JPH0318371A - Radiation sterilization method for medical appliance - Google Patents

Radiation sterilization method for medical appliance

Info

Publication number
JPH0318371A
JPH0318371A JP1153218A JP15321889A JPH0318371A JP H0318371 A JPH0318371 A JP H0318371A JP 1153218 A JP1153218 A JP 1153218A JP 15321889 A JP15321889 A JP 15321889A JP H0318371 A JPH0318371 A JP H0318371A
Authority
JP
Japan
Prior art keywords
oxygen
medical appliance
radiations
sterilization
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1153218A
Other languages
Japanese (ja)
Other versions
JP2876320B2 (en
Inventor
Kazuo Izumi
泉 和雄
Yoji Ochi
越智 陽司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Medical Supply Corp
Original Assignee
Nippon Medical Supply Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15557635&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0318371(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Medical Supply Corp filed Critical Nippon Medical Supply Corp
Priority to JP1153218A priority Critical patent/JP2876320B2/en
Publication of JPH0318371A publication Critical patent/JPH0318371A/en
Application granted granted Critical
Publication of JP2876320B2 publication Critical patent/JP2876320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

PURPOSE:To allow the sterilization at a low dose and to suppress the deterioration of the medical appliance with age by hermetically sealing the medical appliance by using an oxygen impermeable material in such a manner that an oxygen concn. attains a specific range, then irradiating the appliance with radiations. CONSTITUTION:The medical appliance formed of a high-polymer material is hermetically sealed by using the oxygen impermeable material in such a manner that the oxygen concn. attains a >=0.5% and <4% range and is then irradiated with the radiations at the time of sterilizing the medical appliance by irradiating the same with the radiations. A synthetic resin film or sheet laminated with aluminum foil or deposited with aluminum by evaporation is adequate as the oxygen impermeable material for hermetic sealing of the medical appliance. The synthetic resin film or sheet laminated with an oxygen barrier type resin, such as ethylene/vinyl alcohol unit copolymer of polyvinylidene chloride, is adequate for the applications where transparency is required. Gamma rays are most generally used for the radiations and the dose of the radiations is preferably in a 1.5 to 2.5Mrad range.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、医療用具の滅菌方法に関する。さらに詳しく
は、高分子材料から形成された医療用具を放射線滅菌す
るための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for sterilizing medical devices. More particularly, it relates to a method for radiation sterilization of medical devices formed from polymeric materials.

〔従来の技術〕[Conventional technology]

医療用具の滅菌方法の1つとして、従来より放射線によ
る滅菌法が知られている。特に、近年になってガス滅菌
した医療用具へのエチレンオキサイドの残留が問題とな
るにつれて、放射線滅菌の重要性が増大し、種々の製品
への適用が検討されている。
A radiation sterilization method has been known as one of the methods for sterilizing medical tools. In particular, in recent years, as residual ethylene oxide in gas-sterilized medical instruments has become a problem, the importance of radiation sterilization has increased, and its application to various products is being considered.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、医療用具が高分子材料で形成されている場合
には、放射線を照射すると経時的に強度低下や機能低下
を起こすという問題があり、その普及が妨げられている
。そこでこのような問題を解決するために、従来より多
くの提案がなされ一部のものは実施されている。
By the way, when medical devices are made of polymeric materials, there is a problem that their strength and functionality deteriorate over time when they are irradiated with radiation, which has hindered their widespread use. Therefore, in order to solve such problems, many proposals have been made and some of them have been implemented.

例えば特公昭55−23620号公報においては、飽和
含水率以上の湿潤状態で放射線を照射する方法が開示さ
れており、特開昭59−192373号公報には不活性
ガス雰囲気で照射を行う方法が開示されている。これら
の方法によると医療用具が酸素から遮断されることにな
るので、空気中でと同じ量の放射線を照射すると確かに
強度低下や機能低下は抑制される。ところが、医療用具
に付着した細菌の放射線に対する抵抗性も増加してしま
い、D稙(細菌をIO分の1に死滅させるのに必要な放
射線の線量)が上昇するので、同しレベルの滅菌保証を
行うためには照射線量を増加させる必要があり、結局の
ところ充分な効果が得られないのが実状であった。
For example, Japanese Patent Publication No. 55-23620 discloses a method of irradiating radiation in a wet state with a saturated moisture content or higher, and Japanese Patent Publication No. 59-192373 discloses a method of irradiating in an inert gas atmosphere. Disclosed. According to these methods, the medical device is cut off from oxygen, so if the same amount of radiation is irradiated as in the air, the decrease in strength and functionality will certainly be suppressed. However, the resistance of bacteria attached to medical devices to radiation increases, and the D value (the dose of radiation required to kill 1/10% of bacteria) increases, so it is not possible to guarantee the same level of sterilization. In order to do this, it was necessary to increase the irradiation dose, and the reality was that sufficient effects could not be obtained.

そこで特開昭62−74364号公報には、医療用具を
ガス透過性の袋に入れて空気中で放射線滅菌した後、脱
酸素剤とともに酸素不透過性の包装材料に密封する方法
が開示されている。この方法によれば、滅菌は空気中で
行われるのでD値の上昇はなく、滅菌後は脱酸素剤によ
って酸素が除去されるので経時的な劣化を防ぐことがで
きる。
Therefore, Japanese Patent Application Laid-Open No. 62-74364 discloses a method in which medical devices are placed in a gas-permeable bag, radiation sterilized in the air, and then sealed together with an oxygen absorber in an oxygen-impermeable packaging material. There is. According to this method, since sterilization is performed in air, there is no increase in the D value, and since oxygen is removed by an oxygen scavenger after sterilization, deterioration over time can be prevented.

しかしながら、滅菌後に脱酸素剤を封入することは、製
品を最終包装した状態で滅菌できないので操作」二きわ
めて煩雑であるばかりでなく、脱酸素剤の封入が遅れる
と高分子材料の劣化が進行してしまうので、実用性の面
で大きな問題点を有している。
However, enclosing an oxygen absorber after sterilization is not only extremely complicated, as the product cannot be sterilized in its final packaging, but also deterioration of the polymeric material may progress if the oxygen absorber is delayed. This poses a major problem in terms of practicality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、このような問題点を解決するために、医
療用具を酸素不透過性材料を用いて酸素濃度が4〜12
%の雰囲気となるように密封し、次いで放射線を照射す
る方法を見出し、先に特願昭62 − 318405号
として特許出願した。
In order to solve these problems, the present inventors have developed medical devices with an oxygen concentration of 4 to 12 by using oxygen-impermeable materials.
% atmosphere and then irradiation with radiation, and filed a patent application in Japanese Patent Application No. 62-318405.

そしてさらに検討を継続した結果、酸素濃度が4%未満
になるとD値はややヒ弄するが、0.5%以上であれば
0%の場合に比べてかなり低いD値に抑えられ、しかも
医療用具を構成する高分子材料の劣化がより低く抑えら
れるので、目的や用途によってはこのような条件の方が
好ましい場合があることを見出した。すなわち本発明は
、高分子材料から形成された医療用具に放射線を照射し
て滅菌するに際し、医療用具を酸素不透過性材料を用い
て酸素濃度が0.5%以上4%未満の雰囲気となるよう
に密封し、次いで放射線を照射することを特徴とする医
療用具の放射線滅菌方法である。
As a result of further investigation, we found that when the oxygen concentration is less than 4%, the D value is slightly affected, but when it is 0.5% or more, the D value can be suppressed to a much lower value than when it is 0%. It has been found that such conditions may be preferable depending on the purpose and use, since deterioration of the polymeric material constituting the tool can be suppressed to a lower level. That is, in the present invention, when sterilizing a medical device made of a polymeric material by irradiating it with radiation, the medical device is made of an oxygen-impermeable material to create an atmosphere with an oxygen concentration of 0.5% or more and less than 4%. This is a radiation sterilization method for medical devices, which is characterized by sealing the devices as described above and then irradiating them with radiation.

〔作  用〕[For production]

本発明においては、滅菌前の酸素濃度を0.5%以上と
したことによって滅菌におけるD値の上昇を抑えること
ができ、低線量での滅菌が可能となる。そして、放射線
の照射によって酸素が消費3 され、滅菌後は無酸素状態の雰囲気にすることができる
ので、医療用具の経時的な劣化を抑えることができる。
In the present invention, by setting the oxygen concentration before sterilization to 0.5% or more, an increase in the D value during sterilization can be suppressed, and sterilization at a low dose becomes possible. Oxygen is consumed by radiation irradiation, and an oxygen-free atmosphere can be created after sterilization, so deterioration of medical tools over time can be suppressed.

〔実施例〕〔Example〕

本発明を適用できる医療用具は高分子材料から形成され
たものであるが、全体が高分子材料で形成されたものだ
けでなく、その一部が高分子材料で形成されたものでも
よい。高分子材料として公知のものにはいずれも適用で
き、ポリエチレンポリプロピレン,ポリスチレン,ポリ
塩化ビニル,エチレンー酢酸ビニル共重合体,エチレン
ービニルアルコール共重合体.ポリビニルアルコール,
ポリメチルメタクリレート.ポリアクリロニトリル,ポ
リエステル,ポリアミド,ポリカーボネート,ポリウレ
タン,セルロース,セルロースアセテート,ABS樹脂
,AS樹脂,シリコーンゴム,ポリブタジエン.ポリク
ロロプレン,ポリイソプレン,スチレンーブタジエン系
共重合体および天然ゴム等を例示することができる。
Although the medical device to which the present invention can be applied is made of a polymeric material, it may not only be made entirely of a polymeric material, but may also be partially made of a polymeric material. Any known polymer material can be used, including polyethylene polypropylene, polystyrene, polyvinyl chloride, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer. polyvinyl alcohol,
Polymethyl methacrylate. Polyacrylonitrile, polyester, polyamide, polycarbonate, polyurethane, cellulose, cellulose acetate, ABS resin, AS resin, silicone rubber, polybutadiene. Examples include polychloroprene, polyisoprene, styrene-butadiene copolymers, and natural rubber.

また、医療用具を密封するための酸素不透過性4 材料としては、合成樹脂フイルムまたはシートにアル旦
ニウム箔を積層したものやアルミニウムを華着したもの
が好適である。このような材料は不透明であるが、透明
性の必要な用途には、エチレンービニルアルコール共重
合体や塩化ビニリデンなどの酸素バリャー性樹脂を積層
した合成樹脂フィルムまたはシートが好適である。また
、これら以外の合戒樹脂シートであっても厚肉にすれば
酸素透過性は減少するので、使用可能な場合がある。
Further, as the oxygen-impermeable material for sealing the medical device, it is preferable to use a synthetic resin film or sheet laminated with aluminum foil or aluminum bonded. Such materials are opaque, but for applications requiring transparency, synthetic resin films or sheets laminated with oxygen barrier resins such as ethylene-vinyl alcohol copolymers and vinylidene chloride are suitable. In addition, other resin sheets than these may be usable in some cases because their oxygen permeability will be reduced if they are made thicker.

これらの材料は袋またはトレイの形状にして医療用具を
密封ずる方法を一般に採用できるが、他の形態とするこ
ともできる。
These materials are generally used to seal the medical device in the form of a bag or tray, but other forms are also possible.

酸素濃度が0.5%以上4%未満の雰囲気になるように
密封する方法としては、このような範囲の酸素濃度に調
製したガス雰囲気下で密封を行う方法、真空下で医療用
具を包装すると同時あるいはその後に−L記範囲の酸素
濃度を有するガスを吹き込んで密封ずる方法、適当な減
圧下で医療用具を包装すると同時あるいはその後に窒素
ガスを吹き込んで密封し残存空気に含まれる酸素によっ
て5 6 .ヒ記酸素濃度を得る方法、および適量の脱酸素剤とと
もに空気中で密封する方法などがある。このような方法
は食品の長期保存などのために従来より使用されており
、当業者には周知の方法である。
Methods of sealing in an atmosphere with an oxygen concentration of 0.5% or more and less than 4% include a method of sealing in a gas atmosphere adjusted to an oxygen concentration in this range, and a method of packaging medical devices under vacuum. At the same time or after that, a gas having an oxygen concentration within the range specified by L is blown into the container to seal it, or at the same time or after the medical device is packaged under an appropriate reduced pressure, nitrogen gas is blown into the container to seal it, and the oxygen contained in the remaining air is used to seal the device. 6. There are methods to obtain the oxygen concentration described in (h), and methods to seal in air with an appropriate amount of oxygen scavenger. Such methods have been conventionally used for long-term preservation of foods, and are well known to those skilled in the art.

そして、公知の装置をそのまま使用することができる。In addition, known devices can be used as they are.

また、ガス中に含有される酸素以外の気体としては、窒
素,二酸化炭素および不活性ガスなどが好ましく、特に
経済性の点で窒素が好適である。
Further, as the gas other than oxygen contained in the gas, nitrogen, carbon dioxide, an inert gas, etc. are preferable, and nitrogen is particularly preferable from the point of view of economical efficiency.

本発明において使用される放射線としては、ガンマ線,
X線および電子線等があり、いずれも使用可能であるが
、ガンマ線がもっとも一般的に使用される。また、放射
線の線量は1.5〜5.0Mradの範囲が好適であり
、特に本発明においては無酸素雰囲気下での照射ほど高
い線量を必要としないので、1.5〜2.5Mradの
範囲が好ましい。
The radiation used in the present invention includes gamma rays,
X-rays, electron beams, and the like can be used, but gamma rays are most commonly used. In addition, the radiation dose is preferably in the range of 1.5 to 5.0 Mrad, and in particular in the present invention, a dose as high as that in irradiation in an oxygen-free atmosphere is not required, so it is in the range of 1.5 to 2.5 Mrad. is preferred.

本発明の方法によれば滅菌による医療用具の強度劣化を
少塚くすることができるので、各種の医療用具の滅菌に
好ましく適用することができるが、特に機能性の高い医
療用具に適用した場合に機能低下が起きにくいので好ま
しい。そのような医療用具の例としては、血液透析器,
血液濾過器,血漿分離器,人工肺などの半透膜を使用し
たものをあげることができる。特に膜がセルロースアセ
テートからなる場合には、膜に多量のグリセリンが含ま
れているので、通常の高分子材料を放射線滅菌する場合
よりもD値が上昇しやすい傾向があるが、本発明を使用
すればD値は低い値に維持されるので、好ましい。
According to the method of the present invention, the strength deterioration of medical devices due to sterilization can be reduced to a small extent, so it can be preferably applied to the sterilization of various medical devices, but especially when applied to highly functional medical devices. This is preferable because it is less likely to cause functional decline. Examples of such medical devices include hemodialyzers,
Examples include devices that use semipermeable membranes, such as blood filters, plasma separators, and artificial lungs. In particular, when the membrane is made of cellulose acetate, the D value tends to increase more easily than when radiation sterilizing ordinary polymeric materials because the membrane contains a large amount of glycerin. This is preferable because the D value is maintained at a low value.

以下具体的な実施例により本発明をさらに詳細に説明す
るが、本発明はこれに限定されるものではない。
The present invention will be explained in more detail with reference to specific examples below, but the present invention is not limited thereto.

実施例l グリセリンを含有するセルロースアセテート製の中空糸
膜約100本を束ねて中央部を糸で縛り、その中央部に
菌液(Bacillus pumilusの水懸濁液)
0.1dを滴下して風乾した。これを真空包装機を用い
て種々の減圧度のもとでアルミニウム積層フィル1. 
(ポリエチレンテレフタレート/ポ7 リエチレン/アルミニウム/ポリエチレン積層フィルム
)で包装し、これに窒素ガスを吹き込んで密封すること
により内部の酸素濃度が異なるいくつかの試料を作製し
た。そして得られた試料にガンマ線を照射して、各酸素
濃度におけるD値を測定した。結果を表1に示す。
Example 1 Approximately 100 hollow fiber membranes made of cellulose acetate containing glycerin are bundled and tied at the center with thread, and a bacterial solution (water suspension of Bacillus pumilus) is placed in the center.
0.1 d was added dropwise and air-dried. This is packed into aluminum laminated films under various degrees of vacuum using a vacuum packaging machine.
(polyethylene terephthalate/polyethylene/aluminum/polyethylene laminated film), and by blowing nitrogen gas into the package and sealing it, several samples with different internal oxygen concentrations were prepared. The obtained sample was then irradiated with gamma rays, and the D value at each oxygen concentration was measured. The results are shown in Table 1.

表   1 8 されている2.5Mrad以下の吸収線量での滅菌が可
能であるが、0.1%以下の濃度では2.5 M r 
a d以一ヒの線量を必要とする。
Sterilization is possible at absorbed doses below 2.5 Mrad, as shown in Table 18, but at concentrations below 0.1%, sterilization is possible at absorbed doses below 2.5 Mrad.
Requires a dose higher than d.

実施例2 真空包装機とアルミニウム積層フィルムを使用して、セ
ルロースアセテート中空糸膜を内藏ずる血液透析器を種
々の酸素濃度になるように包装し、2.OMradの吸
収線量となるようにガンマ線を照射した。照射後、包装
体内部の酸素渡度を測定したところ、表2に示す結果が
得られた。
Example 2 Using a vacuum packaging machine and an aluminum laminated film, hemodialyzers containing cellulose acetate hollow fiber membranes were packaged to have various oxygen concentrations.2. Gamma rays were irradiated to give an absorbed dose of OMrad. After the irradiation, the oxygen flux inside the package was measured, and the results shown in Table 2 were obtained.

表   2 上記の結果から明らかなように、D値は酸素濃度が0.
0%および0.1%の場合には非常に高い値を示すが、
0.5%以上になるとかなり低い値を示すようになり、
低い線量での滅菌が可能なことがわかる。そして、8D
の滅菌保証を行うために、酸素濃度0.5%以上では一
般に広く採用表2から明らかなように、包装前の酸素濃
度が4%未満の場合には、放射線照射後に包装体の内9 1 0 部に酸素が存在しない状態にできる。したがって、その
後の経時的な劣化を抑制することができ、長期間保存し
たときの強度低下や機能低下を防1二できる。
Table 2 As is clear from the above results, the D value indicates that the oxygen concentration is 0.
In the case of 0% and 0.1%, it shows a very high value,
When it exceeds 0.5%, it shows a considerably low value,
It can be seen that sterilization is possible at low doses. And 8D
As is clear from Table 2, if the oxygen concentration before packaging is less than 4%, the inside of the package after radiation irradiation is generally widely used to guarantee sterilization. 0 parts can be in a state where no oxygen exists. Therefore, subsequent deterioration over time can be suppressed, and a decrease in strength and function can be prevented when stored for a long period of time.

実施例3 実施例2と同様にして中空糸型血液透析器を包装し、内
部の酸素濃度を変えた包装体を作製した。
Example 3 Hollow fiber hemodialyzers were packaged in the same manner as in Example 2 to produce packages with different internal oxygen concentrations.

そして、これらに吸収線量が2.0Mradとなるよう
にガンマ線を照射した。次に、■1本医療用プラスチッ
ク協会の人工腎臓装置基準案に従って、照射直後のもの
について透析膜の溶出物試験を実施したところ、本発明
に基づくものはすべての項目について合格であったが、
比較のために空気中で密封した試料はΔpHが不合格と
なった。ΔpHの測定結果を表3に示す(合格基!1S
値は1.5以下)。
Then, these were irradiated with gamma rays so that the absorbed dose was 2.0 Mrad. Next, we conducted a dialysis membrane eluate test on the membrane immediately after irradiation in accordance with the Medical Plastics Association's proposed standards for artificial kidney devices, and the membrane based on the present invention passed all items.
For comparison, a sample sealed in air failed the ΔpH. The measurement results of ΔpH are shown in Table 3 (passing basis! 1S
The value is 1.5 or less).

C以下余白) 表 3 表3の結果から、Δp l−1値を低く抑えるには、照
1・1前の酸素濃度を低くする必要があることがわかる
(Margin below C) Table 3 From the results of Table 3, it can be seen that in order to keep the Δp l-1 value low, it is necessary to lower the oxygen concentration before light 1.1.

実施例l〜3の結果から明らかなように、■〕値を低く
抑え、しかも放射線の照射による高分子材料の劣化を少
なくするには、酸素濃度を0.5%以上4%未満にする
のが適当なことがわかる。
As is clear from the results of Examples 1 to 3, in order to keep the [■] value low and also to reduce the deterioration of the polymer material due to radiation irradiation, the oxygen concentration should be set to 0.5% or more and less than 4%. is found to be appropriate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放射線滅菌におけるD値を低く抑える
ことができるので、一般に広く採用されている吸収線1
2.5Mrad以下での滅菌が可能である。しかも滅菌
後包装体内を無酸素状態にすることができるので、医療
用具の経時的な劣化1l l2 を防止することができる。また、脱酸素剤を滅菌後に封
入するような煩わしい操作を必要としないので、実用性
の点でも優れている。
According to the present invention, since the D value in radiation sterilization can be kept low, absorption line 1
Sterilization is possible at 2.5 Mrad or less. Moreover, since the inside of the package can be kept in an oxygen-free state after sterilization, deterioration of the medical device over time can be prevented. Furthermore, since there is no need for troublesome operations such as enclosing an oxygen absorber after sterilization, it is also excellent in practicality.

Claims (1)

【特許請求の範囲】[Claims] 高分子材料から形成された医療用具に放射線を照射して
滅菌するに際し、医療用具を酸素不透過性材料を用いて
酸素濃度が0.5%以上4%未満の雰囲気となるように
密封し、次いで放射線を照射することを特徴とする医療
用具の放射線滅菌方法。
When sterilizing a medical device made of a polymeric material by irradiating it with radiation, the medical device is sealed using an oxygen-impermeable material in an atmosphere with an oxygen concentration of 0.5% or more and less than 4%, A radiation sterilization method for medical tools, which comprises then irradiating radiation.
JP1153218A 1989-06-15 1989-06-15 Radiation sterilization method for medical equipment Expired - Fee Related JP2876320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153218A JP2876320B2 (en) 1989-06-15 1989-06-15 Radiation sterilization method for medical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153218A JP2876320B2 (en) 1989-06-15 1989-06-15 Radiation sterilization method for medical equipment

Publications (2)

Publication Number Publication Date
JPH0318371A true JPH0318371A (en) 1991-01-25
JP2876320B2 JP2876320B2 (en) 1999-03-31

Family

ID=15557635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153218A Expired - Fee Related JP2876320B2 (en) 1989-06-15 1989-06-15 Radiation sterilization method for medical equipment

Country Status (1)

Country Link
JP (1) JP2876320B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371157A (en) * 1991-06-18 1992-12-24 Hogi Medical:Kk Method for processing silicone rubber tube with radiation
JPH0889561A (en) * 1994-09-22 1996-04-09 Mitsubishi Gas Chem Co Inc Sterilizing method for plastics-containing articles by irradiation with radioactive ray or electron beam
JPH09206361A (en) * 1995-11-28 1997-08-12 Mitsubishi Chem Corp Storage method of adsorbent particle
WO1998058842A1 (en) * 1997-06-20 1998-12-30 Gambro Kk Method for sterilizing packages of medical supplies
JP2004275616A (en) * 2003-03-18 2004-10-07 Terumo Corp Sterilization method and method for producing medical container and prefilled syringe
JP2005169008A (en) * 2003-12-15 2005-06-30 Nipro Corp Method of sterilizing biocompatible material
JP2006271430A (en) * 2005-03-28 2006-10-12 Toyobo Co Ltd Method of sterilizing blood purifying module
JP2008545491A (en) * 2005-06-02 2008-12-18 アルザ コーポレイション Final sterilization method for transdermal delivery devices
WO2014087656A1 (en) * 2012-12-07 2014-06-12 ニプロ株式会社 Method for sterilizing medical device produced from ester resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678063B2 (en) * 2001-12-19 2011-04-27 東レ株式会社 Hollow fiber membrane module
JP4453248B2 (en) * 2001-12-19 2010-04-21 東レ株式会社 Method for producing hollow fiber membrane and hollow fiber membrane module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371157A (en) * 1991-06-18 1992-12-24 Hogi Medical:Kk Method for processing silicone rubber tube with radiation
JPH0889561A (en) * 1994-09-22 1996-04-09 Mitsubishi Gas Chem Co Inc Sterilizing method for plastics-containing articles by irradiation with radioactive ray or electron beam
JPH09206361A (en) * 1995-11-28 1997-08-12 Mitsubishi Chem Corp Storage method of adsorbent particle
WO1998058842A1 (en) * 1997-06-20 1998-12-30 Gambro Kk Method for sterilizing packages of medical supplies
JP2004275616A (en) * 2003-03-18 2004-10-07 Terumo Corp Sterilization method and method for producing medical container and prefilled syringe
JP2005169008A (en) * 2003-12-15 2005-06-30 Nipro Corp Method of sterilizing biocompatible material
JP2006271430A (en) * 2005-03-28 2006-10-12 Toyobo Co Ltd Method of sterilizing blood purifying module
JP2008545491A (en) * 2005-06-02 2008-12-18 アルザ コーポレイション Final sterilization method for transdermal delivery devices
WO2014087656A1 (en) * 2012-12-07 2014-06-12 ニプロ株式会社 Method for sterilizing medical device produced from ester resin
JPWO2014087656A1 (en) * 2012-12-07 2017-01-05 ニプロ株式会社 Method of sterilizing medical equipment made of ester resin

Also Published As

Publication number Publication date
JP2876320B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
US4777780A (en) Method for forming a sealed sterile package
US3229813A (en) Sterile package
CN1014863B (en) Radiation-sterilized packaged medical device
JP2876320B2 (en) Radiation sterilization method for medical equipment
JPS62204754A (en) Radiation sterilization of medical instrument
WO1998058842A1 (en) Method for sterilizing packages of medical supplies
GB1569479A (en) Sterile artifical kidney dialyzer package
JPH05221461A (en) Packaging bag
JPS58134840A (en) Radiation sterilizing and packing method
JPH0889561A (en) Sterilizing method for plastics-containing articles by irradiation with radioactive ray or electron beam
JPH01158958A (en) Sterilization of medical utensil by radiation
JP2901669B2 (en) Manufacturing method of radiation sterilized medical device
JPH02298310A (en) Method for removing gas in sealed package
JPS6326010B2 (en)
JP2530472B2 (en) Packaging material and package for radiation sterilization
JPH03168151A (en) Production of radiation sterilizable medical device
JP2008173287A (en) Radiation sterilization method for hollow fiber membrane type blood purifier and hollow fiber membrane type blood purifier
JP2006116865A (en) Film for packaging and packaging bag
JP3252647B2 (en) Liquid processor
JPH07145264A (en) Irradiation sterilization of tightly sealed material
JPH10272168A (en) Liquid-medicine-filled bag package, and method for removing loss of transparency of the bag
JPH0224148B2 (en)
JP2659119B2 (en) Sterilization method of packaging container
JPS60198156A (en) Sterilization of plastic product
US9968696B2 (en) Method for sterilizing membrane comprising an oxidoreductase enzyme and associated biosensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees