is radiation with a dose of 5 to 20 kGy.
【請求項5】 放射線がγ線である、請求項1に記載の
吸着剤粒子の保管方法。
5. The method for storing adsorbent particles according to claim 1, wherein the radiation is gamma rays.
【請求項6】 γ線が、コバルト60を線源とするγ線
である、請求項5記載の吸着剤粒子の保管方法。
6. The method for storing adsorbent particles according to claim 5, wherein the gamma rays are gamma rays having cobalt 60 as a radiation source.
【請求項7】 密封包装が熱可塑性樹脂フィルム製袋を
用いて行われることを特徴とする請求項1に記載の吸着
剤粒子の保管方法。
7. The method for storing adsorbent particles according to claim 1, wherein the hermetically sealed packaging is performed by using a bag made of a thermoplastic resin film.
JP8290149A 1995-11-28 1996-10-31 Storage method of adsorbent particle Pending JPH09206361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8290149A JPH09206361A (en) 1995-11-28 1996-10-31 Storage method of adsorbent particle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-309213 1995-11-28
JP30921395 1995-11-28
JP8290149A JPH09206361A (en) 1995-11-28 1996-10-31 Storage method of adsorbent particle

Publications (1)

Publication Number Publication Date
JPH09206361A true JPH09206361A (en) 1997-08-12

Family

ID=26557913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8290149A Pending JPH09206361A (en) 1995-11-28 1996-10-31 Storage method of adsorbent particle

Country Status (1)

Country Link
JP (1) JPH09206361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506269A (en) * 2008-10-24 2012-03-15 フレゼニウス メディカル ケア ドイチュランド ゲゼルシャフト ミット ベシュレンクテル ハフトング Method and apparatus for sterilization, in particular for sterilization of adsorbers
JP2013151822A (en) * 2012-01-25 2013-08-08 Inamori Co Ltd Manufacturing method of mildew-proofing tatami facing, and mildew-proofing tatami facing

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108096A (en) * 1976-03-05 1977-09-10 Yawata Kagaku Kougiyou Kk Process for packaging and sterilizing granular or powdery additive material for use in brewery liquor
JPS53128583A (en) * 1977-04-15 1978-11-09 Kuraray Co Ltd Process for sterilizing selectively permeable membrane
JPS577978B2 (en) * 1976-09-03 1982-02-13
JPS61175A (en) * 1984-06-06 1986-01-06 大倉工業株式会社 Blister package of medical appliance strilized through projection of radiation
JPS62204754A (en) * 1986-03-03 1987-09-09 株式会社ニツシヨ− Radiation sterilization of medical instrument
JPH0318371A (en) * 1989-06-15 1991-01-25 Nippon Medical Supply Corp Radiation sterilization method for medical appliance
JPH05230067A (en) * 1991-12-25 1993-09-07 Mitsubishi Kasei Corp Method for separating antibiotic
JPH07145264A (en) * 1994-02-09 1995-06-06 Showa Denko Kk Irradiation sterilization of tightly sealed material
JPH07284531A (en) * 1994-04-15 1995-10-31 Nissho Corp Device for removing toxic material in blood
JPH0833703A (en) * 1994-07-25 1996-02-06 Idemitsu Petrochem Co Ltd Medical molded article
JPH08173803A (en) * 1994-12-26 1996-07-09 Kanegafuchi Chem Ind Co Ltd Endotoxin adsorbent, adsorbing and removing method and adsorbing unit
JPH08173802A (en) * 1994-12-26 1996-07-09 Kanegafuchi Chem Ind Co Ltd Tumor necrosis factor-alpha adsorbent, adsorbing and removing method and adsorber

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108096A (en) * 1976-03-05 1977-09-10 Yawata Kagaku Kougiyou Kk Process for packaging and sterilizing granular or powdery additive material for use in brewery liquor
JPS577978B2 (en) * 1976-09-03 1982-02-13
JPS53128583A (en) * 1977-04-15 1978-11-09 Kuraray Co Ltd Process for sterilizing selectively permeable membrane
JPS61175A (en) * 1984-06-06 1986-01-06 大倉工業株式会社 Blister package of medical appliance strilized through projection of radiation
JPS62204754A (en) * 1986-03-03 1987-09-09 株式会社ニツシヨ− Radiation sterilization of medical instrument
JPH0318371A (en) * 1989-06-15 1991-01-25 Nippon Medical Supply Corp Radiation sterilization method for medical appliance
JPH05230067A (en) * 1991-12-25 1993-09-07 Mitsubishi Kasei Corp Method for separating antibiotic
JPH07145264A (en) * 1994-02-09 1995-06-06 Showa Denko Kk Irradiation sterilization of tightly sealed material
JPH07284531A (en) * 1994-04-15 1995-10-31 Nissho Corp Device for removing toxic material in blood
JPH0833703A (en) * 1994-07-25 1996-02-06 Idemitsu Petrochem Co Ltd Medical molded article
JPH08173803A (en) * 1994-12-26 1996-07-09 Kanegafuchi Chem Ind Co Ltd Endotoxin adsorbent, adsorbing and removing method and adsorbing unit
JPH08173802A (en) * 1994-12-26 1996-07-09 Kanegafuchi Chem Ind Co Ltd Tumor necrosis factor-alpha adsorbent, adsorbing and removing method and adsorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506269A (en) * 2008-10-24 2012-03-15 フレゼニウス メディカル ケア ドイチュランド ゲゼルシャフト ミット ベシュレンクテル ハフトング Method and apparatus for sterilization, in particular for sterilization of adsorbers
JP2013151822A (en) * 2012-01-25 2013-08-08 Inamori Co Ltd Manufacturing method of mildew-proofing tatami facing, and mildew-proofing tatami facing

Similar Documents

Publication Publication Date Title
AU572481B2 (en) The use of chlorine dioxide gas as a chemosterilizing agent
KR101338511B1 (en) Method for irradiating thrombocyte concentrates in flexible containers with ultra-violet light
CN1087258C (en) A method of sterilizing closed containers
US5948385A (en) Antimicrobial materials
US5839258A (en) Storing method for adsorbent particles
CA2951759A1 (en) Use of materials incorporating microparticles for avoiding the proliferation of contaminants
US5246663A (en) Isothiocyanate vapor-generating agent, germ-destroying treatment method using isothiocyanate vapors and apparatus therefor
JPH09206361A (en) Storage method of adsorbent particle
JPH08198709A (en) Antimicrobial and deodorizing agent
JP2017055723A (en) Packaging bag for cell culture vessel
CN112940090A (en) Protein A immunoadsorption medium resistant to radiation sterilization and efficient disinfection
US6464937B2 (en) Ultrapure sterilization of microbiological test media by electron beam irradiation
JPS63189152A (en) Sterilization method by radiation
EP0427862B1 (en) Generator of isothiocyanic ester vapor, method of sterilizing with isothiocyanic ester vapor, and apparatus therefor
JP2813837B2 (en) Sterilization method of immobilized enzyme using high pressure
US3477807A (en) Method and apparatus for sterilizing
JPH032235A (en) Polymer molded article containing isothiocyanic acid ester
CN110655712A (en) Antibacterial fresh-keeping plastic film and manufacturing method thereof
JP3697475B2 (en) Drug vial holding assembly and related technology
JP2582002B2 (en) Sterilization method of aluminum lid or container
JPH0550425U (en) Contact lens container
BE1005999A4 (en) Absorbent FOR CULTURE MEDIUM AND ITS ANTICIPATED HOLDER.
JP2553955B2 (en) Method for sterilizing petri dishes made of synthetic resin for culture medium
JP2659119B2 (en) Sterilization method of packaging container
JPH0889742A (en) Sterilizing method of deoxidizer package and deoxidizer package sterilized by the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050531