JPH09192931A - Surface layer forming method by electrical discharge machining - Google Patents

Surface layer forming method by electrical discharge machining

Info

Publication number
JPH09192931A
JPH09192931A JP14021196A JP14021196A JPH09192931A JP H09192931 A JPH09192931 A JP H09192931A JP 14021196 A JP14021196 A JP 14021196A JP 14021196 A JP14021196 A JP 14021196A JP H09192931 A JPH09192931 A JP H09192931A
Authority
JP
Japan
Prior art keywords
electrode
powder
silicon
silicon powder
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14021196A
Other languages
Japanese (ja)
Other versions
JP3015730B2 (en
Inventor
Nagao Saito
長男 斎藤
Naotake Mori
尚武 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8140211A priority Critical patent/JP3015730B2/en
Publication of JPH09192931A publication Critical patent/JPH09192931A/en
Application granted granted Critical
Publication of JP3015730B2 publication Critical patent/JP3015730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform surface treatment having high corrosion resistance and high degree of adhesion by performing electric discharge while stirring powder after making a material for forming a front surface layer of a work piece into the powder state in working fluid and interposing it between poles. SOLUTION: Silicon powder 9 is mixed in working fluid 8 and filled in a processing tank 6, air is fed from an air pump 11 to the processing tank 6, and precipitation of silicon powder is prevented by applying the stirring action. Working fluid decomposition material and processing powder to be formed by electric discharge through a process of automatically, intermittently and vertically moving an electrode 4 is diffused without being accumulated between poles 7. When silicon powder is interposed, the formation of a smooth silicon coating film can be obtained. When silicon powder is interposed between the poles 7, a finishing surface roughness is made minute.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は放電加工による表面
層の形成方法に関し、特に、導電性を有する材料の表面
に放電分散を促すことによる微細加工面の実現、もしく
は耐蝕、耐摩耗性の強い被覆を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a surface layer by electric discharge machining, and more particularly, it realizes a finely machined surface by promoting electric discharge dispersion on the surface of a material having conductivity, or has a high corrosion resistance and wear resistance. A method of forming a coating.

【0002】[0002]

【従来の技術】特開昭62−24916号公報にて公知
の通り、本発明者等は、既にシリコン電極等の半金属と
称される金属の電極を用いた放電加工によって、王水に
も侵されず、また数10%の永久変形を与えても剥離や
割れなどの損傷の起こりにくい強靱な表面層を形成する
方法を提案している。この従来方法は、通常の放電加工
機を使用して、電極材料にシリコン電極等の半金属を用
い、被加工材料としてSUS304(18Cr−8Ni
ステンレス鋼)や13Cr鋼、もしくは高速度鋼に放電
加工を行なうものであって、数10分ないし数時間の加
工によってSUS304ないし13Cr鋼や、高速度鋼
の表面に強い耐蝕性の加工面を得るものである。
2. Description of the Related Art As known from Japanese Patent Laid-Open No. 62-24916, the inventors of the present invention have been able to apply aqua regia by electric discharge machining using a metal electrode called a semimetal such as a silicon electrode. It proposes a method of forming a tough surface layer that is not corroded and is resistant to damage such as peeling and cracking even when subjected to permanent deformation of several tens of percent. In this conventional method, a normal electric discharge machine is used, a semimetal such as a silicon electrode is used as an electrode material, and SUS304 (18Cr-8Ni) is used as a material to be processed.
Stainless steel), 13Cr steel, or high-speed steel is subjected to electric discharge machining, and a machined surface of SUS304 to 13Cr steel or high-speed steel with strong corrosion resistance is obtained by machining for several tens of minutes to several hours. It is a thing.

【0003】この場合の電極構造の一例を図13に示し
説明すると、1は例えばシリコン板で、銅丸棒2に通電
性接着剤3によって貼り付けた構造を示す。勿論、電極
はシリコンの素材を機械加工や放電加工することによっ
ても形成することができる。このようなものにおいて、
放電加工により金型などを加工し、その表面に耐蝕、耐
摩耗性の表面処理を上記の方法で行うには、先ずはじめ
に、低電極消耗特性の銅またはグラファイト電極を用い
て形状の荒加工を行い、その後、シリコン電極による加
工を行なうことになる。2工程で加工する理由はシリコ
ン材料が高価格であり、また放電加工における電極消耗
が著しく大きいため、加工除去量の大きい形状加工には
使用が困難であることによる(加工量の10倍程度は消
耗する)。
An example of the electrode structure in this case is shown in FIG. 13 and explained. Reference numeral 1 is a silicon plate, for example, which is a structure in which the copper round bar 2 is attached to the copper round bar 2 by a conductive adhesive 3. Of course, the electrodes can also be formed by machining or electric discharge machining a silicon material. In something like this,
In order to process the mold etc. by electric discharge machining and to perform the surface treatment of corrosion resistance and abrasion resistance on the surface by the above method, first, rough machining of the shape using copper or graphite electrode with low electrode consumption characteristics After that, processing with a silicon electrode is performed. The reason for processing in two steps is that the silicon material is expensive and the electrode consumption during electrical discharge machining is extremely large, so it is difficult to use it for shape processing with a large amount of processing removal (about 10 times the processing amount is exhaust).

【0004】[0004]

【発明が解決しようとする課題】すなわち、現状では形
状加工用の銅やグラファイト電極の他に、シリコン電極
を必要とすると云う二度の工程となる。換言すれば、形
状加工用電極(銅、グラファイト)の他に、シリコン電
極を作る必要があり、また電極取換が必要となる。従っ
て、形状加工用の銅やグラファイト電極のみで、被加工
物の表面にシリコン電極等を用いたのと同様な表面層を
形成できるようにすることが可能となれば、工業上、大
きな意義がある。
That is, in the present situation, it is a two-step process that requires a silicon electrode in addition to the copper or graphite electrode for shape processing. In other words, it is necessary to make a silicon electrode in addition to the shape-processing electrode (copper, graphite), and it is necessary to replace the electrode. Therefore, if it is possible to form a surface layer similar to that using a silicon electrode or the like on the surface of a workpiece only with a copper or graphite electrode for shape processing, it will have great industrial significance. is there.

【0005】本発明は上記のような課題を解決するため
になされたもので、表面処理を行おうとする材料の粉体
を介在させると共に、その介在させた材料を粉体を攪袢
することにより、形状加工用の銅、グラファイトなど通
常放電加工に用いられる電極によっても、被加工材料表
面をより微細化または被加工材料表面に被覆膜を形成す
ることのできる放電加工による表面層の形成方法を提供
しようとするものである。
The present invention has been made in order to solve the above-mentioned problems. By interposing a powder of a material to be surface-treated, and agitating the intervening material with the powder. A method for forming a surface layer by electric discharge machining, which can make the surface of a material to be processed finer or form a coating film on the surface of the material to be processed by an electrode that is usually used for electric discharge machining such as copper for shape machining, graphite, etc. Is to provide.

【0006】[0006]

【課題を解決するための手段】本発明に係る放電加工に
よる表面層の形成方法は、電極と被加工物により形成さ
れる極間に、上記被加工物の表面層を形成する材料を、
加工液中に粉末状態にして介在させた後、攪袢手段によ
り上記粉末を攪袢しつつ放電を行なうことによって、被
加工物の表面層を形成するようにしたものである。
A method of forming a surface layer by electric discharge machining according to the present invention comprises a material for forming a surface layer of a work piece, which is formed between electrodes and a work piece.
The surface layer of the workpiece is formed by discharging the powder while stirring the powder with a stirring means after the powder is interposed in the processing liquid.

【0007】[0007]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、本発明方法の一実施例を図に基づ
き説明するが、先ず、本発明の原理から説明する。図2
は通常の放電状態を示し、放電発生にはじまり、溶融金
属の飛散、放電痕、加工粉の生成、絶縁回復までを示
す。また、図1は極間に表面層を形成する材料としての
シリコンの粉体がある場合を示す。放電の発生はシリコ
ンの粉体が介在している点から発生し易い。これは、見
かけ上、極間が狭くなったのと同様の作用があるためで
ある。放電発生によりシリコンの粉体は、蒸発、溶融し
て電極面に高温高圧状態にて衝突し強固に圧着される。
相手の電極材質(例えば銅、グラファイト)も同様に作
用するが、実施形態1では極間にシリコン粉末を介在さ
せているので、極間にはこのシリコン粉末の方が多く、
加工点への距離が対向電極よりも近いので、殆どシリコ
ンが圧着することになる。
Embodiment 1. An embodiment of the method of the present invention will be described below with reference to the drawings. First, the principle of the present invention will be described. FIG.
Indicates a normal discharge state, starting from discharge generation, scattering of molten metal, discharge traces, generation of processed powder, and restoration of insulation. Further, FIG. 1 shows a case where there is a silicon powder as a material for forming the surface layer between the electrodes. The discharge is likely to occur due to the presence of the silicon powder. This is because there is apparently the same effect as that between the gaps is narrowed. The silicon powder is evaporated and melted by the occurrence of electric discharge, and collides with the electrode surface in a high temperature and high pressure state and is firmly pressed.
The mating electrode material (for example, copper or graphite) also acts in the same manner, but since silicon powder is interposed between the electrodes in the first embodiment, there is more silicon powder between the electrodes,
Since the distance to the processing point is shorter than that of the counter electrode, most of the silicon will be pressure bonded.

【0008】以上が本発明の原理説明であるが、これを
図3の概略構成図に基づき更に詳述する。図3(a)は
非加工時、図3(b)は加工時を示し、図において、4
は電極、5は加工槽6内に設置された被加工物で、被加
工物5と電極4とにより極間7を形成している。8は加
工槽6内の加工液、9は加工液8中に混入されたシリコ
ン粉末、10は極間7へ加工エネルギを供給する電源装
置、11は攪袢手段である空気ポンプで、加工槽6内に
空気を送り込むことにより加工液8に攪拌作用を与える
ものである。12は電極4を被加工物5に対して昇降動
作させる油圧シリンダ装置、13はそのピストンロッ
ド、14は油圧シリンダ装置12の制御を司るサーボ装
置である。
The above is a description of the principle of the present invention, which will be described in more detail with reference to the schematic diagram of FIG. 3A shows a non-processed state, and FIG. 3B shows a processed state.
Is an electrode, 5 is a work piece installed in the processing tank 6, and a gap 7 is formed between the work piece 5 and the electrode 4. 8 is a working fluid in the working tank 6, 9 is a silicon powder mixed in the working fluid 8, 10 is a power supply device for supplying working energy to the gap 7, 11 is an air pump which is a stirring means, By feeding air into the working fluid 6, the working fluid 8 is stirred. Reference numeral 12 is a hydraulic cylinder device that moves the electrode 4 up and down with respect to the workpiece 5, 13 is a piston rod thereof, and 14 is a servo device that controls the hydraulic cylinder device 12.

【0009】本発明方法は上記実施例装置によりなされ
るもので、加工液8の中にシリコン粉末9(平均粒径2
0〜40μm、シリコン粉末と加工液の混合割合20g
/L)を混合して加工槽6に満たし、空気ポンプ11か
ら加工槽6に空気を送り込み、攪拌作用を与えシリコン
粉末の沈澱を防いだ。また、図のように電極4を自動的
に間歇的に上下して放電によって生成される加工液分解
物や加工粉が、極間7に蓄積せずに拡散できるようにし
た。なお、攪袢手段である空気ポンプ11の代わり、加
工液循環ポンプを使用してもよい。また、電極材料は
銅、及びグラファイトから構成した。
The method of the present invention is carried out by the apparatus of the above-mentioned embodiment. The processing liquid 8 contains silicon powder 9 (average particle size 2
0-40 μm, mixing ratio of silicon powder and working liquid 20 g
/ L) was mixed and filled in the processing tank 6, and air was sent to the processing tank 6 from the air pump 11 to give a stirring action to prevent precipitation of the silicon powder. Further, as shown in the figure, the electrode 4 is automatically and intermittently moved up and down so that the processing liquid decomposition product and the processing powder generated by the electric discharge can diffuse without accumulating in the gap 7. A machining liquid circulating pump may be used instead of the air pump 11 which is a stirring means. The electrode material was composed of copper and graphite.

【0010】図4及び図5は本発明方法の効果を説明す
るための金属組織を示す顕微鏡写真図であり、この中図
4は電極4の材料として銅、被加工物としてSKH−5
1を使用し、電気条件として電流ピーク値10A、パル
ス幅16μs、休止幅16μsを設定したものである。
図4(a)は加工液として灯油を使用したもので、その
面粗度は9μmRmaxであった。これに対し、図4
(b)は加工液として灯油を使用し、この灯油1Lの中
にシリコン粉末を20g(但し、平均粒径20〜40μ
φ)を介在させたもので、その面粗度は4μmRmax
である。
FIGS. 4 and 5 are micrographs showing the metal structure for explaining the effect of the method of the present invention. In FIG. 4, copper is used as the material of the electrode 4 and SKH-5 is used as the workpiece.
1 was used, and a current peak value of 10 A, a pulse width of 16 μs, and a rest width of 16 μs were set as electrical conditions.
In FIG. 4A, kerosene was used as the working liquid, and its surface roughness was 9 μmRmax. On the other hand, FIG.
In (b), kerosene is used as a working liquid, and 20 g of silicon powder is added to 1 L of this kerosene (however, the average particle size is 20 to 40 μm).
φ), the surface roughness is 4 μmRmax
It is.

【0011】また、図5は電極4の材料としてシリコ
ン、被加工物としてSKH−51を使用し、電気条件と
して電流ピーク値1A、パルス幅2μs、休止幅2μs
を設定したものである。図5(a)は加工液として灯油
を、また、図5(b)は加工液として灯油を使用し、こ
の灯油の中にシリコン粉末を介在させたものである。な
お、図4、図5に示す結果は、上記の条件以外に、極間
距離を拡げるために、主電源電圧80Vの他に、0〜2
20Vの補助電源を使用した。図6はこの時に使用した
高電圧重畳回路を示し、図中、R1,R2,は抵抗器、
Dはダイオード、TR1,TR2はトランジスタ、10
aは主電源、10bは補助電源を示している。このよう
な高電圧重畳回路により補助電源の電圧を変化させて得
られる加工の安定度の実験結果を図7に示す。
In FIG. 5, silicon is used as the material of the electrode 4 and SKH-51 is used as the work piece, and the electrical condition is a current peak value of 1 A, a pulse width of 2 μs, and a rest width of 2 μs.
Is set. FIG. 5 (a) shows kerosene as a working fluid, and FIG. 5 (b) shows kerosene as a working fluid, in which silicon powder is interposed. In addition to the above conditions, the results shown in FIGS. 4 and 5 are 0 to 2 in addition to the main power supply voltage of 80 V in order to increase the distance between the electrodes.
A 20V auxiliary power supply was used. FIG. 6 shows a high voltage superimposing circuit used at this time. In the figure, R1, R2 are resistors,
D is a diode, TR1 and TR2 are transistors, 10
Reference numeral a indicates a main power source and 10b indicates an auxiliary power source. FIG. 7 shows the experimental result of the stability of processing obtained by changing the voltage of the auxiliary power supply by such a high voltage superposition circuit.

【0012】上記実施形態1によって得られたことをま
とめると、次の事項となる。電圧の高い程安定であるこ
とを示している。すなわち、シリコン粉末が極間に介在
した場合、同一電圧でも放電は大きな極間距離で発生し
易くなるが、それでもなお、高い電圧を加えた方が加工
は安定であることが判る。この実験で得られた試験片を
王水に50分浸漬したが、浸蝕を受けなかった。図4、
図5の顕微鏡写真図はこの時の試験片表面組織の状態を
示している。図4(a)に見られる如く、銅電極のみで
はシリコン被覆膜は生成せず、また、仕上げ面粗さも粗
い。シリコン粉末を介在させると、平滑なシリコン被覆
膜の生成が見られる(図4(b))。図5からは溶融シ
リコンが衝撃的に加工面に衝突している様子が観察され
る。また、極間にシリコン粉体を介在させると、仕上げ
面粗さが精細になる(図5(b)参照)。実験した加工
例によれば、シリコン電極を用いた場合に加工液は通常
の鉱物性油(灯油)を用いて、30分程度を要するもの
が、3〜5分程度で達成される。
The following is a summary of what has been obtained by the first embodiment. The higher the voltage is, the more stable it is. That is, when the silicon powder is interposed between the electrodes, the discharge easily occurs at a large distance between the electrodes even with the same voltage, but it is still understood that the processing is more stable when the high voltage is applied. The test piece obtained in this experiment was immersed in aqua regia for 50 minutes, but was not corroded. FIG.
The micrograph of FIG. 5 shows the state of the surface structure of the test piece at this time. As shown in FIG. 4A, the silicon coating film is not formed only by the copper electrode, and the finished surface roughness is also rough. The formation of a smooth silicon coating film can be seen when silicon powder is interposed (FIG. 4 (b)). From FIG. 5, it can be observed that the molten silicon is impacted and collides with the processed surface. Further, if silicon powder is interposed between the poles, the finished surface roughness becomes fine (see FIG. 5 (b)). According to the processing example that was tested, when a silicon electrode was used, the processing liquid used was ordinary mineral oil (kerosene), which required about 30 minutes, but was achieved in about 3 to 5 minutes.

【0013】ところで、放電加工の加工速度を仕上げ面
粗さの精細な条件で電極を電気的に分割するとともに、
電源から各電極への接続を、それぞれ抵抗を通して加工
する多分割加工回路がある。図8はこの多分割加工回路
を用いた本発明方法の他の実施例を示すもので、図中、
15は抵抗器群、16は発振器、17は増幅器、18は
トランジスタスイッチング回路、4a,4b,・・・4
nは分割電極である。このように分割する代わりに電気
抵抗をもっている材料を電極とすると一体の電極であり
ながら、放電が発生するたびに分割されて同時に多数の
放電が発生することを、本発明者等は既に明きらかに
し、その代表的電極材料がシリコン電極であることを発
表している。この実施例においても、極間にシリコン粉
末を介在させることにより、前述した実施例同様の作用
効果を奏する。
By the way, the electrodes are electrically divided under the condition that the machining speed of the electric discharge machining is the fineness of the finished surface roughness, and
There is a multi-divided processing circuit that processes the connection from the power supply to each electrode through a resistor. FIG. 8 shows another embodiment of the method of the present invention using this multi-division processing circuit.
Reference numeral 15 is a resistor group, 16 is an oscillator, 17 is an amplifier, 18 is a transistor switching circuit, 4a, 4b, ... 4
n is a divided electrode. It has already been revealed by the present inventors that, when an electrode is made of a material having electric resistance instead of being divided in this way, it is an integrated electrode, but is divided every time a discharge occurs and a large number of discharges are generated at the same time. Crab has announced that its typical electrode material is a silicon electrode. In this embodiment as well, by interposing silicon powder between the electrodes, the same effect as that of the above-described embodiment can be obtained.

【0014】また、シリコン粉末を極間に介在させて放
電加工を行なう場合においても、シリコンで形成した電
極や、グラファイト表面をシリコンと反応させSiCの
表面とする場合や、シリコン粉末と亜鉛との混合体、シ
リコン粉末と銅との混合体、シリコンと水ガラスの混合
体、シリコンと亜鉛と水ガラスとの混合体などのよう
に、抵抗性をもたせた電極で、放電加工を行うと、同一
の電気条件でも、仕上げ面粗さが細かくなると言う結果
を得ている。さて、本発明は上述したように、電極と被
加工物により形成される極間に、上記被加工物の表面層
を形成するシリコンを、加工液中に粉末状態にして介在
させた後、放電を行なうことによって、被加工物の表面
層を形成するようにしたものであるが、このようなもの
においても、表面処理を行おうとするシリコンの粉体が
互いに固着するのを防ぐことについては必ずしも万全で
はない。
Also, when electric discharge machining is performed with silicon powder interposed between the electrodes, an electrode made of silicon or a graphite surface is reacted with silicon to form a SiC surface, or silicon powder and zinc are mixed. It is the same when electrical discharge machining is performed with electrodes with resistance such as a mixture, a mixture of silicon powder and copper, a mixture of silicon and water glass, a mixture of silicon, zinc and water glass, etc. The result is that the finished surface becomes finer even under the electrical conditions of. As described above, according to the present invention, the silicon forming the surface layer of the workpiece is interposed between the electrode and the electrode formed by the workpiece in the working liquid in the form of powder, and the discharge is performed. The surface layer of the workpiece is formed by carrying out the above.However, even in such a case, it is not always necessary to prevent the silicon powders to be surface-treated from sticking to each other. Not perfect.

【0015】図9乃至図12は表面処理を行おうとする
シリコンの粉体が互いに固着するのを防止できるよう、
揺動運動機構を付加した本発明の別の発明を示すもので
ある。これを更に詳述すると、20は被加工物(図示せ
ず)を載置するテーブル、4は被加工物と対向する電
極、4A〜4Dは交換用電極、12は電極4をサーボ制
御する油圧シリンダ装置、21は油圧シリンダ装置12
のサーボ制御を司る数値制御装置、22はテーブル20
をX軸方向へ駆動するX軸モータ、23はテーブル20
をY軸方向へ駆動するY軸モータ、24は電極交換装置
であって、前述したように荒加工、中加工、仕上げ加工
の段階にわけて電極4A〜4Dを自動的に交換する機能
を有する。なお、10は電極4と被加工物間に加工エネ
ルギを供給する加工電源、13は油圧シリンダ装置12
のピストンロッドであり、先端に電極4が装着されてい
る。
9 to 12 are for preventing the silicon powders to be surface-treated from sticking to each other.
It shows another invention of the present invention to which an oscillating motion mechanism is added. More specifically, 20 is a table on which a workpiece (not shown) is placed, 4 is an electrode facing the workpiece, 4A to 4D are replacement electrodes, and 12 is a hydraulic pressure for servo controlling the electrode 4. Cylinder device, 21 is a hydraulic cylinder device 12
Numerical control device for controlling the servo control of the table 22 is a table 20
X-axis motor for driving the table in the X-axis direction, 23 is the table 20
Is a Y-axis motor for driving in the Y-axis direction, and 24 is an electrode exchanging device, which has a function of automatically exchanging the electrodes 4A to 4D at the stages of rough machining, intermediate machining, and finishing machining as described above. . In addition, 10 is a machining power supply that supplies machining energy between the electrode 4 and the workpiece, and 13 is a hydraulic cylinder device 12.
This is a piston rod of which the electrode 4 is attached to the tip.

【0016】このようなものにおいて、テーブル20上
には加工液を収納する図示しない加工層が載置され、ま
たX軸モータ22、Y軸モータ23のそれぞれの方向に
おける動き、電極交換装置24の動作、加工電源10の
電気条件は、油圧シリンダ装置12と同様、数値制御装
置21により制御されるようになっている。そして、電
極4と被加工物間には、図10に示すようなパターンの
揺動運動が付与されるようになっている。
In such a structure, a machining layer (not shown) for accommodating the machining fluid is placed on the table 20, the movements of the X-axis motor 22 and the Y-axis motor 23 in the respective directions, and the electrode exchange device 24. The operation and electric conditions of the machining power source 10 are controlled by the numerical controller 21 as with the hydraulic cylinder device 12. A swing motion having a pattern as shown in FIG. 10 is applied between the electrode 4 and the workpiece.

【0017】図11は揺動運動機構を付加した上記実施
例の効果を説明するために、次の加工条件により行った
実験例を示すものである。加工条件は、 1 電極:銅 2 被加工物:高速度鋼(SKH−51) 3 加工液:灯油はシリコン粉末を20g/L 混入 4 電気条件:電流ピーク値1ρ=1A パルス幅τp=2μs 休止幅τs=2μs 5 電極極性:電極(−) 即ち、図11において、図11(a)は加工液のみで加
工した場合の面粗さを、図11(b)は加工液中にシリ
コン粉末を混入して電極4と被加工物間に揺動運動を付
与しない場合の面粗さを、図11(c)は加工液中にシ
リコン粉末を混入して電極4と被加工物間に揺動運動
(揺動速度96mm/min)を付与した場合の面粗さ
を、それぞれ示している。
FIG. 11 shows an example of an experiment conducted under the following processing conditions in order to explain the effect of the above-mentioned embodiment in which the swinging motion mechanism is added. Processing conditions are: 1 electrode: copper 2 work piece: high speed steel (SKH-51) 3 working fluid: kerosene mixed with silicon powder 20 g / L 4 electrical condition: current peak value 1ρ = 1A pulse width τp = 2μs pause Width τs = 2 μs 5 Electrode polarity: electrode (−) That is, in FIG. 11, FIG. 11 (a) shows the surface roughness in the case of processing only with the working liquid, and FIG. 11 (b) shows the silicon powder in the working liquid. FIG. 11 (c) shows the surface roughness in the case where the metal powder is mixed and the rocking motion is not applied between the electrode 4 and the workpiece. The surface roughness when motion (rocking speed 96 mm / min) is applied is shown.

【0018】また、図12は揺動運動機構を付加した上
記実施例の効果を説明するための金属組織を示す顕微鏡
写真図であり、この中図12(a)は加工液中にシリコ
ン粉末を混入して電極4と被加工物間に揺動運動を付与
しない場合における金属組織の状態を、図12(b)は
加工液中にシリコン粉末を混入して電極4と被加工物間
に揺動運動を付与した場合における金属組織の状態を、
それぞれ示している。図12(a)ではシリコンの固着
した様子が見られ、仕上げ面粗さもやや荒いことが判
る。電極4と被加工物間に揺動運動を付与した図12
(b)ではなだらかに見える。この理由は、電極4と被
加工物表面との凹凸の相は位置が変わるために、平滑化
するからと考えられる。
FIG. 12 is a photomicrograph showing a metallographic structure for explaining the effect of the above embodiment in which a swinging motion mechanism is added. In FIG. 12 (a), silicon powder is contained in the working liquid. FIG. 12B shows the state of the metallographic structure in the case where the metal structure is mixed and no oscillating motion is applied between the electrode 4 and the work piece. The state of the metal structure when a dynamic motion is given,
Each is shown. In FIG. 12 (a), it can be seen that silicon is fixed and the finished surface roughness is rather rough. FIG. 12 in which a swinging motion is applied between the electrode 4 and the workpiece.
In (b), it looks gentle. The reason for this is considered to be that the phase of the unevenness between the electrode 4 and the surface of the workpiece is changed in position and smoothed.

【0019】以上、本発明方法の実施例について説明し
たが、本発明は以下のような変形例をも含むことは言う
までもない。 イ)シリコン粉末のみならず、他の金属粉、例えば、タ
ングステンカーバイト(WC)や硼化ジルコニウム(Z
rB2)などの、半金属性や炭化物や硼化物すなわちフ
ァインセラミック材料の表面層の形成にも使用できる。 ロ)また、加工液を鉱物性の油と限らず、シリコン油
や、水(蒸溜水)を用いても放電加工さえ行われるなら
ば、実用可能である。 ハ)非導電性のセラミックスなどへ被覆する時は、セラ
ミックス表面を無電解メッキや銀鏡反応等で表面のみ導
体化して、上記の表面層の形成を行なうことができる。 ニ)被覆物質として非導電性のものも使用したい時に
は、できるだけ微細な粉体を用い、その中に、導電性粉
体を混入させて上記のことを行えば可能な場合がある。
この場合の非導電性物質とは、例えばアルミナ(Al2
O3)の如きものである。
Although the embodiments of the method of the present invention have been described above, it goes without saying that the present invention also includes the following modifications. B) Not only silicon powder but also other metal powders such as tungsten carbide (WC) and zirconium boride (Z)
It can also be used to form surface layers of semi-metallic or carbides or borides, ie fine ceramic materials, such as rB2). B) Further, the working fluid is not limited to a mineral oil, and silicon oil or water (distilled water) can be used as long as electric discharge machining is performed. C) When coating a non-conductive ceramic or the like, the surface of the ceramic can be formed by making the surface of the ceramic a conductor only by electroless plating, silver mirror reaction, or the like. D) When it is desired to use a non-conductive material as the coating substance, it may be possible to use the finest powder as possible and mix the conductive powder therein to perform the above.
In this case, the non-conductive substance is, for example, alumina (Al2
O3).

【0020】なお、上述した各実施例のいずれの場合に
おいても重要なことは、シリコン粉末等の表面層を形成
するシリコンを極間に充分に介在せしめることである。
すなわち1回の放電により加工除去される量よりも、過
剰にシリコン粉末を放電点付近に存在させるために、通
常の放電加工よりも、極間距離を広くとることである。
In any of the above-mentioned embodiments, what is important is to sufficiently interpose the silicon forming the surface layer such as silicon powder between the electrodes.
That is, in order to make the silicon powder exist near the discharge point in excess of the amount that is machined and removed by one electric discharge, the distance between the electrodes is made wider than in normal electric discharge machining.

【0021】[0021]

【発明の効果】以上述べたように、本発明によれば、表
面層を形成する材料を、加工液中に粉末状態にして介在
させた後、攪袢手段により上記粉末を攪袢しつつ放電加
工を行うようにしたことにより、加工液中の粉末が固着
せず、放電が均一に分散するので、加工速度の向上が図
れると共に、通常放電加工に用いられる電極によって
も、耐蝕性が大きく、密着度も大きな表面処理が可能と
なる。一般的に知られている高温窒化やCVDなどは、
900℃前後の高温で処理するために、素材に歪や軟化
を生じやすく、温度を下げれば剥離しやすくなるが、本
発明は、素材に歪や軟化を起こすことはなく、多種少量
にも適する。
As described above, according to the present invention, the material for forming the surface layer is interspersed in the working liquid in the form of powder, and the powder is discharged by the stirring means while stirring the powder. By performing the machining, the powder in the machining fluid is not fixed and the electric discharge is evenly dispersed, so that the machining speed can be improved, and the corrosion resistance is large even by the electrode used for the electric discharge machining, Surface treatment with high adhesion is possible. Generally known high temperature nitriding, CVD, etc.
Since the material is processed at a high temperature of around 900 ° C., the material is likely to be distorted or softened, and when the temperature is lowered, the material is easily peeled off. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の原理を説明するための図で、極間に
シリコンの粉体がある場合の説明図である。
FIG. 1 is a diagram for explaining the principle of the present invention, and is an explanatory diagram when a silicon powder is present between electrodes.

【図2】 本発明の原理を説明するための図で、通常の
放電状態の説明図である。
FIG. 2 is a diagram for explaining the principle of the present invention and is an explanatory diagram of a normal discharge state.

【図3】 (a),(b)はいずれも本発明の一実施例
を説明するための概略構成図である。
3 (a) and 3 (b) are each a schematic configuration diagram for explaining one embodiment of the present invention.

【図4】 (a),(b)はいずれも本発明の効果を説
明するための金属組織を示す顕微鏡写真図である。
4 (a) and 4 (b) are each a micrograph showing a metal structure for explaining the effect of the present invention.

【図5】 本発明の効果を説明するための金属組織を示
す顕微鏡写真図である。
FIG. 5 is a micrograph showing a metal structure for explaining the effect of the present invention.

【図6】 図3の電源装置部の一例を主電源に補助電源
を重畳した高電圧重畳回路で示す原理図である。
6 is a principle diagram showing an example of the power supply unit of FIG. 3 by a high voltage superposition circuit in which an auxiliary power supply is superposed on a main power supply.

【図7】 (a),(b),(c)はいずれも放電開始
電圧に対する加工の安定度を示す説明図である。
7 (a), (b), and (c) are explanatory views showing the stability of machining with respect to the discharge start voltage.

【図8】 電源装置部の他の例を示す多分割加工回路の
原理図である。
FIG. 8 is a principle diagram of a multi-division processing circuit showing another example of the power supply unit.

【図9】 本発明の別の発明を説明するための図3相当
図である。
FIG. 9 is a view corresponding to FIG. 3 for explaining another invention of the present invention.

【図10】 図9の揺動運動のパターンを示す説明図で
ある。
FIG. 10 is an explanatory diagram showing the pattern of the swing motion of FIG.

【図11】 (a),(b),(c)は仕上げ面粗さを
揺動運動の有無による比較で示す説明図である。
11 (a), (b), and (c) are explanatory views showing a comparison of finished surface roughness with and without swinging motion.

【図12】 図9の効果を説明するための金属組織を示
す顕微鏡写真図である。
12 is a micrograph showing a metal structure for explaining the effect of FIG.

【図13】 従来例を説明するための電極の構成図であ
る。
FIG. 13 is a configuration diagram of electrodes for explaining a conventional example.

【符号の説明】[Explanation of symbols]

4 電極、5 被加工物、7 極間、8 加工液、9
シリコン粉末、10電源装置、11 空気ポンプ。 なお、図中、同一符号は同一又は相当部分を示す。
4 electrodes, 5 workpieces, 7 contacts, 8 working fluid, 9
Silicon powder, 10 power supplies, 11 air pump. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電極と被加工物により形成される極間
に、上記被加工物の表面層を形成する材料を、加工液中
に粉末状態にして介在させた後、攪袢手段により上記粉
末を攪袢しつつ放電を行なうことによって、被加工物の
表面層を形成する放電加工による表面層の形成方法。
1. A material for forming a surface layer of the workpiece is placed between the electrode and the workpiece in a working liquid in a powder state, and then the powder is stirred by a stirring means. A method for forming a surface layer by electric discharge machining, wherein a surface layer of a workpiece is formed by performing electric discharge while stirring.
JP8140211A 1996-06-03 1996-06-03 Method of forming surface layer by electric discharge machining Expired - Lifetime JP3015730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8140211A JP3015730B2 (en) 1996-06-03 1996-06-03 Method of forming surface layer by electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8140211A JP3015730B2 (en) 1996-06-03 1996-06-03 Method of forming surface layer by electric discharge machining

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1015813A Division JPH0749170B2 (en) 1988-01-26 1989-01-25 Method of forming surface layer by electrical discharge machining

Publications (2)

Publication Number Publication Date
JPH09192931A true JPH09192931A (en) 1997-07-29
JP3015730B2 JP3015730B2 (en) 2000-03-06

Family

ID=15263510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8140211A Expired - Lifetime JP3015730B2 (en) 1996-06-03 1996-06-03 Method of forming surface layer by electric discharge machining

Country Status (1)

Country Link
JP (1) JP3015730B2 (en)

Also Published As

Publication number Publication date
JP3015730B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US5434380A (en) Surface layer forming apparatus using electric discharge machining
Singh et al. Review to EDM by using water and powder-mixed dielectric fluid
Marashi et al. State of the art in powder mixed dielectric for EDM applications
KR0154178B1 (en) Method and apparatus for surface treatment by electrical discharge
Bhattacharyya et al. Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain
JP3363284B2 (en) Electrode for electric discharge machining and metal surface treatment method by electric discharge
KR100871332B1 (en) Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
EP1488024B1 (en) Process and device for forming ceramic coatings on metals and alloys
JPH0919829A (en) Method and device for surface processing by electric discharge machining
EP0548932B1 (en) Surface layer forming process using electric discharge machining
WO2000029154A1 (en) Apparatus for discharge surface treatment and method for discharge surface treatment
JPH0749170B2 (en) Method of forming surface layer by electrical discharge machining
JPH09192931A (en) Surface layer forming method by electrical discharge machining
Shirguppikar et al. Experimental investigation of CNT coated tools for EDM processes
Patel et al. Electrochemical grinding
JP5547864B2 (en) Discharge surface treatment method and apparatus
JP3798100B2 (en) Discharge surface treatment method and treatment apparatus
JP2001279465A (en) Surface discharge treating method, electrode for surface treatment used therefor and obtained surface treated film
US6020568A (en) Electro mechanical process and apparatus for metal deposition
JPS6147833A (en) Spinning rotor of open end spinning frame and its production
JP2001138141A (en) Method for surface coating treatment using submerged discharge and consumable electrode used therefor
Chak Electro chemical discharge machining: process capabilities
Ruszaj Unconventional processes of ceramic and composite materials shaping
JP3668519B2 (en) Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid
Rana et al. Study of powder mixed dielectric in EDM-A review

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20071217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091217

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091217