JP2019095252A - Method for inspecting boundary of inspection object and inspection device therefor - Google Patents

Method for inspecting boundary of inspection object and inspection device therefor Download PDF

Info

Publication number
JP2019095252A
JP2019095252A JP2017223498A JP2017223498A JP2019095252A JP 2019095252 A JP2019095252 A JP 2019095252A JP 2017223498 A JP2017223498 A JP 2017223498A JP 2017223498 A JP2017223498 A JP 2017223498A JP 2019095252 A JP2019095252 A JP 2019095252A
Authority
JP
Japan
Prior art keywords
light
diffracted light
reflected
color
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017223498A
Other languages
Japanese (ja)
Other versions
JP6938093B2 (en
Inventor
知泰 西郷
Tomoyasu Saigo
知泰 西郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxis Eng Inc
Maxis-Engineering Inc
Original Assignee
Maxis Eng Inc
Maxis-Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxis Eng Inc, Maxis-Engineering Inc filed Critical Maxis Eng Inc
Priority to JP2017223498A priority Critical patent/JP6938093B2/en
Publication of JP2019095252A publication Critical patent/JP2019095252A/en
Application granted granted Critical
Publication of JP6938093B2 publication Critical patent/JP6938093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

To provide an inspection method and a device therefor with which, owing to a compact device, it is possible to quickly and reliably inspect even a minute irregularity or change on a boundary between the surface and other faces of an inspection object.SOLUTION: In a method and device for inspecting a boundary between a surface 51 of an inspection object 50 and a slant face 52 inclined at a prescribed angle to the surface 51 or a curved face formed by curving from the surface, the surface 51 is irradiated with a first diffracted light 31 consisting of a light irradiated in a plurality of colors from the same irradiating device, each color radiated at a prescribed angle, and having directivity for each color, and the slant face 52 or curved face is irradiated with a second diffracted light 32. A first reflected light 41 of the first diffracted light 31 that is reflected from the surface 51 of the inspection object 50, and a second reflected light 42 of the second diffracted light 32 that is reflected from the slant face 52 or curved face are detected, and a boundary 53 of the inspection object 50 is inspected by a change of color of the first reflected light 41 and second reflected light 42 in a portion of a boundary 53 between the surface 51 of the inspection object 50 and the slant face 52 or curved face.SELECTED DRAWING: Figure 1

Description

本発明は、検査対象物の境界部を検査する方法及びその検査装置に関する。 The present invention relates to a method for inspecting the boundary of an inspection object and an inspection apparatus therefor.

検査対象物の表面、他の平面及び境界部の凹凸を検査する方法として、検査対象物の表面に平行光線からなる照明を当てて、その反射光から検査対象物の境界部の凹凸や直線性を検査するものがある。しかし、光沢のある表面、例えば金属の表面では、表面からの反射光が強くなり、表面以外では、画面が暗くなり、境界部の状態を判断することが困難である。   As a method of inspecting the unevenness of the surface of the inspection object, other planes and boundaries, the illumination consisting of parallel rays is applied to the surface of the inspection object, and from the reflected light, the unevenness or linearity of the boundary of the inspection object There is something to inspect. However, on a glossy surface, for example, a metal surface, the reflected light from the surface becomes strong, and in areas other than the surface, the screen becomes dark and it is difficult to determine the state of the boundary.

また、図15に示すように、検査対象物150の表面151の広い範囲に照射装置120から縞状のパターン121の照明光130を投影して、その反射光140をカメラ160で撮影して、縞状のパターン121の乱れから検査対象物150の表面151の凹凸を検査するものがある(例えば、特許文献1及び2参照。)。しかしながら、この場合には、表面151と他の平面との境界部の検査は困難であり、また、反射光140が、照射装置120のどの位置から照射された光であるかを認識することができず、そのため、撮影した画像に高度な画像処理を行っている場合がある。従って、画像処理に時間がかかり、装置も大型になる。   Further, as shown in FIG. 15, the illumination device 130 projects the illumination light 130 of the striped pattern 121 from the irradiation device 120 onto a wide range of the surface 151 of the inspection object 150, and the reflected light 140 is photographed by the camera 160, There are some which inspect the unevenness of the surface 151 of the inspection object 150 from the disorder of the striped pattern 121 (for example, refer to patent documents 1 and 2). However, in this case, it is difficult to inspect the boundary between the surface 151 and the other plane, and to recognize from which position of the irradiation device 120 the reflected light 140 is emitted. Therefore, there are cases where advanced image processing is performed on the captured image. Therefore, image processing takes time, and the apparatus also becomes large.

また、図16に示すように、円環状の光源220を使用して、内側から赤色LED221、次に緑色LED222、最も外側に青色LED223の光を被検査基板250に置かれた検査対象物に投影して、色相の変化をカメラ260で撮影するものがある(例えば、特許文献3参照。)。しかしながら、この場合には、赤色LED221と青色LED223と緑色LED224がそれぞれ必要であり、装置が大型となり、また、表面と他の平面との境界部の検査は困難である。   Also, as shown in FIG. 16, using the annular light source 220, the light of the red LED 221 from the inside, then the green LED 222, and the blue LED 223 on the outermost side is projected onto the inspection object placed on the inspection substrate 250. Then, there is one in which a change in hue is photographed by a camera 260 (see, for example, Patent Document 3). However, in this case, the red LED 221, the blue LED 223, and the green LED 224 are respectively required, the apparatus becomes large, and inspection of the boundary between the surface and the other plane is difficult.

特開2014−2041号公報JP, 2014-2041, A 特開2016−130695号公報JP, 2016-130695, A 特開2005−274558号公報JP, 2005-274558, A

そこで本発明は、装置が小型であり、検査物の表面と他の面との境界部の微小な凹凸や変化も素早く確実に検査できる検査方法とその装置を提供しようとするものである。   Therefore, the present invention is intended to provide an inspection method and an apparatus, which are compact in size and capable of quickly and reliably inspecting minute irregularities and changes in the boundary portion between the surface of an inspection object and another surface.

上記課題を解決するために請求項1の本発明は、検査対象物の表面と、表面と所定の角度で傾斜する傾斜面又は表面から湾曲して形成される湾曲面との境界部を検査する方法において、
複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第1回折光を表面に照射し、複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第2回折光を、傾斜面又は湾曲面に照射して、
第1回折光が検査対象物の表面から反射される第1反射光と、第2回折光が傾斜面又は湾曲面から反射される第2反射光を検出し、検査対象物の表面と傾斜面又は湾曲面の部分との境界部の部分の第1反射光と第2反射光の色の変化により検査対象物の境界部を検査する方法である。
In order to solve the above-mentioned problems, the present invention according to claim 1 inspects the boundary between the surface of the inspection object and the inclined surface which is inclined at a predetermined angle with the surface or a curved surface formed by being curved from the surface. In the method
A plurality of colors are emitted from the same irradiation device, each color is emitted at a predetermined angle, and the first diffracted light irradiated with light having directivity for each color is irradiated on the surface, and the irradiation devices of the plurality of colors are the same. Each color is emitted at a predetermined angle, and the second diffracted light, which is irradiated with light having directivity for each color, is irradiated to the inclined surface or the curved surface,
The first reflected light in which the first diffracted light is reflected from the surface of the inspection object and the second reflected light in which the second diffracted light is reflected from the inclined surface or the curved surface are detected, and the surface and the inclined surface of the inspection object Alternatively, the boundary portion of the inspection object is inspected by changing the color of the first reflected light and the second reflected light of the portion of the boundary portion with the curved surface portion.

請求項1の本発明では、検査対象物の表面と、表面と所定の角度で傾斜する傾斜面又は表面から湾曲して形成される湾曲面との境界部を検査する方法において、複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第1回折光を表面に照射している。第1回折光は、検査対象物の表面から反射される第1反射光が一定の同じ色となるように構成可能であり、表面以外の部分からの反射光と容易に識別することができる。 According to the present invention of claim 1, in the method of inspecting the boundary between the surface of the inspection object and the inclined surface which is inclined from the surface at a predetermined angle or a curved surface formed by curving from the surface, a plurality of colors Each color is emitted at a predetermined angle from the same irradiation device, and the surface is irradiated with first diffracted light which is irradiated with light having directivity for each color. The first diffracted light can be configured such that the first reflected light reflected from the surface of the inspection object has a certain same color, and can be easily distinguished from the reflected light from a portion other than the surface.

複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第2回折光を、傾斜面又は湾曲面に照射している。第2回折光は、検査対象物の表面から反射される第2反射光が一定の同じ色の反射光となるように構成可能であり、傾斜面又は湾曲面以外の部分からの反射光と容易に識別することができる。 A plurality of colors are emitted from the same irradiation device, and each color is emitted at a predetermined angle, and the second diffracted light, which is irradiated with light having directivity for each color, is irradiated to the inclined surface or the curved surface. The second diffracted light can be configured so that the second reflected light reflected from the surface of the inspection object is a reflected light of a certain same color, and easily reflected light from a portion other than the inclined surface or the curved surface Can be identified.

第1回折光が検査対象物の表面から反射される第1反射光と、第2回折光が傾斜面又は湾曲面から反射される第2反射光を検出し、検査対象物の表面と傾斜面又は湾曲面の部分との境界部の部分の第1反射光と第2反射光の色の変化により検査対象物の境界部を検査する。このため、境界部の部分に凹凸等の異常があれば、その部分の色が変わり、特別な画像処理を必要とせず、検査が容易であるとともに、検査速度を早くすることができる。また、表面の反射光と傾斜面又は湾曲面からの反射光の色が異なる場合には、反射光の色の変化により検査できるため、表面と傾斜面又は記湾曲面の部分との境界部の部分が、明確となる。 The first reflected light in which the first diffracted light is reflected from the surface of the inspection object and the second reflected light in which the second diffracted light is reflected from the inclined surface or the curved surface are detected, and the surface and the inclined surface of the inspection object Alternatively, the boundary portion of the inspection object is inspected by the change in color of the first reflected light and the second reflected light in the portion of the boundary portion with the curved surface portion. For this reason, if there is an abnormality such as unevenness in the boundary portion, the color of the portion changes and special image processing is not required, inspection is easy, and inspection speed can be increased. If the color of the reflected light from the surface is different from the color of the reflected light from the inclined surface or the curved surface, inspection can be performed by changing the color of the reflected light. Therefore, the boundary portion between the surface and the inclined surface or a portion of the curved surface The part becomes clear.

請求項2の本発明は、複数の色が各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第1回折光と第2回折光は、白色光源からの光をホログラフィック回折光学素子に透過又は反射した回折光を使用する検査対象物の境界部を検査する方法である。 According to the second aspect of the present invention, the first diffracted light and the second diffracted light emitted from the white light source in which a plurality of colors are emitted at predetermined angles and each light is irradiated with light having directivity. It is a method of inspecting the boundary of an inspection object using diffracted light which transmits or reflects light to a holographic diffractive optical element.

請求項2の本発明では、複数の色が各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第1回折光と第2回折光は、白色光源からの光をホログラフィック回折光学素子に透過又は反射した回折光を使用する。このため、ホログラフィック回折光学素子で容易に複数の色が各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される回折光を作成することができる。また、ホログラフィック回折光学素子は、柔軟性を有して、検査対象物に応じて曲げることができ、局面を有する検査対象物に確実に回折光を照射することができる。
なお、回折光の強度を強くするため、ホログラフィック回折光学素子として位相変調型の体積ホログラムを用いることが好ましい。
According to the second aspect of the present invention, the first diffracted light and the second diffracted light irradiated with the light having a plurality of colors emitted at a predetermined angle for each color and having directivity for each color are from the white light source. The diffracted light transmitted or reflected to the holographic diffractive optical element is used. For this reason, it is possible to easily generate diffracted light in which a plurality of colors are emitted at a predetermined angle and illuminated with light having directivity for each color in the holographic diffractive optical element. In addition, the holographic diffractive optical element is flexible and can be bent according to the inspection object, and the inspection object having the aspect can be reliably irradiated with the diffracted light.
In order to increase the intensity of diffracted light, it is preferable to use a phase modulation type volume hologram as the holographic diffraction optical element.

請求項3の本発明は、ホログラフィック回折光学素子は、回折角度が異なる回折領域を複数個並べた検査対象物の境界部を検査する方法である。 The invention according to claim 3 is a method of inspecting a boundary portion of an inspection object in which a plurality of diffraction regions having different diffraction angles are arranged in a holographic diffractive optical element.

請求項3の本発明では、ホログラフィック回折光学素子は、回折角度が異なる回折領域を複数個並べたため、1個のホログラフィック回折光学素子からの反射光は、反射面により異なった色様として観察することができ、検査対象物の境界部の微細な変化に対しても、確実に縞模様の色変化として観察することができ、境界部の凹凸を容易に発見することができる。 In the third aspect of the present invention, since the holographic diffractive optical element has a plurality of diffractive regions with different diffraction angles arranged, the reflected light from one holographic diffractive optical element is observed as different colors depending on the reflecting surface. Thus, even a minute change of the boundary of the inspection object can be surely observed as a color change of the striped pattern, and the unevenness of the boundary can be easily found.

請求項4の本発明は、第2回折光は、第1回折光を反射鏡又はプリズムで角度を変えて傾斜面又は湾曲面に照射する、又はホログラフィック回折光学素子を屈曲又は湾曲させて第1回折光を照射する部分以外の部分から第2回折光を照射する検査対象物の境界部を検査する方法である。 According to the present invention of claim 4, the second diffracted light irradiates the inclined surface or the curved surface with the first diffracted light by changing the angle with the reflecting mirror or prism, or by bending or curving the holographic diffractive optical element. (1) A method of inspecting the boundary portion of the inspection object to which the second diffracted light is irradiated from the portion other than the portion which irradiates the diffracted light.

請求項4の本発明では、第2回折光は、第1回折光を反射鏡又はプリズムで角度を変えて傾斜面又は湾曲面に照射する場合には、1つの光源から異なった回折光を照射することができ、装置を簡略化することができる。
ホログラフィック回折光学素子を屈曲又は湾曲させて第1回折光を照射する部分以外の部分から第2回折光を照射する場合には、柔軟性を有するホログラフィック回折光学素子を使用して、検査対象物に沿って、ホログラフィック回折光学素子を屈曲又は湾曲させて1つの光源である1個のホログラフィック回折光学素子から第1回折光と第2回折光を照射することができる。
In the present invention of claim 4, the second diffracted light is irradiated with different diffracted light from one light source when the first diffracted light is irradiated to the inclined surface or the curved surface by changing the angle with a reflecting mirror or a prism. And the apparatus can be simplified.
When the holographic diffractive optical element is bent or curved to irradiate the second diffracted light from a portion other than the portion to be irradiated with the first diffracted light, the holographic diffractive optical element having flexibility is used to be inspected Along the object, the holographic diffractive optical element can be bent or curved to irradiate the first diffracted light and the second diffracted light from one holographic diffractive optical element which is one light source.

請求項5の本発明は、第1回折光と第2回折光は、別の光源から発光された光である検査対象物の境界部を検査する方法である。 The present invention of claim 5 is a method of inspecting a boundary portion of an inspection object in which the first diffracted light and the second diffracted light are lights emitted from another light source.

請求項5の本発明では、第1回折光と第2回折光は、別の光源から発光された光であるため、第1回折光と第2回折光は、別の表面を自由な角度から照射することができ、検査対象物の表面と傾斜面又は湾曲面を適切に照射して、境界部の第1反射光と第2反射光の異なりを際立たせることができ、確実に検査することができる。 In the present invention of claim 5, since the first diffracted light and the second diffracted light are lights emitted from another light source, the first diffracted light and the second diffracted light have different surfaces from free angles. The surface of the object to be inspected and the inclined surface or curved surface can be appropriately irradiated to highlight the difference between the first reflected light and the second reflected light at the boundary, and ensure inspection. Can.

請求項6の本発明は、第1反射光と第2反射光をカメラで撮影し、撮影した反射光のデータを記録して、記録したデータに基づき色の変化を自動的に判断し、検査対象物の境界部の凹凸を検査する検査対象物の境界部を検査する方法。 According to the present invention, the first reflected light and the second reflected light are photographed by a camera, data of the photographed reflected light is recorded, and a change in color is automatically judged based on the recorded data, and inspection is performed. A method of inspecting the boundary of an inspection object for inspecting unevenness of the boundary of the object.

請求項6の本発明では、第1反射光と第2反射光をカメラで撮影し、撮影した反射光のデータを記録して、記録したデータに基づき色の変化を自動的に判断し、検査対象物の境界部の凹凸を検査する。検査対象物の境界部の凹凸を色の変化に基づき判断するため、特別な画像処理を必要としなく、検査を確実に、素早く検査することができるとともに、検査対象物から離れて検査することもでき、記録したデータに基づき、自動判断装置を使用して自動的に検査することができる。 In the present invention of claim 6, the first reflected light and the second reflected light are photographed by a camera, data of the photographed reflected light is recorded, and a change in color is automatically judged based on the recorded data, and inspection is performed. Inspect the unevenness of the boundary of the object. In order to judge the unevenness of the boundary part of the inspection object based on the change of color, it is possible to inspect the inspection surely and quickly without special image processing, and also to inspect away from the inspection object Based on the recorded data, it can be inspected automatically using an automatic judgment device.

請求項7の本発明は、検査対象物の表面と該表面と所定の角度で傾斜する傾斜面又は該表面から湾曲して形成される湾曲面との境界部を検査する方法において、
光源と、光源から照射される光を複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第1回折光を表面に照射する装置と、光源と、光源から照射される光を複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第2回折光を、傾斜面又は湾曲面に照射する装置と、
第1回折光が検査対象物の表面から反射される第1反射光と、第2回折光が上記傾斜面又は湾曲面から反射される第2反射光を検出し、検査対象物の表面と傾斜面又は湾曲面の部分との境界部の部分の第1反射光と第2反射光の色の変化により検査対象物の境界部を検査する検査装置である。
The present invention according to claim 7 is a method of inspecting a boundary between a surface of an inspection object and an inclined surface which is inclined at a predetermined angle with the surface or a curved surface formed by being curved from the surface,
A light source and light emitted from the light source are emitted from a plurality of illumination devices having the same color, each color is emitted at a predetermined angle, and the surface is irradiated with first diffracted light which is irradiated with light having directivity for each color. Device, a light source, and light emitted from the light source are emitted at a predetermined angle from a plurality of illumination devices having the same color, and second diffracted light irradiated with light having directivity for each color A device for irradiating the inclined surface or the curved surface;
The first reflected light in which the first diffracted light is reflected from the surface of the inspection object and the second reflected light in which the second diffracted light is reflected from the inclined surface or the curved surface are detected, and the surface and the inclination of the inspection object It is an inspection device which inspects the border part of a test subject by change of the color of the 1st catoptric light and the 2nd catoptric light of the part of a border part with a portion of a field or a curved surface.

請求項7の本発明では、検査対象物の表面と該表面と所定の角度で傾斜する傾斜面又は該表面から湾曲して形成される湾曲面との境界部を検査する方法において、光源と、光源から照射される光を複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第1回折光を表面に照射する装置を有している。このため、第1回折光により検査対象物の表面の第1反射光は、一定の同じ色の反射光であり、表面以外の部分からの反射光と容易に識別することができる。 According to the present invention of claim 7, a light source is a method of inspecting a boundary between a surface of an inspection object and an inclined surface inclined at a predetermined angle with the surface or a curved surface formed by curving from the surface; An apparatus for irradiating the surface with a first diffracted light which is emitted from a light source and emitted from a plurality of illumination devices having the same color, each color at a predetermined angle, and illuminated with light having directivity for each color Have. For this reason, the first reflected light on the surface of the inspection object is the reflected light of a certain same color by the first diffracted light, and can be easily distinguished from the reflected light from parts other than the surface.

光源と、光源から照射される光を複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第2回折光を、傾斜面又は湾曲面に照射する装置を有している。このため、傾斜面又は湾曲面の第2反射光は、表面からの反射光と色が異なる場合があり、表面との区別が容易である。 A light source and light irradiated from the light source are emitted from a plurality of illumination devices having the same color, each color is emitted at a predetermined angle, and the second diffracted light irradiated with light having directivity for each color is an inclined surface Or it has an apparatus which irradiates to a curved surface. For this reason, the second reflected light from the inclined surface or the curved surface may be different in color from the light reflected from the surface, so that it is easy to distinguish from the surface.

第1回折光が検査対象物の表面から反射される第1反射光と、第2回折光が上記傾斜面又は湾曲面から反射される第2反射光を検出し、検査対象物の表面と傾斜面又は湾曲面の部分との境界部の部分の第1反射光と第2反射光の色の変化により検査対象物の境界部を検査する。このため、境界部の部分に凹凸等の異常があれば、その部分の色が変わり、特別な画像処理を必要とせず、検査が容易であるとともに、検査速度を早くすることができる。また、表面の反射光と傾斜面又は湾曲面からの反射光の色が異なる場合には、反射光の色の変化により検査できるため、表面と傾斜面又は記湾曲面の部分との境界部の部分が、明確となる。 The first reflected light in which the first diffracted light is reflected from the surface of the inspection object and the second reflected light in which the second diffracted light is reflected from the inclined surface or the curved surface are detected, and the surface and the inclination of the inspection object The boundary portion of the inspection object is inspected by the change of the color of the first reflected light and the second reflected light of the portion of the boundary portion with the surface or the curved surface portion. For this reason, if there is an abnormality such as unevenness in the boundary portion, the color of the portion changes and special image processing is not required, inspection is easy, and inspection speed can be increased. If the color of the reflected light from the surface is different from the color of the reflected light from the inclined surface or the curved surface, inspection can be performed by changing the color of the reflected light. Therefore, the boundary portion between the surface and the inclined surface or a portion of the curved surface The part becomes clear.

請求項8の本発明は、光源は、白色光源であり、照射装置は、白色光源からの光をホログラフィック回折光学素子に透過又は反射した第1回折光と第2回折光とし、第1回折光と第2回折光は、複数の色が各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される回折光とする検査装置である。 According to the invention of claim 8, the light source is a white light source, and the illumination device is made into first diffracted light and second diffracted light which are transmitted or reflected from the white light source to the holographic diffractive optical element, the first diffracted light The light and the second diffracted light are inspection devices in which a plurality of colors are diffracted light which is emitted at a predetermined angle for each color and is irradiated with light having directivity for each color.

請求項8の本発明では、光源は、白色光源であり、照射装置は、白色光源からの光をホログラフィック回折光学素子に透過又は反射した第1回折光と第2回折光とし、第1回折光と第2回折光は、複数の色が各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される回折光である。このため、ホログラフィック回折光学素子で容易に複数の色が各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される回折光を作成することができる。また、ホログラフィック回折光学素子は、柔軟性を有して、検査対象物に応じて曲げることができ、局面を有する検査対象物に確実に回折光を照射することができる。
なお、回折光の強度を強くするため、ホログラフィック回折光学素子として位相変調型の体積ホログラムを用いることが好ましい。
In the present invention of claim 8, the light source is a white light source, and the illumination device is made into first diffracted light and second diffracted light which are transmitted or reflected from the white light source to the holographic diffractive optical element, the first diffracted light The light and the second diffracted light are diffracted lights in which a plurality of colors are emitted at a predetermined angle and each direction is irradiated with light having directivity. For this reason, it is possible to easily generate diffracted light in which a plurality of colors are emitted at a predetermined angle and illuminated with light having directivity for each color in the holographic diffractive optical element. In addition, the holographic diffractive optical element is flexible and can be bent according to the inspection object, and the inspection object having the aspect can be reliably irradiated with the diffracted light.
In order to increase the intensity of diffracted light, it is preferable to use a phase modulation type volume hologram as the holographic diffraction optical element.

請求項9の本発明は、ホログラフィック回折光学素子は、回折角度が異なる回折領域を複数個並べた検査装置である。 The invention according to claim 9 is the inspection device in which the holographic diffractive optical element is a plurality of diffraction regions arranged at different diffraction angles.

請求項9の本発明では、ホログラフィック回折光学素子は、回折角度が異なる回折領域を複数個並べたため、反射光は、反射面により異なった色様として観察することができ、検査対象物の境界部の微細な変化に対しても、確実に縞模様の色変化として観察することができ、境界部の凹凸を容易に発見することができる。 In the present invention of claim 9, the holographic diffractive optical element arranges a plurality of diffraction regions having different diffraction angles, so that the reflected light can be observed as a different color depending on the reflection surface, and the boundary of the inspection object Even a minute change of a part can be surely observed as a color change of a striped pattern, and unevenness of the boundary can be easily found.

請求項10の本発明は、第2回折光は、第1回折光を反射鏡又はプリズムで角度を変えて傾斜面又は湾曲面に照射する、又はホログラフィック回折光学素子を屈曲又は湾曲させて第1回折光を照射する部分以外の部分から第2回折光を照射する検査装置である。 According to the present invention of claim 10, the second diffracted light irradiates the inclined surface or the curved surface with the first diffracted light by changing the angle with a reflecting mirror or a prism, or by bending or curving the holographic diffractive optical element. (1) It is an inspection device which irradiates the second diffracted light from the part other than the part irradiated with the diffracted light.

請求項10の本発明では、第2回折光は、第1回折光を反射鏡又はプリズムで角度を変えて傾斜面又は湾曲面に照射する場合には、1つの光源から異なった回折光を照射することができ、装置を簡略化することができる。
ホログラフィック回折光学素子を屈曲又は湾曲させて第1回折光を照射する部分以外の部分から第2回折光を照射する場合には、柔軟性を有するホログラフィック回折光学素子を使用して、検査対象物に沿って、ホログラフィック回折光学素子を屈曲又は湾曲させて1つの光源である1個のホログラフィック回折光学素子から第1回折光と第2回折光を照射することができる。
In the present invention of claim 10, when the first diffracted light is irradiated to the inclined surface or the curved surface by changing the angle with the reflecting mirror or the prism, the second diffracted light is irradiated with the diffracted light different from one light source. And the apparatus can be simplified.
When the holographic diffractive optical element is bent or curved to irradiate the second diffracted light from a portion other than the portion to be irradiated with the first diffracted light, the holographic diffractive optical element having flexibility is used to be inspected Along the object, the holographic diffractive optical element can be bent or curved to irradiate the first diffracted light and the second diffracted light from one holographic diffractive optical element which is one light source.

請求項11の本発明は、第1回折光と第2回折光は、別の光源から発光された光である検査装置である。 The present invention of claim 11 is an inspection apparatus in which the first diffracted light and the second diffracted light are lights emitted from different light sources.

請求項11の本発明では、第1回折光と第2回折光は、別の光源から発光された光であるため、第1回折光と第2回折光は、別の表面を自由な角度から照射することができ、検査対象物の境界部の反射光の異なりを際立たせることができ、確実に検査することができる。 In the present invention of claim 11, the first diffracted light and the second diffracted light are lights emitted from another light source, so the first diffracted light and the second diffracted light are from different angles on different surfaces. Irradiation can be performed, and differences in the reflected light at the boundary of the inspection object can be highlighted, and inspection can be performed reliably.

請求項12の本発明は、反射光を撮影するカメラと、撮影した反射光のデータを記録する記録装置を有し、記録したデータに基づき色の変化を自動的に判断する判断装置を有する検査装置である。 The present invention according to claim 12 is a test having a camera for photographing reflected light, and a recording device for recording data of photographed reflected light, and a judgment device for automatically judging a change in color based on the recorded data. It is an apparatus.

請求項12の本発明では、反射光を撮影するカメラと、撮影した反射光のデータを記録する記録装置を有し、記録したデータに基づき色の変化を自動的に判断する判断装置を有する。このため検査対象物の境界部の凹凸を色の変化に基づき判断するため、特別な画像処理を必要としなく、検査を確実に、素早く検査することができるとともに、検査対象物から離れて検査することもでき、記録したデータに基づき、自動判断装置を使用して自動的に検査することができる。 The present invention of claim 12 has a camera for photographing reflected light, and a recording device for recording data of the photographed reflected light, and has a judgment device for automatically judging a change in color based on the recorded data. For this reason, since the unevenness of the boundary portion of the inspection object is judged based on the change in color, the inspection can be surely and quickly inspected without special image processing, and the inspection is performed apart from the inspection object It can also be inspected automatically using an automatic decision device based on the recorded data.

第1反射光と第2反射光を検出し、検査対象物の表面と傾斜面又は湾曲面の部分との境界部の部分の第1反射光と第2反射光の色の変化により検査対象物の境界部を検査するため、表面の第1反射光と傾斜面又は湾曲面からの第2反射光の色が異なり、反射光の色の変化により検査できるため、表面と傾斜面又は記湾曲面の部分との境界部の部分が、明確となり、境界部の部分に凹凸等の異常があれば、特別な画像処理を必要とせず、検査が容易である。 The first reflected light and the second reflected light are detected, and the color of the first reflected light and the second reflected light of the boundary portion between the surface of the inspection object and the inclined surface or the curved surface portion changes the inspection object The color of the first reflected light on the surface differs from the color of the second reflected light from the inclined surface or curved surface, and the inspection can be performed by the change in color of the reflected light. If there is an abnormality such as unevenness in the boundary part, the part of the boundary part with the part of becomes clear and inspection is easy without the need for special image processing.

本発明の実施の形態を示すもので、検査装置の全体の構成を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, and is a schematic view showing an entire configuration of an inspection apparatus. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子から回折光を検査対象物の表面に照射した撮影画面の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, and is a schematic view of a photographic screen in which diffracted light is irradiated from the holographic diffractive optical element to the surface of an inspection object. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子から同一方向の回折光を検査対象物の表面と斜面状に照射し、反射光をとらえるカメラを検査対象物の表面垂直上部に置いた検査装置の模式図である。This embodiment shows the embodiment of the present invention, in which diffracted light in the same direction is irradiated from the holographic diffractive optical element to the surface of the object to be inspected and on a slope, and a camera for capturing the reflected light is placed vertically above the surface of the object It is a schematic diagram of the inspection apparatus. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子の場所により異なる角度の回折光を検査対象物の表面と斜面状に照射し、反射光をとらえるカメラを検査対象物の表面の斜め上部に置いた検査装置の模式図である。FIG. 1 shows an embodiment of the present invention, in which diffracted light of different angles is irradiated to the surface of the object to be inspected and sloped depending on the location of the holographic diffractive optical element, and a camera capturing reflected light is oblique to the surface of the object It is a schematic diagram of the inspection apparatus put on the upper part. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子から回折光を検査対象物の表面、斜面状と境界部に照射した撮影画面の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, and is a schematic view of a photographic screen in which diffracted light from a holographic diffractive optical element is irradiated on the surface, sloped surface and boundary of an inspection object. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子から回折光を検査対象物の表面と斜面状に照射し、表面と斜面状の境界部が凸部の場合の反射光の状態を示す模式図である。The embodiment of the present invention is shown, in which diffracted light is irradiated from the holographic diffractive optical element to the surface of the inspection object and in the form of a slope, and the state of the reflected light when the boundary between the surface and the slope is a convex portion It is a schematic diagram shown. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子から回折光を検査対象物の表面と斜面状に照射し、表面と斜面状の境界部が凹部の場合の反射光の状態を示す模式図である。FIG. 1 shows an embodiment of the present invention, in which diffracted light is irradiated from the holographic diffractive optical element onto the surface of an inspection object in the form of a slope and the state of reflected light when the boundary between the surface and the slope is a recess is shown. It is a schematic diagram. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子から回折光を検査対象物の表面と斜面に照射し、表面、斜面と境界部の反射光の状態を示す模式図である。(a)は、斜面が45度のものを示し、(b)は、表面、斜面と境界部の反射光の状態を示す模式図である。It is a schematic diagram which shows embodiment of this invention, irradiates a diffracted light to the surface and slope of a test subject from a holographic diffraction optical element, and shows the state of the reflected light of a surface, a slope, and a boundary part. (A) shows that a slope is 45 degrees, (b) is a schematic diagram which shows the state of the reflected light of a surface, a slope, and a boundary part. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子から回折光を検査対象物の表面と斜面に照射し、表面、斜面と境界部の反射光の状態を示す模式図である。(a)は、斜面が30度のものを示し、(b)は、表面、斜面と境界部の反射光の状態を示す模式図である。It is a schematic diagram which shows embodiment of this invention, irradiates a diffracted light to the surface and slope of a test subject from a holographic diffraction optical element, and shows the state of the reflected light of a surface, a slope, and a boundary part. (A) shows that a slope is 30 degrees, (b) is a schematic diagram which shows the state of the reflected light of a surface, a slope, and a boundary part. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子から回折光を検査対象物の表面と斜面に照射し、表面、垂直面と湾曲した境界部の反射光の状態を示す模式図である。(a)は、表面と垂直面との境界部分が湾曲した境界部のものを示し、(b)は、表面、斜面と湾曲した境界部の反射光の状態を示す模式図である。The embodiment of the present invention is shown, which is a schematic view showing the state of the reflected light of the boundary portion where the surface, the vertical surface and the curved surface are curved by irradiating the diffracted light from the holographic diffractive optical element to the surface and the inclined surface of the inspection object. is there. (A) shows the thing of the boundary part which the boundary part of a surface and a perpendicular surface curved, (b) is a schematic diagram which shows the state of the reflected light of the surface and a slope and a curved boundary part. ホログラフィック回折光学素子から回折光を検査対象物の表面と斜面に照射し、表面、斜面と境界部の反射光の状態を示す写真である。(a)は、表面、斜面と境界部の反射光の状態を示す写真であり、(b)は、境界部の部分を拡大した写真である。It is a photograph which irradiates a diffracted light to the surface and slope of a test subject from a holographic diffraction optical element, and shows a state of reflected light on the surface, slope and boundary. (A) is a photograph which shows the state of the reflected light of a surface, a slope, and a boundary part, (b) is the photograph to which the part of the boundary part was expanded. 本発明の実施の形態を示すもので、ホログラフィック回折光学素子から回折光を検査対象物の表面と斜面に照射し、表面と湾曲面の反射光の状態を示す写真である。(a)は、表面、湾曲面の反射光の状態を示す写真であり、(b)は、湾曲面の部分を拡大した写真である。It is a photograph which shows embodiment of this invention, irradiates a diffracted light to the surface and slope of a test subject from a holographic diffraction optical element, and shows the state of the reflected light of the surface and a curved surface. (A) is a photograph which shows the state of the reflected light of the surface and a curved surface, (b) is the photograph to which the part of the curved surface was expanded. 本発明の実施の形態を示すもので、検査対象物の表面側面との間の境界部が湾曲した状態を示し、ホログラフィック回折光学素子が湾曲した溝に沿って回折光を照射する模式図である。The embodiment of this invention is shown, The boundary part with the surface side of a test subject shows the state where it curved, and is a schematic diagram which a holographic diffraction optical element irradiates with diffracted light along a curved groove. is there. 本発明の実施の形態を示すもので、検査対象物の表面に漏斗状の凹部があり、漏斗状の凹部に沿って回折光を照射する模式図である。It is a schematic diagram which shows embodiment of this invention, has a funnel-shaped recessed part in the surface of a test subject, and irradiates a diffracted light along a funnel-shaped recessed part. 従来の検査装置の構成を示す模式図であり、照射装置から縞状のパターンの回折光を投影して、その反射光を撮影する構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional test | inspection apparatus, projects the diffracted light of a striped pattern from an irradiation apparatus, and is a schematic diagram which shows the structure which image | photographs the reflected light. 従来の他の検査装置の構成を示す模式図であり、青色LED、緑色LED及び赤色LEDを環状に配置して検査する構成を示す模式図である。It is a schematic diagram which shows the structure of the other conventional inspection apparatus, and is a schematic diagram which shows the structure which arrange | positions and test | inspects blue LED, green LED, and red LED annularly.

本発明の実施の形態を図1〜図14に基づき説明する。
本発明の検査装置は、図1に示すように、検査対象物50の表面51に回折光30である第1回折光31と、傾斜面52に対して回折光30である第2回折光32をミラー70で反射させて照射するホログラフィック回折光学素子20と、ホログラフィック回折光学素子20に光を照射する光源である白色光源10を有し、検査対象物50の表面51、傾斜面52及び表面51と傾斜面52の境界部53からの反射光40を検査するものである。なお、傾斜面52は、平板状に傾斜した面と、湾曲して傾斜した面を含むものである。
An embodiment of the present invention will be described based on FIGS.
As shown in FIG. 1, the inspection apparatus of the present invention has a first diffracted light 31 which is diffracted light 30 on the surface 51 of the inspection object 50 and a second diffracted light 32 which is diffracted light 30 with respect to the inclined surface 52. Is reflected by the mirror 70 and irradiated, and the white light source 10 which is a light source for irradiating the holographic diffraction optical element 20 with light, the surface 51 of the inspection object 50, the inclined surface 52, and The reflected light 40 from the boundary 53 between the surface 51 and the inclined surface 52 is inspected. The inclined surface 52 includes a flat surface and a curved and inclined surface.

さらに、検査対象物50の表面51、傾斜面52及び境界部53からの反射光40を撮像するカメラ60を設けて、カメラ60からの画像データを記録する画像データ記録装置を設けることができる。図2は、検査対象物50の表面51にホログラフィック回折光学素子20から照射したときに、第1回折光31の各成分毎の照射状態を示すものである。   Furthermore, a camera 60 for imaging the reflected light 40 from the surface 51, the inclined surface 52 and the boundary 53 of the inspection object 50 can be provided, and an image data recording device for recording image data from the camera 60 can be provided. FIG. 2 shows an irradiation state of each component of the first diffracted light 31 when the surface 51 of the inspection object 50 is irradiated from the holographic diffractive optical element 20.

画像データ記録装置からのデータに基づき、検査対象物50の表面51、傾斜面52及び境界部53からの反射光40の色情報により、表面51、傾斜面52及び境界部53の不良情報である凹凸の検査を自動的に行うことができる。
なお、カメラ60のデータを自動的に判断しない場合には、目視により反射光40を検査することができる。
Based on the data from the image data recording device, it is defect information of the surface 51, the inclined surface 52 and the boundary portion 53 based on the color information of the reflected light 40 from the surface 51, the inclined surface 52 and the boundary portion 53 of the inspection object 50 An inspection of unevenness can be performed automatically.
When the data of the camera 60 is not determined automatically, the reflected light 40 can be inspected visually.

白色光源としてLED光源を使用することができる。LED光源を使用する場合には、青色発光LEDを黄色蛍光体に当てて白色としたものを使用することができる。また、赤色、緑色及び青色を発光するLED素子を使用することもできる。LED光源を使用すると、安定した波長で、強い光を得ることができる。
なお、白色光源として、キセノン光、ハロゲン光、レーザー光等を使用することもできる。
An LED light source can be used as a white light source. In the case of using an LED light source, it is possible to use a blue light emitting LED in white by applying it to a yellow phosphor. In addition, LED elements that emit red, green and blue can also be used. The use of an LED light source can provide strong light at a stable wavelength.
As the white light source, xenon light, halogen light, laser light or the like can also be used.

以下ではホログラフィック回折光学素子20として、回折光が透過光となる、透過型ホログラフィック回折光学素子について説明する。
また、ホログラフィック回折光学素子20は、透光性を有する軟質プラスチックで柔軟性を有するシート状に形成することができ、検査対象物50の形状に応じて、湾曲させることができる。さらに、ホログラフィック回折光学素子20は、透光性であるため、ホログラフィック回折光学素子20の後ろ側にカメラ60等を置き、観察することができる。
Hereinafter, as the holographic diffractive optical element 20, a transmissive holographic diffractive optical element in which diffracted light is transmitted light will be described.
In addition, the holographic diffractive optical element 20 can be formed into a flexible sheet having a light transmitting soft plastic, and can be curved according to the shape of the inspection object 50. Furthermore, since the holographic diffractive optical element 20 is translucent, the camera 60 or the like can be placed behind the holographic diffractive optical element 20 for observation.

ホログラフィック回折光学素子20の回折角度は、プリズムの回折角度よりも大きく、シャープに各色を分離することができる。
このように、ホログラフィック回折光学素子20を使用して、回折させると色毎に明確に回折角度が異なった光を得ることができる。
The diffraction angle of the holographic diffractive optical element 20 is larger than the diffraction angle of the prism, and each color can be separated sharply.
Thus, when the holographic diffractive optical element 20 is used for diffraction, it is possible to obtain light whose diffraction angles are distinctly different for each color.

このため、図2に示すように、ホログラフィック回折光学素子20から出た光は、第1回折光31の青成分31a、緑成分31b及び赤成分31c毎にそれぞれ異なる角度で照射され、且つ青成分31a、緑成分31b及び赤成分31cは、同色では同じ角度で高い指向性を有する。   Therefore, as shown in FIG. 2, the light emitted from the holographic diffraction optical element 20 is irradiated at different angles for each of the blue component 31a, the green component 31b and the red component 31c of the first diffracted light 31, and The component 31a, the green component 31b and the red component 31c have high directivity at the same angle in the same color.

図2に示すように、水平に置いた検査対象物50の表面51にホログラフィック回折光学素子20から出た第1回折光31を照射すると、第1回折光31の青成分31a、緑成分31b及び赤成分31cは、それぞれホログラフィック回折光学素子20から出る角度が異なる。青成分31aは、最も回折角度が大きく、赤成分31cは元も回折角度が小さく、緑成分31bの回折角度はその中間である。青成分31a、緑成分31b及び赤成分31cは、それぞれ青成分31a同士、緑成分31b同士、赤成分31c同士ではホログラフィック回折光学素子20から高い指向性を持って照射される。   As shown in FIG. 2, when the first diffracted light 31 emitted from the holographic diffractive optical element 20 is irradiated to the surface 51 of the inspection object 50 placed horizontally, the blue component 31 a and the green component 31 b of the first diffracted light 31 The red component 31 c has a different angle of leaving the holographic diffractive optical element 20. The blue component 31a has the largest diffraction angle, the red component 31c originally has a small diffraction angle, and the diffraction angle of the green component 31b is in the middle. The blue component 31a, the green component 31b and the red component 31c are irradiated with high directivity from the holographic diffractive optical element 20 between the blue component 31a, the green component 31b, and the red component 31c, respectively.

本実施の形態では、第1回折光31は、縦または横方向に変化するものを使用したが、アーチ状に変化するもの、或いはリング状の縞模様にすることができる。また、後述するように、検査対象物の形状に沿って、湾曲した縞模様にすることができる。 In the present embodiment, although the first diffracted light 31 used is one that changes in the longitudinal or lateral direction, it may be an arch-like one or a ring-like stripe pattern. Further, as described later, it is possible to make a curved stripe pattern along the shape of the inspection object.

水平に置いた検査対象物50の表面51から反射する第1反射光41は、色毎に反射角度が異なる。そのため、カメラ60を所定の場所に置くと、平らな表面51からの第1反射光41のうち特定の色の第1反射光41のみを見ることができる。図2においては、第1反射光41は緑成分41bのみを見ることができる。なお、カメラ60を使用せずに、目視により確認することができる。カメラ60に位置に目を置くと、検査対象物50の表面51は、緑色に見える。   The first reflected light 41 reflected from the surface 51 of the inspection object 50 placed horizontally has different reflection angles for each color. Therefore, when the camera 60 is in place, only the first reflected light 41 of a specific color can be viewed among the first reflected light 41 from the flat surface 51. In FIG. 2, the first reflected light 41 can see only the green component 41 b. In addition, without using the camera 60, it can confirm visually. When placing an eye on the camera 60, the surface 51 of the inspection object 50 appears green.

次に、図3に示すように、検査対象物50が上部の平面である表面51と、表面51から45度の角度で形成された傾斜面52と、傾斜面52から垂直方向に形成された側面54と、表面51と傾斜面52の境界に形成された境界部53を有する場合に、カメラ60をホログラフィック回折光学素子20の垂直表面に置いた場合について説明する。ホログラフィック回折光学素子20は、反射光を透過することができる。 Next, as shown in FIG. 3, the inspection object 50 is formed in the vertical direction from the inclined surface 52 and the surface 51 which is the upper flat surface, the inclined surface 52 formed at an angle of 45 degrees from the surface 51 The case where the camera 60 is placed on the vertical surface of the holographic diffractive optical element 20 in the case of having the side surface 54 and the boundary portion 53 formed at the boundary between the surface 51 and the inclined surface 52 will be described. The holographic diffractive optical element 20 can transmit reflected light.

白色光源10から照射された白色光は、ホログラフィック回折光学素子20を通過して回折光30となり、表面51に照射される第1回折光31は表面51で反射して、第1反射光41となる。その時、上述のように、第1回折光31の緑成分31bが第1反射光41の緑成分41bとしてカメラ60に到達する。 The white light emitted from the white light source 10 passes through the holographic diffractive optical element 20 and becomes diffracted light 30, and the first diffracted light 31 emitted to the surface 51 is reflected by the surface 51 to be reflected to the first reflected light 41. It becomes. At that time, as described above, the green component 31 b of the first diffracted light 31 reaches the camera 60 as the green component 41 b of the first reflected light 41.

傾斜面52には、第2回折光32がミラー70により反射されて照射され、傾斜面52から反射されて第2反射光42となる。その時、第2回折光32の緑成分32bが第2反射光42の緑成分42bとしてカメラ60に到達する。
側面54に照射された第2回折光32は、下方に反射されるために、カメラ60には到達せず、カメラ60には背景として黒く写る。
The second diffracted light 32 is reflected by the mirror 70 and irradiated onto the inclined surface 52, and is reflected from the inclined surface 52 to become the second reflected light 42. At that time, the green component 32 b of the second diffracted light 32 reaches the camera 60 as the green component 42 b of the second reflected light 42.
The second diffracted light 32 applied to the side surface 54 does not reach the camera 60 because it is reflected downward, and appears black on the camera 60 as a background.

次に、図4に示すように、同様に、検査対象物50が上部の表面51と、傾斜面52と、側面54と、境界部53を有する場合に、カメラ60をホログラフィック回折光学素子20の斜め表面に置いた場合について説明する。ホログラフィック回折光学素子20は、右側と左側でそれぞれ中心方向に回折光を出しており、第1回折光31と第2回折光32は、回折光の光源が異なる。 Next, as shown in FIG. 4, when the inspection object 50 similarly has the upper surface 51, the inclined surface 52, the side surface 54, and the boundary portion 53, the camera 60 is used as the holographic diffractive optical element 20. The case where it is placed on the oblique surface of The holographic diffractive optical element 20 emits diffracted light in the center direction on the right side and the left side respectively, and the first diffracted light 31 and the second diffracted light 32 have different light sources of diffracted light.

ホログラフィック回折光学素子20の第1回折光31を照射すると、第1回折光31の青成分31a、緑成分31b及び赤成分31cは、それぞれ角度が異なる。
また、ホログラフィック回折光学素子20の第2回折光32を照射すると、第2回折光32の青成分32a、緑成分32b及び赤成分32cは、それぞれ角度が異なる。
When the first diffracted light 31 of the holographic diffractive optical element 20 is irradiated, the blue component 31a, the green component 31b and the red component 31c of the first diffracted light 31 have different angles.
In addition, when the second diffracted light 32 of the holographic diffractive optical element 20 is irradiated, the blue component 32a, the green component 32b, and the red component 32c of the second diffracted light 32 have different angles.

白色光源10から照射された白色光は、ホログラフィック回折光学素子20を通過して回折光30となり、表面51に照射される第1回折光31は表面51で反射して、第1反射光41となる。その時、第1回折光31の緑成分31bが第1反射光41の緑成分41bとしてカメラ60に到達する。 The white light emitted from the white light source 10 passes through the holographic diffractive optical element 20 and becomes diffracted light 30, and the first diffracted light 31 emitted to the surface 51 is reflected by the surface 51 to be reflected to the first reflected light 41. It becomes. At that time, the green component 31 b of the first diffracted light 31 reaches the camera 60 as the green component 41 b of the first reflected light 41.

傾斜面52には、第2回折光32がミラー70により反射されて照射され、傾斜面52から反射されて第2反射光42となる。その時、第1回折光31とは異なり、第2回折光32の青成分32aが第2反射光42の青成分42aとしてカメラ60に到達する。このため、検査対象物50の境界部53の左右は、色が異なるため、境界部53の観測が容易である。
側面54に照射された第2回折光32は、下方に反射されるために、カメラ60には到達せず、カメラ60には背景として黒く写る。
The second diffracted light 32 is reflected by the mirror 70 and irradiated onto the inclined surface 52, and is reflected from the inclined surface 52 to become the second reflected light 42. At that time, unlike the first diffracted light 31, the blue component 32a of the second diffracted light 32 reaches the camera 60 as the blue component 42a of the second reflected light 42. For this reason, since the right and left of the boundary part 53 of the test object 50 are different in color, observation of the boundary part 53 is easy.
The second diffracted light 32 applied to the side surface 54 does not reach the camera 60 because it is reflected downward, and appears black on the camera 60 as a background.

その時の第1回折光31、第1反射光41、第2回折光32及び第2反射光42の模式図を図5〜図7に示す。
図5に示すように、検査対象物50が上部の表面51は、第1回折光31の緑成分31bが第1反射光41の緑成分41bとしてカメラ60に到達するため、緑色となる。
検査対象物50の傾斜面52は、図5の場合には、第2回折光32の緑成分32bが第2反射光42の緑成分42bとしてカメラ60に到達する。
側面54は、背景として黒くなる。
FIGS. 5 to 7 show schematic diagrams of the first diffracted light 31, the first reflected light 41, the second diffracted light 32 and the second reflected light 42 at that time.
As shown in FIG. 5, the surface 51 on the upper side of the inspection object 50 is green because the green component 31 b of the first diffracted light 31 reaches the camera 60 as the green component 41 b of the first reflected light 41.
In the case of FIG. 5, the inclined surface 52 of the inspection object 50 reaches the camera 60 as the green component 42 b of the second reflected light 42 with the green component 32 b of the second diffracted light 32.
Sides 54 become black as a background.

図5に示すように、検査対象物50の表面51と傾斜面52の境界部53に凹部55と凸部56がある場合には、凹部55は青色に変化し、凸部56の場合には、赤色に変化する。このため、金属表面等の反射光の違いが見にくい場合でも、境界部53に凹凸がある場合には色の違いにより容易に、検出することができる。これは、図3に示す照射の場合でも、図4に示す照射の場合でも同様である。 As shown in FIG. 5, when the concave portion 55 and the convex portion 56 exist in the boundary portion 53 between the surface 51 of the inspection object 50 and the inclined surface 52, the concave portion 55 turns blue and in the case of the convex portion 56. , Turns red. For this reason, even when the difference in the reflected light from the metal surface or the like is difficult to see, if the boundary portion 53 has unevenness, it can be easily detected due to the difference in color. The same applies to the irradiation shown in FIG. 3 and the irradiation shown in FIG.

検査対象物50の境界部53に凸部56がある場合には、図6に示すように、表面51では第1回折光31の緑成分31bが反射して第1反射光41の緑成分41bが観測され、傾斜面52では第2回折光32の緑成分32bが反射して第2反射光42の緑成分42bが観測される。境界部53に凸部56では、第1回折光31の赤成分31cが反射して第1反射光41の赤成分41cが観測される。このため、検査対象物50の境界部53に凸部56を容易に検出することができる。 When the convex portion 56 is present at the boundary 53 of the inspection object 50, the green component 31b of the first diffracted light 31 is reflected on the surface 51 and the green component 41b of the first reflected light 41 as shown in FIG. The green component 32b of the second diffracted light 32 is reflected on the inclined surface 52, and the green component 42b of the second reflected light 42 is observed. The red component 31 c of the first diffracted light 31 is reflected by the convex portion 56 at the boundary 53, and the red component 41 c of the first reflected light 41 is observed. Therefore, the convex portion 56 can be easily detected at the boundary portion 53 of the inspection object 50.

検査対象物50の境界部53に凹部55がある場合には、図7に示すように、表面51では第1回折光31の緑成分31bが反射して第1反射光41の緑成分41bが観測され、傾斜面52では第2回折光32の緑成分32bが反射して第2反射光42の緑成分42bが観測される。境界部53に凹部55では、第1回折光31の青成分31aが反射して第1反射光41の青成分41aと第2回折光32の青成分32aが反射して第2反射光42の青成分42aが観測される。このため、検査対象物50の境界部53に凹部55を容易に検出することができる。 When there is a recess 55 at the boundary 53 of the inspection object 50, as shown in FIG. 7, the green component 31b of the first diffracted light 31 is reflected on the surface 51, and the green component 41b of the first reflected light 41 is The green component 32b of the second diffracted light 32 is reflected on the inclined surface 52, and the green component 42b of the second reflected light 42 is observed. The blue component 31a of the first diffracted light 31 is reflected at the boundary portion 53 in the concave portion 55, and the blue component 41a of the first reflected light 41 and the blue component 32a of the second diffracted light 32 are reflected. The blue component 42a is observed. Therefore, the concave portion 55 can be easily detected at the boundary portion 53 of the inspection object 50.

次に、図8〜図10により、検査対象物50の表面51、傾斜面52及び境界部53の撮影画像の模式図を説明する。
図8は、傾斜面52が表面51に対して45度傾斜した検査対象物50の撮影画像である。図8の(a)は、検査対象物50の断面図と、黒い太線が回折光の照射範囲を示す図である。(b)は、検査対象物50の表面51、傾斜面52及び境界部53の撮影画像の模式図である。(b)に示すように、検査対象物50の境界部53が、明確に検査することができる。
Next, with reference to FIGS. 8 to 10, schematic views of photographed images of the surface 51, the inclined surface 52 and the boundary portion 53 of the inspection object 50 will be described.
FIG. 8 is a photographed image of the inspection object 50 in which the inclined surface 52 is inclined 45 degrees with respect to the surface 51. (A) of FIG. 8 is a cross-sectional view of the inspection object 50, and a black thick line shows the irradiation range of the diffracted light. (B) is a schematic view of a photographed image of the surface 51, the inclined surface 52 and the boundary portion 53 of the inspection object 50. As shown in (b), the boundary 53 of the inspection object 50 can be inspected clearly.

図9は、傾斜面52が表面51に対して30度傾斜した検査対象物50の撮影画像である。図9の(a)は、検査対象物50の断面図と、黒い太線が回折光の照射範囲を示す図である。(b)は、検査対象物50の表面51、傾斜面52及び境界部53の撮影画像の模式図である。(b)に示すように、検査対象物50の傾斜面52の傾斜が少なくても、境界部53が、明確に検査することができる。 FIG. 9 is a photographed image of the inspection object 50 in which the inclined surface 52 is inclined 30 degrees with respect to the surface 51. FIG. 9A is a cross-sectional view of the inspection object 50, and a black thick line indicates the irradiation range of diffracted light. (B) is a schematic view of a photographed image of the surface 51, the inclined surface 52 and the boundary portion 53 of the inspection object 50. As shown in (b), even if the inclination of the inclined surface 52 of the inspection object 50 is small, the boundary portion 53 can be inspected clearly.

図10は、傾斜面52が表面51と側面54を円弧状に湾曲した湾曲面の検査対象物50の撮影画像である。図10の(a)は、検査対象物50の断面図と、黒い太線が回折光の照射範囲を示す図である。(b)は、検査対象物50の表面51、湾曲面である傾斜面52及び境界部53の撮影画像の模式図である。(b)に示すように、検査対象物50の傾斜面52が湾曲していても、境界部53が、明確に検査することができる。 FIG. 10 is a photographed image of the inspection object 50 of the curved surface in which the inclined surface 52 is curved in a circular arc shape of the surface 51 and the side surface 54. FIG. 10A is a cross-sectional view of the inspection object 50, and a black thick line indicates the irradiation range of the diffracted light. (B) is a schematic view of a photographed image of the surface 51 of the inspection object 50, the inclined surface 52 which is a curved surface, and the boundary portion 53. As shown in (b), even if the inclined surface 52 of the inspection object 50 is curved, the boundary portion 53 can be inspected clearly.

図11は、図12との比較のために示すもので、ホログラフィック回折光学素子20から一方の回折光のみを検査対象物50の表面51と傾斜面52に照射し、表面51と傾斜面52と境界部52の反射光の状態を示す写真である。(a)は、表面51と傾斜面52と境界部52の反射光の状態を示す写真であり、(b)は、境界部52の部分を拡大した写真である。この場合には、傾斜面52の部分が暗いので、傾斜面52と境界部53の観察がむつかしい。 FIG. 11 is shown for comparison with FIG. 12, and only one diffracted light from the holographic diffractive optical element 20 is irradiated to the surface 51 and the inclined surface 52 of the inspection object 50, and the surface 51 and the inclined surface 52 And a photograph showing the state of the reflected light at the boundary 52. (A) is a photograph which shows the state of the reflected light of the surface 51, the inclined surface 52, and the boundary part 52, (b) is the photograph to which the part of the boundary part 52 was expanded. In this case, since the portion of the inclined surface 52 is dark, observation of the inclined surface 52 and the boundary portion 53 is difficult.

図12は、ホログラフィック回折光学素子20から第1回折光31と第2回折光32を検査対象物50の表面51と傾斜面52に照射し、表面51、傾斜面52及び境界部53の反射光の状態を示す写真である。(a)は、表面51と傾斜面52と境界部52の反射光の状態を示す写真であり、(b)は、境界部52の部分を拡大した写真である。この場合には、表面51と傾斜面52と境界部52のいずれも十分な反射光があり、傾斜面52と境界部53の観察が容易である。   12, the first diffracted light 31 and the second diffracted light 32 from the holographic diffractive optical element 20 are applied to the surface 51 and the inclined surface 52 of the inspection object 50, and the reflection of the surface 51, the inclined surface 52 and the boundary portion 53 It is a photograph which shows the state of light. (A) is a photograph which shows the state of the reflected light of the surface 51, the inclined surface 52, and the boundary part 52, (b) is the photograph to which the part of the boundary part 52 was expanded. In this case, all of the surface 51, the inclined surface 52, and the boundary 52 have sufficient reflected light, and observation of the inclined surface 52 and the boundary 53 is easy.

図13は、検査対象物50の傾斜面52と境界部53が蛇行した場合を示すものである。この場合におも、ホログラフィック回折光学素子20をこの傾斜面52と境界部53に沿って、回折光30の第1回折光31と第2回折光32が照射するように形成することができる。このため、検査対象物50が直線状の場合と同様に、ホログラフィック回折光学素子20を使用して検査対象物50の表面51、傾斜面52と境界部53を検査することができる。 FIG. 13 shows a case where the inclined surface 52 and the boundary portion 53 of the inspection object 50 meander. Also in this case, the holographic diffractive optical element 20 can be formed so that the first diffracted light 31 and the second diffracted light 32 of the diffracted light 30 are irradiated along the inclined surface 52 and the boundary 53. . For this reason, as in the case where the inspection object 50 is linear, the holographic diffractive optical element 20 can be used to inspect the surface 51 of the inspection object 50, the inclined surface 52, and the boundary portion 53.

図14は、検査対象物50に漏斗状の穴を開けた場合における表面51と、漏斗状の穴の傾斜面52と、表面51と傾斜面52の境界部53を検査するものである。
ホログラフィック回折光学素子20の回折光30の第1回折光31と第2回折光32を円弧状に照射するように形成することができる、ホログラフィック回折光学素子20を使用して検査対象物50の表面51、傾斜面52と境界部53を検査することができる。
FIG. 14 is for inspecting the surface 51, the inclined surface 52 of the funnel-shaped hole, and the boundary 53 between the surface 51 and the inclined surface 52 when the funnel-shaped hole is made in the inspection object 50.
An object to be inspected 50 using the holographic diffractive optical element 20 that can be formed so as to irradiate the first diffracted light 31 and the second diffracted light 32 of the diffracted light 30 of the holographic diffractive optical element 20 in an arc shape. The surface 51, the inclined surface 52 and the boundary portion 53 can be inspected.

10 白色光源
20 ホログラフィック回折光学素子
30 回折光
31 第1回折光
32 第2回折光
40 反射光
41 第1反射光
42 第2反射光
50 検査対象物
51 表面
52 傾斜面
53 境界部
55 凹部
56 凸部
DESCRIPTION OF SYMBOLS 10 white light source 20 holographic diffraction optical element 30 diffracted light 31 first diffracted light 32 second diffracted light 40 reflected light 41 first reflected light 42 second reflected light 50 inspection object 51 surface 52 inclined surface 53 boundary portion 55 concave portion 56 Convex part

Claims (12)

検査対象物の表面と、該表面と所定の角度で傾斜する傾斜面又は上記表面から湾曲して形成される湾曲面との境界部を検査する方法において、
複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第1回折光を上記表面に照射し、複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第2回折光を、上記傾斜面又は上記湾曲面に照射して、
上記第1回折光が上記検査対象物の上記表面から反射される第1反射光と、上記第2回折光が上記傾斜面又は上記湾曲面から反射される第2反射光を検出し、上記検査対象物の上記表面と上記傾斜面又は上記湾曲面の部分との上記境界部の部分の上記第1反射光と第2反射光の色の変化により上記検査対象物の境界部を検査する方法。
In a method of inspecting a boundary between a surface of an inspection object and an inclined surface which is inclined at a predetermined angle with the surface or a curved surface formed by being curved from the surface,
A plurality of colors are emitted from the same irradiation device, each color is emitted at a predetermined angle, and the first diffracted light irradiated with light having directivity for each color is irradiated onto the surface, and the plurality of colors are irradiated with the same color. Each of the colors is emitted from the device at a predetermined angle, and the second diffracted light, which is irradiated with light having directivity for each color, is irradiated to the inclined surface or the curved surface,
The first reflected light in which the first diffracted light is reflected from the surface of the inspection object and the second reflected light in which the second diffracted light is reflected from the inclined surface or the curved surface are detected, and the inspection is performed. A method of inspecting a boundary portion of the inspection object based on a change in color of the first reflected light and the second reflected light of a portion of the boundary portion between the surface of the object and the inclined surface or the curved surface portion.
上記複数の色が各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される上記第1回折光と上記第2回折光は、白色光源からの光をホログラフィック回折光学素子に透過又は反射した回折光を使用する請求項1に記載の検査対象物の境界部を検査する方法。 The first diffracted light and the second diffracted light, each of which emits the plurality of colors at a predetermined angle and is irradiated with light having directivity for each color, holographically diffracts the light from the white light source. The method according to claim 1, wherein diffracted light transmitted or reflected by the optical element is used. 上記ホログラフィック回折光学素子は、回折角度が異なる回折領域を複数個並べた請求項2に記載の検査対象物の境界部を検査する方法。 The method according to claim 2, wherein the holographic diffractive optical element has a plurality of diffraction regions having different diffraction angles arranged. 上記第2回折光は、上記第1回折光を反射鏡又はプリズムで角度を変えて上記傾斜面又は上記湾曲面に照射する、又はホログラフィック回折光学素子を屈曲又は湾曲させて上記第1回折光を照射する部分以外の部分から上記第2回折光を照射する請求項1又は請求項2に記載の検査対象物の境界部を検査する方法。 The second diffracted light irradiates the inclined surface or the curved surface by changing the angle of the first diffracted light with a reflecting mirror or a prism, or bending or bending a holographic diffractive optical element to generate the first diffracted light The method according to claim 1 or 2, wherein the second diffracted light is irradiated from a portion other than the portion to be irradiated. 上記第1回折光と上記第2回折光は、別の光源から発光された光である請求項1又は請求項2に記載の検査対象物の境界部を検査する方法。 The method according to claim 1 or 2, wherein the first diffracted light and the second diffracted light are lights emitted from different light sources. 上記第1反射光と第2反射光をカメラで撮影し、撮影した上記第1反射光と第2反射光のデータを記録して、記録したデータに基づき色の変化を自動的に判断し、上記検査対象物の境界部の凹凸を検査する請求項1乃至請求項5のいずれか一項に記載の検査対象物の境界部を検査する方法。 The first reflected light and the second reflected light are photographed by a camera, the data of the photographed first reflected light and the second reflected light are recorded, and a change in color is automatically determined based on the recorded data, The method of inspecting the boundary portion of the inspection object according to any one of claims 1 to 5, wherein the unevenness of the boundary portion of the inspection object is inspected. 検査対象物の表面と該表面と所定の角度で傾斜する傾斜面又は該表面から湾曲して形成される湾曲面との境界部を検査する方法において、
光源と、該光源から照射される光を複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第1回折光を上記表面に照射する装置と、光源と、該光源から照射される光を複数の色が同一の照射装置から各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される第2回折光を、上記傾斜面又は上記湾曲面に照射する装置と、
上記第1回折光が上記検査対象物の上記表面から反射される第1反射光と、上記第2回折光が上記傾斜面又は上記湾曲面から反射される第2反射光を検出し、上記検査対象物の上記表面と上記傾斜面又は上記湾曲面の部分との上記境界部の部分の上記第1反射光と第2反射光の色の変化により上記検査対象物の境界部を検査する検査装置。
In a method of inspecting a boundary between a surface of an inspection object and an inclined surface which is inclined at a predetermined angle with the surface or a curved surface formed by being curved from the surface,
A light source and light emitted from the light source are emitted at a predetermined angle from a plurality of illumination devices having the same color, and the first diffracted light illuminated with light having directivity for each color is the above surface Each color is emitted at a predetermined angle from a plurality of illumination devices having the same color, a light source, and light emitted from the light source, and irradiated with light having directivity for each color A device for irradiating the two inclined lights onto the inclined surface or the curved surface;
The first reflected light in which the first diffracted light is reflected from the surface of the inspection object and the second reflected light in which the second diffracted light is reflected from the inclined surface or the curved surface are detected, and the inspection is performed. An inspection apparatus for inspecting the boundary portion of the inspection object by changing the color of the first reflected light and the second reflected light of a portion of the boundary portion between the surface of the object and the inclined surface or the curved surface portion .
上記光源は、白色光源であり、上記照射装置は、上記白色光源からの光をホログラフィック回折光学素子に透過又は反射した第1回折光と第2回折光とし、該第1回折光と第2回折光は、複数の色が各色は所定の角度で放射され、且つ、色毎に指向性を有する光で照射される照射光とする請求項7に記載の検査装置。 The light source is a white light source, and the irradiation device converts the light from the white light source into first diffracted light and second diffracted light transmitted or reflected to the holographic diffractive optical element, and the first diffracted light and the second diffracted light 8. The inspection apparatus according to claim 7, wherein the diffracted light is irradiation light which is emitted by a plurality of colors emitted at a predetermined angle for each color and having directivity for each color. 上記ホログラフィック回折光学素子は、回折角度が異なる回折領域を複数個並べた請求項8に記載の検査装置。 9. The inspection apparatus according to claim 8, wherein the holographic diffractive optical element has a plurality of diffraction regions arranged at different diffraction angles. 上記第2回折光は、上記第1回折光を反射鏡又はプリズムで角度を変えて上記傾斜面又は上記湾曲面に照射する、又はホログラフィック回折光学素子を屈曲又は湾曲させて上記第1回折光を照射する部分以外の部分から上記第2回折光を照射する請求項8又は請求項9に記載の検査装置。 The second diffracted light irradiates the inclined surface or the curved surface by changing the angle of the first diffracted light with a reflecting mirror or a prism, or bending or bending a holographic diffractive optical element to generate the first diffracted light The inspection apparatus according to claim 8, wherein the second diffracted light is irradiated from a portion other than the portion that irradiates the light. 上記第1回折光と上記第2回折光は、別の光源から発光された光である請求項8又は請求項9に記載の検査装置。 The inspection apparatus according to claim 8, wherein the first diffracted light and the second diffracted light are lights emitted from different light sources. 上記第1反射光と第2反射光を撮影するカメラと、撮影した上記第1反射光と第2反射光のデータを記録する記録装置を有し、記録したデータに基づき色の変化を自動的に判断する判断装置を有する請求11に記載の検査装置。
The camera for photographing the first reflected light and the second reflected light, and the recording device for recording the data of the photographed first reflected light and the second reflected light, the color change is automatically based on the recorded data. The inspection apparatus according to claim 11, further comprising a judgment device for judging.
JP2017223498A 2017-11-21 2017-11-21 A method for inspecting the boundary of an object to be inspected and its inspection device Active JP6938093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017223498A JP6938093B2 (en) 2017-11-21 2017-11-21 A method for inspecting the boundary of an object to be inspected and its inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017223498A JP6938093B2 (en) 2017-11-21 2017-11-21 A method for inspecting the boundary of an object to be inspected and its inspection device

Publications (2)

Publication Number Publication Date
JP2019095252A true JP2019095252A (en) 2019-06-20
JP6938093B2 JP6938093B2 (en) 2021-09-22

Family

ID=66971415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017223498A Active JP6938093B2 (en) 2017-11-21 2017-11-21 A method for inspecting the boundary of an object to be inspected and its inspection device

Country Status (1)

Country Link
JP (1) JP6938093B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135073A (en) * 2020-02-25 2021-09-13 株式会社マクシスエンジニアリング Method for inspecting irregularity of surface of inspection object
JP2022054938A (en) * 2020-09-28 2022-04-07 株式会社リコー Inspection device, inspection system, and inspection method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792101A (en) * 1993-09-24 1995-04-07 Mazda Motor Corp Surface inspection apparatus
JPH09196859A (en) * 1996-01-23 1997-07-31 Nec Corp Surface defect inspection device
JP2007303853A (en) * 2006-05-09 2007-11-22 Nikon Corp End inspection device
JP2010112941A (en) * 2008-10-10 2010-05-20 Toyota Motor Corp Surface inspection apparatus
JP2011099726A (en) * 2009-11-05 2011-05-19 Fujitsu Ltd Surface flaw inspection device and surface flaw inspection method
US20120019821A1 (en) * 2010-07-23 2012-01-26 National Taipei University Of Technology Linear chromatic confocal microscopic system
JP2012208129A (en) * 2012-07-12 2012-10-25 Shibaura Mechatronics Corp Edge inspection device for tabular substrate
US20130120760A1 (en) * 2011-11-11 2013-05-16 Daniel H. Raguin Ambient light rejection for non-imaging contact sensors
JP2013210294A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Lighting system and inspection device using the same
JP2016095160A (en) * 2014-11-12 2016-05-26 Jfeスチール株式会社 Surface defect detection method and surface defect detection device
JP2016166811A (en) * 2015-03-10 2016-09-15 アルプス電気株式会社 Object detection device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792101A (en) * 1993-09-24 1995-04-07 Mazda Motor Corp Surface inspection apparatus
JPH09196859A (en) * 1996-01-23 1997-07-31 Nec Corp Surface defect inspection device
JP2007303853A (en) * 2006-05-09 2007-11-22 Nikon Corp End inspection device
JP2010112941A (en) * 2008-10-10 2010-05-20 Toyota Motor Corp Surface inspection apparatus
JP2011099726A (en) * 2009-11-05 2011-05-19 Fujitsu Ltd Surface flaw inspection device and surface flaw inspection method
US20120019821A1 (en) * 2010-07-23 2012-01-26 National Taipei University Of Technology Linear chromatic confocal microscopic system
US20130120760A1 (en) * 2011-11-11 2013-05-16 Daniel H. Raguin Ambient light rejection for non-imaging contact sensors
JP2013210294A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Lighting system and inspection device using the same
JP2012208129A (en) * 2012-07-12 2012-10-25 Shibaura Mechatronics Corp Edge inspection device for tabular substrate
JP2016095160A (en) * 2014-11-12 2016-05-26 Jfeスチール株式会社 Surface defect detection method and surface defect detection device
JP2016166811A (en) * 2015-03-10 2016-09-15 アルプス電気株式会社 Object detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135073A (en) * 2020-02-25 2021-09-13 株式会社マクシスエンジニアリング Method for inspecting irregularity of surface of inspection object
JP7426848B2 (en) 2020-02-25 2024-02-02 株式会社マクシスエンジニアリング Method of inspecting unevenness on the surface of the object to be inspected
JP2022054938A (en) * 2020-09-28 2022-04-07 株式会社リコー Inspection device, inspection system, and inspection method

Also Published As

Publication number Publication date
JP6938093B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP6945245B2 (en) Visual inspection equipment
JP4613086B2 (en) Defect inspection equipment
WO2019111426A1 (en) Inspection system and inspection method
JP3855756B2 (en) 3D color shape detection device and 3D scanner
TW200842347A (en) Pattern checking device and pattern checking mehtod
WO2021255793A1 (en) Illumination device for inspection and measurement, inspection and measurement system, and inspection and measurement method
JP2008008636A (en) Calibration method of edge inspection apparatus
JP6859628B2 (en) Visual inspection method and visual inspection equipment
KR20160004099A (en) Defect inspecting apparatus
JP6938093B2 (en) A method for inspecting the boundary of an object to be inspected and its inspection device
JP5890953B2 (en) Inspection device
JP6908373B2 (en) A method for inspecting the surface irregularities of an object to be inspected and its surface inspection device
JP2008026255A (en) Flaw inspection system, and flaw inspection method
JP6801860B2 (en) Appearance inspection device for the object to be inspected
KR101996023B1 (en) Illumination system
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
JP7309640B2 (en) optical inspection equipment
JP2009264800A (en) Surface inspecting method and surface inspecting device
JP2020091143A (en) Surface defect inspection method and device of translucent member
US11333492B2 (en) Optical device, information processing method, and computer program product
JP7426848B2 (en) Method of inspecting unevenness on the surface of the object to be inspected
JP7043577B2 (en) Optical inspection equipment, methods and programs
JP2009222629A (en) Device for inspecting edge of object to be inspected
JP2012150079A (en) Defect detection device for transparent member and defect detection method
CN111272762B (en) Surface defect inspection device for light-transmitting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210831

R150 Certificate of patent or registration of utility model

Ref document number: 6938093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150