JPH09196859A - Surface defect inspection device - Google Patents

Surface defect inspection device

Info

Publication number
JPH09196859A
JPH09196859A JP910196A JP910196A JPH09196859A JP H09196859 A JPH09196859 A JP H09196859A JP 910196 A JP910196 A JP 910196A JP 910196 A JP910196 A JP 910196A JP H09196859 A JPH09196859 A JP H09196859A
Authority
JP
Japan
Prior art keywords
defect
image
data
inspection apparatus
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP910196A
Other languages
Japanese (ja)
Inventor
Hideo Mihashi
秀男 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP910196A priority Critical patent/JPH09196859A/en
Publication of JPH09196859A publication Critical patent/JPH09196859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect surface defect of a silicon wafer and judge its sort. SOLUTION: When a white illumination light 1 is spectrally separated by a prism 2 and cast on a surface to be inspected 5 upon convergence made by a condenser lens 4, a plurality of beams of light having different wavelengths are cast on the surface 5 at different angles. A two-dimensional color sensor 7 photographs the surface 5 through a photographing lens 6 and outputs color image signals ar, ag, ab of R, G, B. In case where the surface includes a defect having a gradually inclining angle, only the light of red wavelength projected at an angle nearest the perpendicular is reflected in the direction of the photographing lens 6, so that reddish photo is obtained. In case where the surface includes a defect having a large inclination angle, the violet rays projected at an angle nearest the horizontal are photographed. That is, each defect is photographed in different color depending upon the sort of the defect. Thus the defect detection is conducted by an image processing part 8, and the sort of the defect is judged according to the color information.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面欠陥検査装置
に関し、特にシリコンウエハ等の表面に存在する欠陥を
検出する表面欠陥検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface defect inspection apparatus, and more particularly to a surface defect inspection apparatus for detecting defects existing on the surface of a silicon wafer or the like.

【0002】[0002]

【従来の技術】従来の技術としては、例えば特開昭62
−38348号公報に記載の表面欠陥検査装置がある。
2. Description of the Related Art As a conventional technique, for example, Japanese Patent Laid-Open No. 62-62
There is a surface defect inspection apparatus described in JP-A-38348.

【0003】図5は、従来の表面欠陥検査装置を示す構
成図である。図5に示す表面欠陥検査装置は、被検査対
象面5に対してほぼ垂直な角度から照明する赤色光源1
1と、斜め方向から照明する青色光源12と、被検査対
象面5をほぼ垂直な角度で撮像レンズ6を介して撮像
し、内部で分光して赤色光源11と青色光源12のそれ
ぞれの波長に対応した映像信号ar,abを出力する2
次元カラーセンサ7と、映像信号ar,abそれぞれに
ついて画像処理による欠陥検出を行う画像処理部8とで
構成される。
FIG. 5 is a block diagram showing a conventional surface defect inspection apparatus. The surface defect inspection apparatus shown in FIG. 5 includes a red light source 1 that illuminates a surface 5 to be inspected from an angle substantially perpendicular to the surface 5.
1, the blue light source 12 that illuminates from an oblique direction, and the surface 5 to be inspected are imaged through the image pickup lens 6 at a substantially vertical angle, and are internally dispersed into respective wavelengths of the red light source 11 and the blue light source 12. Output corresponding video signals ar and ab 2
The three-dimensional color sensor 7 and the image processing unit 8 that detects defects in the image signals ar and ab by image processing.

【0004】次に、動作を説明する。Next, the operation will be described.

【0005】被検査対象面5には、異なる傾斜角度の表
面を有する欠陥が混在している。すなわち、「へこみ」
等の緩やかな傾斜角度の表面を有する欠陥と、「傷」等
の大きい傾斜角度の表面を有する欠陥である。ここで、
赤色光源11はほぼ垂直な角度で照射されているため、
この波長の光の場合、緩やかな傾斜角度の表面を有する
欠陥からの反射光のみが撮像される。逆に、青色光源1
2の波長で撮像されるのは、大きい傾斜角度の表面を有
する欠陥のみである。よって、映像信号arには緩やか
な傾斜角度の表面を有する欠陥の像のみが含まれ、映像
信号abには大きい傾斜角度の表面を有する欠陥の像の
みが含まれることになる。そこで、この映像信号ar,
abのそれぞれについて画像処理部8で欠陥検出処理を
行うことで、複数種類の欠陥を同時にかつ選別して検出
する。
On the surface 5 to be inspected, defects having surfaces having different inclination angles are mixed. That is, "dent"
And a defect having a surface with a large inclination angle such as “scratch”. here,
Since the red light source 11 is illuminated at a substantially vertical angle,
In the case of light of this wavelength, only reflected light from a defect having a surface with a gentle inclination angle is imaged. On the contrary, blue light source 1
Only defects with a large tilt angle surface are imaged at the two wavelengths. Therefore, the video signal ar includes only an image of a defect having a surface having a gentle inclination angle, and the video signal ab includes only an image of a defect having a surface having a large inclination angle. Therefore, this video signal ar,
By performing the defect detection process in the image processing unit 8 for each of the abs, a plurality of types of defects are simultaneously and selectively detected.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の表面欠
陥検査装置は、表面の傾斜角度が異なる複数種類の欠陥
の同時にかつ選別して検査するために、複数の波長の異
なる照明光源を用いておのおの異なる角度から照射し、
カラーカメラで分光撮像して、複数の照明波長毎に別々
に欠陥検出処理を行っている。
The above-described conventional surface defect inspection apparatus uses a plurality of illumination light sources having different wavelengths in order to inspect a plurality of types of defects having different surface inclination angles simultaneously and selectively. Irradiate from different angles,
Spectral imaging is performed by a color camera, and defect detection processing is separately performed for each of a plurality of illumination wavelengths.

【0007】よって、欠陥の種類に応じて最適な照明角
度に調整する必要があるばかりでなく、照明角度が離散
的なため欠陥によっては見逃しが発生する。また、欠陥
種類の選別能力を構造させるには光源と撮像・検出手段
の数を増やす必要があるため、構成が複雑になるという
欠点があった。
Therefore, it is necessary not only to adjust the illumination angle to the optimum one according to the type of defect, but also because the illumination angle is discrete, some defects may be overlooked. In addition, in order to structure the defect type selection capability, it is necessary to increase the number of light sources and the number of image pickup / detection means, which has a drawback that the configuration becomes complicated.

【0008】[0008]

【課題を解決するための手段】本発明の表面欠陥検査装
置は、白色照明光を波長毎に連続的に分光する分光手段
と、前記分光手段により分光された照明光を集光するこ
とで異なる波長の光をおのおの異なる角度で被検査対象
面の同一領域に照射する集光手段と、前記被検査対象面
を撮像し複数のカラー映像信号を出力するカラー撮像手
段と、前記カラー映像信号を受けて前記被検査対象面の
欠陥を検出しかつ欠陥の種類の判別を行う画像処理部と
を備え、前記分光手段は分光プリズムまたは回折格子を
用いることができ、前記集光手段は光学レンズまたは、
放物面鏡を用いることができ、カラー撮像手段はR
(赤),G(緑)およびB(紫)のカラー映像信号を出
力するようにできる。
The surface defect inspection apparatus of the present invention is different in that it separates the white illuminating light into continuous spectrums for each wavelength, and collects the illuminating light separated by the spectral means. Converging means for irradiating the same region of the surface to be inspected with light of different wavelengths at different angles, color imaging means for imaging the surface to be inspected and outputting a plurality of color video signals, and receiving the color video signal. And an image processing unit that detects a defect on the surface to be inspected and determines the type of the defect, the spectroscopic unit can use a spectral prism or a diffraction grating, and the condensing unit is an optical lens, or
A parabolic mirror can be used, and the color imaging means is R
Color video signals of (red), G (green) and B (purple) can be output.

【0009】また、画像処理部は、複数のカラー映像信
号それぞれについてデジタル画像データを記憶する複数
の画像メモリと、これら複数の画像メモリの互いに同じ
位置の画素のデータを加算した加算画像データを出力す
る加算器と、前記加算画像データを2値化した2値画像
データを出力する2値化処理部と、前記2値画像データ
からなる画像のラベル付けされた画素の集合で一定の面
積以上のものを欠陥として検出しその欠陥の座標である
欠陥座標データを出力するラベリング処理部と、前記複
数の画像メモリそれぞれの前記欠陥座標データが示す座
標の画素のデータの大きさを比較して欠陥の種類を判別
して欠陥種類データを出力するデコーダとで構成するこ
ともできる。
Further, the image processing section outputs a plurality of image memories for storing digital image data for each of the plurality of color video signals, and added image data obtained by adding data of pixels at the same positions of the plurality of image memories. An adder, a binarization processing unit that outputs binary image data obtained by binarizing the added image data, and a set of labeled pixels of an image composed of the binary image data, which has a predetermined area or more. A labeling processing unit that detects a defect as a defect and outputs defect coordinate data that is the coordinate of the defect, and compares the size of the pixel data of the coordinates indicated by the defect coordinate data of each of the plurality of image memories to determine the defect. It can also be configured with a decoder that determines the type and outputs defect type data.

【0010】[0010]

【発明の実施の形態】次に、本発明について図面を参照
して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to the drawings.

【0011】図1は、本発明の第1の実施の形態の表面
欠陥検査装置を示す構成図である。
FIG. 1 is a block diagram showing a surface defect inspection apparatus according to a first embodiment of the present invention.

【0012】図1に示す表面欠陥検査装置は、白色照明
光1を波長毎に連続的に分光する分光手段としての分光
プリズム2と、分光プリズム2により分光された多波長
照明光3を同一領域に集光することで、異なる波長の光
をおのおの異なる角度で被検査対象面5に照射する集光
手段としての集光レンズ4と、被検査対象面5を垂直な
方向で撮像レンズ6を介して撮像し、R(赤),G
(緑),B(紫)それぞれのカラー映像信号ar,a
g,abを出力するカラー撮像手段としての2次元カラ
ーセンサ7と、カラー映像信号ar,ag,abを受け
て欠陥の検出と色情報を基にした欠陥種類の選別を行う
画像処理部8とを含んで構成される。
In the surface defect inspection apparatus shown in FIG. 1, a spectral prism 2 as a spectroscopic means for continuously spectrally splitting the white illumination light 1 for each wavelength and a multi-wavelength illumination light 3 split by the spectral prism 2 are in the same area. By condensing light on the surface 5 to be inspected at different angles by condensing the light onto the surface 5 to be inspected, and the surface 5 to be inspected through the imaging lens 6 in the vertical direction. Imaged, R (red), G
(Green), B (purple) color video signals ar, a
a two-dimensional color sensor 7 as a color image pickup means for outputting g, ab, an image processing unit 8 for receiving a color video signal ar, ag, ab and detecting a defect and selecting a defect type based on color information. It is configured to include.

【0013】図2は画像処理部8の内部を示すブロック
図である。
FIG. 2 is a block diagram showing the inside of the image processing unit 8.

【0014】画像処理部8は、カラー映像信号ar,a
g,abをそれぞれA/D変換してデジタルの画像デー
タbr,bg,bbを出力する3つのA/D変換器81
と、画像データbr,bg,bbをぞれぞれ記憶する3
つの画像メモリ82と、3つの画像メモリ82の同一ア
ドレスのデータを加算して加算画像データcを出力する
加算器83と、加算画像データcを2値化し2値画像デ
ータdを出力する2値化処理部84と、2値画像データ
dを基に欠陥の座標や面積等を計測し、欠陥検出データ
eと欠陥座標データfを出力するラベリング処理部85
と、欠陥座標データfで示されるアドレスの画像データ
br,bg,bbをこのうちの1つのデータ(例えば画
像データbr)を基準にして正規化し、正規化データg
r,gg,gbを出力する正規化処理部86と、正規化
データgr,gg,gbの比率を基に欠陥種類データh
を出力するデコーダ87とで構成される。
The image processing section 8 includes a color video signal ar, a
Three A / D converters 81 for A / D converting g and ab and outputting digital image data br, bg, and bb.
And image data br, bg, bb are stored respectively 3
One image memory 82, an adder 83 that adds the data of the same address of the three image memories 82 and outputs the added image data c, and a binary that binarizes the added image data c and outputs the binary image data d The conversion processing unit 84 and the labeling processing unit 85 that measures the coordinates and area of the defect based on the binary image data d and outputs the defect detection data e and the defect coordinate data f.
And the image data br, bg, bb at the address indicated by the defect coordinate data f are normalized with reference to one of these data (for example, image data br), and the normalized data g
The defect type data h based on the ratio of the normalization processing unit 86 that outputs r, gg, gb and the normalized data gr, gg, gb.
And a decoder 87 for outputting

【0015】次に、動作を説明する。Next, the operation will be described.

【0016】図3は被検査対象面5上に混在する、それ
ぞれ異なる傾斜角度の表面を有する3種類の欠陥の断面
を示す模式図である。図3に示す欠陥のうち、へこみ9
1は緩やかな傾斜角度の表面を有する欠陥であり、浅い
傷92は中程度の傾斜角度の表面を有する欠陥であり、
深い傷93は大きい傾斜角度の表面を有する欠陥であ
る。
FIG. 3 is a schematic view showing a cross section of three types of defects mixed on the surface 5 to be inspected and having surfaces with different inclination angles. Of the defects shown in FIG. 3, the dent 9
1 is a defect having a surface having a gentle inclination angle, and the shallow scratch 92 is a defect having a surface having an intermediate inclination angle,
The deep scratch 93 is a defect having a surface with a large inclination angle.

【0017】図1において、白色照明光1は赤色から紫
色までの各波長を含んでいるため、分光プリズム2に入
射すると各波長毎に連続的に分光されて多波長照明光3
として出射される。この多波長照明光3は、分光プリズ
ム2から出射される時点で各波長に応じた異なる角度を
もって扇状に広がっているため、集光レンズ4で集光し
て被検査対象面5に照射すると、被検査体操面5には、
異なる波長の光がおのおの異なる角度で照射されること
になる。図1に示す表面欠陥検出装置の場合には、赤色
の波長が最も垂直に近い角度で照射され、紫色の波長が
最も水平に近い角度で照射される。ここで、集光レンズ
4は色収差の補正をかけたレンズであり、各波長の光は
被検査対象面5上で同一領域を照明する。
In FIG. 1, since the white illumination light 1 includes each wavelength from red to purple, when it enters the spectroscopic prism 2, it is continuously dispersed into each wavelength and is multi-wavelength illumination light 3.
Is emitted as. Since this multi-wavelength illumination light 3 spreads in a fan shape at different angles according to each wavelength at the time of being emitted from the spectral prism 2, when it is condensed by the condensing lens 4 and irradiated on the surface 5 to be inspected, On the gymnastics surface 5 to be inspected,
Light of different wavelengths will be emitted at different angles. In the case of the surface defect detection apparatus shown in FIG. 1, the red wavelength is emitted at the angle closest to the vertical, and the purple wavelength is emitted at the angle closest to the horizontal. Here, the condenser lens 4 is a lens in which chromatic aberration is corrected, and light of each wavelength illuminates the same area on the surface 5 to be inspected.

【0018】次に、2次元カラーセンサ7は、被検査対
象面5を撮像レンズ6を介して撮像し、R,G,Bそれ
ぞれのカラー映像信号ar,ag,abを出力する。こ
のとき、図3に示すへこみ91は緩やかな傾斜角度の表
面を有するため、へこみ91からは最も垂直に近い角度
で照射された赤色の波長の光のみが撮像レンズ6方向に
反射されるので、赤色に撮像されることになる。逆に、
深い傷93は大きい傾斜角度の表面を有するため、最も
水平に近い角度で照射された紫色に撮像され、また、浅
い傷92は中程度の傾斜角度の表面を有するため、中程
度の角度で照射された緑色に撮像される。すなわち、各
欠陥は、その種類に応じてそれぞれ異なる色で撮像され
る。なお、欠陥のエッジ部分は、各波長の光を反射する
ため、白色に撮像される。
Next, the two-dimensional color sensor 7 picks up an image of the surface 5 to be inspected through the image pickup lens 6 and outputs R, G, B color image signals ar, ag, ab. At this time, since the dent 91 shown in FIG. 3 has a surface with a gentle inclination angle, only the light of the red wavelength emitted from the dent 91 at an angle that is the most vertical is reflected in the imaging lens 6 direction. It will be imaged in red. vice versa,
Since the deep scratch 93 has a surface with a large inclination angle, it is imaged in purple that is irradiated at an angle that is the most horizontal, and the shallow scratch 92 has a surface with a moderate inclination angle, and therefore is irradiated at a medium angle. The captured image is captured in green. That is, each defect is imaged in a different color according to its type. The edge portion of the defect reflects light of each wavelength and thus is imaged in white.

【0019】そこで次に、画像処理部8で欠陥の検出を
行い、かつ、色情報により欠陥種類の選別を行う。
Therefore, next, the image processing unit 8 detects defects and sorts the defect types based on the color information.

【0020】図2において、カラー映像信号ar,a
g,abを3つのA/D変換部81でそれぞれA/D変
換したデジタルの画像データbr,bg,bbそれぞれ
を3つの画像メモリ82に記憶する。次に、加算器83
で3つの画像メモリ82の同一アドレスのデータを加算
し、その加算画像データcを2値化処理部84で2値化
する。ラベリング処理部85では2値画像データCから
なる画像中の互いに連結された“1”の画素(あるいは
“0”の画素)の集合それぞれにラベル付けを行い、こ
れらラベル付けした画素の集合それぞれのうち一定の面
積以上からなるものを欠陥として認識し、このような欠
陥となる画素の集合を検出した時は欠陥検出データeを
出力する。さらにラベリング処理部85では欠陥となる
画素の集合の重心を欠陥座標データfとして出力する。
In FIG. 2, color video signals ar, a
Digital image data br, bg, and bb obtained by A / D converting g and ab by the three A / D converting units 81 are stored in the three image memories 82. Next, the adder 83
Then, the data of the same address in the three image memories 82 are added, and the added image data c is binarized by the binarization processing unit 84. The labeling processing unit 85 labels each set of “1” pixels (or “0” pixels) connected to each other in the image composed of the binary image data C, and Among them, those having a certain area or more are recognized as defects, and when a set of such defective pixels is detected, the defect detection data e is output. Further, the labeling processing unit 85 outputs the center of gravity of the set of defective pixels as defective coordinate data f.

【0021】正規化処理部86は欠陥座標データfで示
されるアドレスの画像データbr,bg,bbを、この
うちの1つのデータ、例えば画像データbrを基準にし
て比率で表わすように正規化する。デコーダ87は正規
化データgr,gg,gbを比較して欠陥種類データh
を出力する。すなわち、正規化データgrを1の値とし
た時に正規化データgg,gbが共に1より小さければ
2次元カラーセンサ7は赤色光を最も多く受けているの
でその欠陥座標データfが示す欠陥は表面の傾斜が緩い
へこみであるとする欠陥種類データhを出力する。同様
に正規化データgr,gg,gbのうち正規化データg
gが最も大きければ2次元カラーセンサ7は緑色光を最
も多く受けているので、その欠陥は表面の傾斜が中程度
の浅い傷であるとし、正規化データgbが最も大きけれ
ば2次元カラーセンサ7は紫色光を最も多く受けている
のでその欠陥は表面の傾斜が大きい深い傷であるとする
欠陥種類データhを出力する。
The normalization processing unit 86 normalizes the image data br, bg, bb at the address indicated by the defect coordinate data f so as to be represented by a ratio based on one of the data, for example, the image data br. . The decoder 87 compares the normalized data gr, gg, gb and compares the defect type data h
Is output. That is, when the normalized data gr has a value of 1, and the normalized data gg and gb are both smaller than 1, the two-dimensional color sensor 7 receives the most red light, so that the defect indicated by the defect coordinate data f indicates the surface. The defect type data h, which is a dent having a gentle inclination, is output. Similarly, the normalized data g out of the normalized data gr, gg, gb
Since the two-dimensional color sensor 7 receives the largest amount of green light when g is the largest, it is assumed that the defect is a shallow scratch with a moderate surface inclination, and the two-dimensional color sensor 7 is the one where the normalized data gb is the largest. Receives the largest amount of violet light, the defect type data h indicating that the defect is a deep scratch having a large surface inclination is output.

【0022】図4は本発明の第2の実施の形態の表面欠
陥検査装置の構成図である。
FIG. 4 is a block diagram of a surface defect inspection apparatus according to a second embodiment of the present invention.

【0023】図4に示す表面欠陥検査装置は、分光手段
に回折格子10を使用して構成される以外は、図1に示
した欠陥検査装置と同一構成であり、動作も同一であ
る。
The surface defect inspection apparatus shown in FIG. 4 has the same structure and operation as the defect inspection apparatus shown in FIG. 1 except that the diffraction grating 10 is used as the spectroscopic means.

【0024】なお、本発明は集光手段としては、光学レ
ンズ以外に、放物面鏡が使用できる。また、撮像手段と
しては、2次元カラーカメラ以外にカラーラインセンサ
を使用し、カラーラインセンサに対し被検査対象面を一
定速度で移動させて撮像することもできる。
In the present invention, a parabolic mirror can be used as the light collecting means in addition to the optical lens. A color line sensor other than the two-dimensional color camera may be used as the image capturing means, and the surface to be inspected may be moved at a constant speed with respect to the color line sensor to capture an image.

【0025】また、欠陥座標データとしては画素集合の
重心に限られず、例えばラベル付けされた画素集合の左
上の点を用いることもできる。
The defect coordinate data is not limited to the center of gravity of the pixel set, and for example, the upper left point of the labeled pixel set can be used.

【0026】[0026]

【発明の効果】本発明の表面欠陥検査装置は、複数の波
長の異なる照明光源を用いておのおの異なる角度から照
射し、複数の照明波長毎に別々に撮像と欠陥検出処理を
行う代わりに、白色光を連続的に分光することで、異な
る波長の光を連続した異なる角度で被検査対象面に照射
し、カラー撮像手段で撮像して得る複数の色についての
カラー映像信号から被検査対象面の欠陥の検出と欠陥種
類の判別を行うため、欠陥の種類に応じて照明角度の調
整をしたりする必要がなく、欠陥の見逃しも発生しな
い。また、簡単な構成で欠陥種類の判別能力を向上でき
るという効果がある。
The surface defect inspection apparatus of the present invention irradiates from different angles using illumination light sources of different wavelengths, and instead of separately performing imaging and defect detection processing for each of the plurality of illumination wavelengths, white By continuously splitting light, light of different wavelengths is irradiated onto the surface to be inspected at different continuous angles, and the color image signals of a plurality of colors obtained by imaging with the color imaging means are used to detect the surface of the object to be inspected. Since the defect is detected and the defect type is determined, it is not necessary to adjust the illumination angle according to the defect type, and the defect is not overlooked. Further, there is an effect that the ability to discriminate defect types can be improved with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態の表面欠陥検査装置
の構成図である。
FIG. 1 is a configuration diagram of a surface defect inspection apparatus according to a first embodiment of the present invention.

【図2】図1中の画像処理部8の内部を示すブロック図
である。
FIG. 2 is a block diagram showing the inside of an image processing unit 8 in FIG.

【図3】図1に示す表面欠陥検査装置で検出する複数種
類の欠陥を模式的に示す被検査対象物5の断面図であ
る。
3 is a cross-sectional view of an object to be inspected 5 schematically showing a plurality of types of defects detected by the surface defect inspection apparatus shown in FIG.

【図4】本発明の第2の実施例の形態の表面欠陥検査装
置の構成図である。
FIG. 4 is a configuration diagram of a surface defect inspection apparatus according to a second embodiment of the present invention.

【図5】従来の表面欠陥検査装置の構成図である。FIG. 5 is a configuration diagram of a conventional surface defect inspection apparatus.

【符号の説明】[Explanation of symbols]

1 白色照明光 2 分光プリズム 3 多波長照明光 4 集光レンズ 5 被検査対象面 6 撮像レンズ 7 2次元カラーセンサ 8 画像処理部 81 A/D変換器 82 画像メモリ 83 加算器 84 2値化処理部 85 ラベリング処理部 86 正規化処理部 87 デコーダ 91 へこみ 92 浅い傷 93 深い傷 10 回折格子 11 赤色光源 12 青色光源 ar,ag,ab カラー映像信号 br,bg,bb 画像データ c 加算画像データ d 2値画像データ e 欠陥検出データ f 欠陥座標データ gr,gg,gb 正規化データ h 欠陥種類データ 1 White Illumination Light 2 Spectral Prism 3 Multi-wavelength Illumination Light 4 Condenser Lens 5 Surface to be Inspected 6 Imaging Lens 7 Two-dimensional Color Sensor 8 Image Processing Unit 81 A / D Converter 82 Image Memory 83 Adder 84 Binarization Processing Part 85 Labeling processing part 86 Normalization processing part 87 Decoder 91 Depression 92 Shallow scratch 93 Deep scratch 10 Diffraction grating 11 Red light source 12 Blue light source ar, ag, ab Color video signal br, bg, bb Image data c Addition image data d 2 Value image data e Defect detection data f Defect coordinate data gr, gg, gb Normalized data h Defect type data

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 白色照明光を波長毎に連続的に分光する
分光手段と、前記分光手段により分光された照明光を集
光することで異なる波長の光をおのおの異なる角度で被
検査対象面の同一領域に照射する集光手段と、前記被検
査対象面を撮像し、複数のカラー映像信号を出力するカ
ラー撮像手段と、前記カラー映像信号を受けて前記被検
査対象面の欠陥を検出しかつ欠陥の種類の判別を行う画
像処理部とを含むことを特徴とする表面欠陥検査装置。
1. A spectroscopic unit that continuously disperses white illumination light for each wavelength, and light of different wavelengths at different angles by converging the illumination light that has been dispersed by the spectroscopic unit on the surface to be inspected. Condensing means for irradiating the same area, color imaging means for imaging the surface to be inspected and outputting a plurality of color video signals, and detecting defects on the surface to be inspected by receiving the color video signals and An apparatus for inspecting a surface defect, comprising: an image processing unit for determining the type of defect.
【請求項2】 分光手段は分光プリズムからなることを
特徴とする請求項1記載の表面欠陥検査装置。
2. The surface defect inspection apparatus according to claim 1, wherein the spectroscopic means comprises a spectroscopic prism.
【請求項3】 分光手段は回折格子からなることを特徴
とする請求項1記載の表面欠陥検査装置。
3. The surface defect inspection apparatus according to claim 1, wherein the spectroscopic means is a diffraction grating.
【請求項4】 集光手段は光学レンズからなることを特
徴とする請求項1,2または3記載の表面欠陥検査装
置。
4. The surface defect inspection apparatus according to claim 1, wherein the condensing means is an optical lens.
【請求項5】 集光手段は放物面鏡からなることを特徴
とする請求項1,2または3記載の表面欠陥検査装置。
5. The surface defect inspection apparatus according to claim 1, wherein the light collecting means is a parabolic mirror.
【請求項6】 画像処理部は、複数のカラー映像信号そ
れぞれについてデジタル画像データを記憶する複数の画
像メモリと、これら複数の画像メモリの互いに同じ位置
の画素のデータを加算した加算画像データを出力する加
算器と、前記加算画像データを2値化した2値画像デー
タを出力する2値化処理部と、前記2値画像データから
なる画像のラベル付けされた画素の集合で一定の面積以
上のものを欠陥として検出しその欠陥の座標である欠陥
座標データを出力するラベリング処理部と、前記複数の
画像メモリそれぞれの前記欠陥座標データが示す座標の
画素のデータの大きさを比較して欠陥の種類を判別して
欠陥種類データを出力するデコーダとを含むことを特徴
とする請求項1ないし5記載の表面欠陥検査装置。
6. The image processing unit outputs a plurality of image memories for storing digital image data for each of a plurality of color video signals, and added image data obtained by adding data of pixels at the same positions of the plurality of image memories. An adder, a binarization processing unit that outputs binary image data obtained by binarizing the added image data, and a set of labeled pixels of an image composed of the binary image data, which has a predetermined area or more. A labeling processing unit that detects a defect as a defect and outputs defect coordinate data that is the coordinate of the defect, and compares the size of the pixel data of the coordinates indicated by the defect coordinate data of each of the plurality of image memories to determine the defect. 6. The surface defect inspection apparatus according to claim 1, further comprising a decoder that determines a type and outputs defect type data.
【請求項7】 カラー撮像手段はR(赤),G(緑)お
よびB(紫)のカラー映像信号を出力することを特徴と
する請求項1ないし6記載の表面欠陥検査装置。
7. The surface defect inspection apparatus according to claim 1, wherein the color image pickup means outputs R (red), G (green) and B (purple) color image signals.
JP910196A 1996-01-23 1996-01-23 Surface defect inspection device Pending JPH09196859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP910196A JPH09196859A (en) 1996-01-23 1996-01-23 Surface defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP910196A JPH09196859A (en) 1996-01-23 1996-01-23 Surface defect inspection device

Publications (1)

Publication Number Publication Date
JPH09196859A true JPH09196859A (en) 1997-07-31

Family

ID=11711241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP910196A Pending JPH09196859A (en) 1996-01-23 1996-01-23 Surface defect inspection device

Country Status (1)

Country Link
JP (1) JPH09196859A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009655A (en) * 1998-06-25 2000-01-14 Kobe Steel Ltd Visual inspection device
JP2001068519A (en) * 1999-08-24 2001-03-16 Sumitomo Metal Mining Co Ltd Method of measuring etch pit density in semiconductor single crystal
WO2002029886A3 (en) * 2000-10-06 2003-03-13 Applied Materials Inc Method and apparatus for substrate surface inspection using spectral profiling techniques
US6630995B1 (en) 1999-09-07 2003-10-07 Applied Materials, Inc. Method and apparatus for embedded substrate and system status monitoring
US6697517B1 (en) 1999-09-07 2004-02-24 Applied Magerials, Inc. Particle detection and embedded vision system to enhance substrate yield and throughput
US6707545B1 (en) 1999-09-07 2004-03-16 Applied Materials, Inc. Optical signal routing method and apparatus providing multiple inspection collection points on semiconductor manufacturing systems
US6721045B1 (en) 1999-09-07 2004-04-13 Applied Materials, Inc. Method and apparatus to provide embedded substrate process monitoring through consolidation of multiple process inspection techniques
US6813032B1 (en) 1999-09-07 2004-11-02 Applied Materials, Inc. Method and apparatus for enhanced embedded substrate inspection through process data collection and substrate imaging techniques
US7012684B1 (en) 1999-09-07 2006-03-14 Applied Materials, Inc. Method and apparatus to provide for automated process verification and hierarchical substrate examination
JP2006112939A (en) * 2004-10-15 2006-04-27 Nikon Corp Flaw inspection device
JP2007199066A (en) * 2006-01-26 2007-08-09 Orbotech Ltd System and method for inspecting patternized device with micro conductor
JP2009122037A (en) * 2007-11-16 2009-06-04 Tsubakimoto Chain Co Appearance inspecting device of chains and appearance inspecting method using it
JP2010107471A (en) * 2008-10-31 2010-05-13 Mitsubishi Heavy Ind Ltd Inspection device and inspection method of defect
JP2011208941A (en) * 2010-03-26 2011-10-20 Fujitsu Ltd Flaw inspection device and flaw inspection method
JP2012202862A (en) * 2011-03-25 2012-10-22 Toshiba Corp Pattern inspection apparatus and pattern inspection method
CN104237244A (en) * 2013-08-27 2014-12-24 天威新能源控股有限公司 Silicon ingot quality detection method
WO2015123464A1 (en) * 2014-02-12 2015-08-20 Kla-Tencor Corporation Multi-spot scanning collection optics
JP2018091770A (en) * 2016-12-06 2018-06-14 株式会社マクシスエンジニアリング Method for inspecting irregularities of surface of inspection object and surface inspection device for the same
JP2019095252A (en) * 2017-11-21 2019-06-20 株式会社マクシスエンジニアリング Method for inspecting boundary of inspection object and inspection device therefor
WO2020150481A1 (en) * 2019-01-16 2020-07-23 Rudolph Technologies, Inc. Wafer crack detection
CN112461838A (en) * 2019-09-09 2021-03-09 芯恩(青岛)集成电路有限公司 Wafer defect detection device and method
JP2021067588A (en) * 2019-10-25 2021-04-30 Jfeスチール株式会社 Surface inspection device for object to be inspected and surface inspection method for object to be inspected

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242308A (en) * 1984-02-02 1985-12-02 ロ−レンス・エス・キヤニノ Method and device for measuring thickness of thin sample andmethod and device for measuring characteristic of thin sample
JPS6238348A (en) * 1985-08-14 1987-02-19 Mitsubishi Metal Corp Optical inspecting method for surface defect
JPH02213711A (en) * 1989-02-14 1990-08-24 Omron Tateisi Electron Co Parts inspecting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242308A (en) * 1984-02-02 1985-12-02 ロ−レンス・エス・キヤニノ Method and device for measuring thickness of thin sample andmethod and device for measuring characteristic of thin sample
JPS6238348A (en) * 1985-08-14 1987-02-19 Mitsubishi Metal Corp Optical inspecting method for surface defect
JPH02213711A (en) * 1989-02-14 1990-08-24 Omron Tateisi Electron Co Parts inspecting device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009655A (en) * 1998-06-25 2000-01-14 Kobe Steel Ltd Visual inspection device
JP2001068519A (en) * 1999-08-24 2001-03-16 Sumitomo Metal Mining Co Ltd Method of measuring etch pit density in semiconductor single crystal
US6707545B1 (en) 1999-09-07 2004-03-16 Applied Materials, Inc. Optical signal routing method and apparatus providing multiple inspection collection points on semiconductor manufacturing systems
US6630995B1 (en) 1999-09-07 2003-10-07 Applied Materials, Inc. Method and apparatus for embedded substrate and system status monitoring
US6693708B1 (en) 1999-09-07 2004-02-17 Applied Materials, Inc. Method and apparatus for substrate surface inspection using spectral profiling techniques
US6697517B1 (en) 1999-09-07 2004-02-24 Applied Magerials, Inc. Particle detection and embedded vision system to enhance substrate yield and throughput
US6721045B1 (en) 1999-09-07 2004-04-13 Applied Materials, Inc. Method and apparatus to provide embedded substrate process monitoring through consolidation of multiple process inspection techniques
US6813032B1 (en) 1999-09-07 2004-11-02 Applied Materials, Inc. Method and apparatus for enhanced embedded substrate inspection through process data collection and substrate imaging techniques
US7012684B1 (en) 1999-09-07 2006-03-14 Applied Materials, Inc. Method and apparatus to provide for automated process verification and hierarchical substrate examination
WO2002029886A3 (en) * 2000-10-06 2003-03-13 Applied Materials Inc Method and apparatus for substrate surface inspection using spectral profiling techniques
JP2006112939A (en) * 2004-10-15 2006-04-27 Nikon Corp Flaw inspection device
JP2007199066A (en) * 2006-01-26 2007-08-09 Orbotech Ltd System and method for inspecting patternized device with micro conductor
JP2009122037A (en) * 2007-11-16 2009-06-04 Tsubakimoto Chain Co Appearance inspecting device of chains and appearance inspecting method using it
JP2010107471A (en) * 2008-10-31 2010-05-13 Mitsubishi Heavy Ind Ltd Inspection device and inspection method of defect
JP2011208941A (en) * 2010-03-26 2011-10-20 Fujitsu Ltd Flaw inspection device and flaw inspection method
JP2012202862A (en) * 2011-03-25 2012-10-22 Toshiba Corp Pattern inspection apparatus and pattern inspection method
US8649591B2 (en) 2011-03-25 2014-02-11 Kabushiki Kaisha Toshiba Pattern inspection apparatus and pattern inspection method
CN104237244A (en) * 2013-08-27 2014-12-24 天威新能源控股有限公司 Silicon ingot quality detection method
US9546962B2 (en) 2014-02-12 2017-01-17 Kla-Tencor Corporation Multi-spot scanning collection optics
CN105980908A (en) * 2014-02-12 2016-09-28 科磊股份有限公司 Multi-spot scanning collection optics
KR20160119805A (en) * 2014-02-12 2016-10-14 케이엘에이-텐코 코포레이션 Multi-spot scanning collection optics
WO2015123464A1 (en) * 2014-02-12 2015-08-20 Kla-Tencor Corporation Multi-spot scanning collection optics
US9970883B2 (en) 2014-02-12 2018-05-15 Kla-Tencor Corporation Multi-spot scanning collection optics
CN105980908B (en) * 2014-02-12 2018-06-08 科磊股份有限公司 Multi-point scanning collects optical device
JP2018091770A (en) * 2016-12-06 2018-06-14 株式会社マクシスエンジニアリング Method for inspecting irregularities of surface of inspection object and surface inspection device for the same
JP2019095252A (en) * 2017-11-21 2019-06-20 株式会社マクシスエンジニアリング Method for inspecting boundary of inspection object and inspection device therefor
WO2020150481A1 (en) * 2019-01-16 2020-07-23 Rudolph Technologies, Inc. Wafer crack detection
CN112461838A (en) * 2019-09-09 2021-03-09 芯恩(青岛)集成电路有限公司 Wafer defect detection device and method
CN112461838B (en) * 2019-09-09 2023-03-10 芯恩(青岛)集成电路有限公司 Wafer defect detection device and method
JP2021067588A (en) * 2019-10-25 2021-04-30 Jfeスチール株式会社 Surface inspection device for object to be inspected and surface inspection method for object to be inspected

Similar Documents

Publication Publication Date Title
JPH09196859A (en) Surface defect inspection device
JP4183807B2 (en) Method for detecting artifacts on the surface of a transmissive image medium
US6879392B2 (en) Method and apparatus for inspecting defects
JP6348289B2 (en) Inspection apparatus and inspection method
JPH0412416B2 (en)
JP2001356004A (en) Image pickup device and range measuring method for image
JPH109827A (en) Method and equipment for determining height
EP2406618A2 (en) Apparatus and method for measuring haze of sheet materials or other materials
JPH11211668A (en) Method and apparatus for detection of defect
JPH0562696B2 (en)
KR20030048153A (en) A method and device for recording images of grains from cereals to detect cracking
JPS62232504A (en) Position detector
JP7136064B2 (en) Apparatus for inspecting surface of object to be inspected and method for inspecting surface of object to be inspected
WO2019117802A1 (en) A system for obtaining 3d images of objects and a process thereof
JPH04294204A (en) Apparatus for extracting defect in object surface
JP2914967B2 (en) Appearance inspection method
JPH04113260A (en) Method and apparatus for detecting surface defect
US20030147562A1 (en) Method and device for identifying and/or correcting defects during digital image processing
JP3523764B2 (en) Foreign object detection device in nonmetallic inclusion measurement
JPS6366445A (en) Visual inspecting device
JP2000258348A (en) Defect inspection apparatus
JPS61107144A (en) Method for inspecting container
JPH071776B2 (en) Pattern inspection equipment
JPH10247669A (en) Device and method for inspecting bonding wire
WO2024116634A1 (en) Inspection system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980526