JP3668519B2 - Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid - Google Patents

Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid Download PDF

Info

Publication number
JP3668519B2
JP3668519B2 JP08197695A JP8197695A JP3668519B2 JP 3668519 B2 JP3668519 B2 JP 3668519B2 JP 08197695 A JP08197695 A JP 08197695A JP 8197695 A JP8197695 A JP 8197695A JP 3668519 B2 JP3668519 B2 JP 3668519B2
Authority
JP
Japan
Prior art keywords
machining
powder
electric discharge
mixed
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08197695A
Other languages
Japanese (ja)
Other versions
JPH08243843A (en
Inventor
余始次 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP08197695A priority Critical patent/JP3668519B2/en
Priority to PCT/JP1996/000225 priority patent/WO2004078400A1/en
Publication of JPH08243843A publication Critical patent/JPH08243843A/en
Application granted granted Critical
Publication of JP3668519B2 publication Critical patent/JP3668519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、被加工体に対し加工電極を微小間隙を介して相対向させ、前記間隙に加工液を介在させた状態で両者間に休止時間を置いた間歇的な電圧パルスを印加して放電を発生させ、前記対向方向に相対的に加工送りを与えて加工する放電加工方法、そして、上記放電加工方法としては、被加工体に対し棒状・総型等の型状加工電極を加工槽内の加工液中に於て微小間隙を介して相対向させ、両者間に間歇的な電圧パルスを印加して放電を発生させ、前記対向方向の相対的な加工送りと共に、必要に応じ前記対向方向と直角方向の並進運動送りを与えながら穿孔若しくは型彫り放電加工をするもの、及び前記加工電極としてワイヤ電極を用い、一対の間隔を置いて配置した位置決めガイド間に張架したワイヤ電極を軸方向に更新送りしながら前記軸方向と略直角方向から被加工体を微小間隔を隔てて相対向させた放電間隙を加工槽内の加工液中に形成せしめた状態で両者間に間歇的な電圧パルスを印加して放電させ、前記直角方向に所望輪郭形状の相対的加工送りを与えて切断加工するワイヤ放電加工をするものを包含し、特に前記放電間隙に流通介在等供給せしめられる加工液として炭化水素系の鉱物油を主成分とする所謂油系放電加工液に導電性乃至半導電性の固体粉末を混入した粉末混入加工液を使用する放電加工方法、及び前記固体粉末として新規、有用な粉末を混入した粉末混入放電加工用加工液に関する。
【0002】
【従来の技術】
前述の固体粉末を混入した加工液を用いる粉末混入放電加工は基本的には周知、例えば特公昭55−43,849号公報、同52−26,357号公報、及び特開昭54−159,798号公報等であり、又、該粉末混入放電加工を被加工体の加工面の表面層処理又は一種の表面被覆等として使用することも、例えば特公昭59−2,746号公報、特開平2−83,119号公報及び特開平3−277,421号公報等に記載の如く良く知られている所である。
【0003】
そして、上記後者の粉末混入放電加工が前述穿孔若しくは型彫り放電加工の分野での高速での小面積から大面積に及び被加工体加工面の鏡面仕上げ加工技術(上記特開平3−277,421号公報等)として利用される状況にあると共に、近時前述ワイヤ放電加工の分野に於ても利用される趨勢にある(例えば、特開平6−206,121号公報、同6−320,342号公報等)ようである。
【0004】
そして、上述した各種の先行技術によれば、前記粉末混入放電加工用の前記粉末として各種各様のものが、例えば、上記特開平3−277,421号公報によれば、粉末の種類として、シリコン、ゲルマニウム、アルミニウム等、或いはさらに、タングステンやモリブデン等の金属又はタングステンカーバイトや硼化ジルコニウム等の化合物、又は各種の半導体の粉体、粉末の大きさとして粒径分布の平均値が5〜10μmの範囲内のもの、そしてケロシン油系又は水溶性加工液に対する添加混合量が濃度20g/lと記載され、又例えば、ワイヤ放電加工に係る上記特開平6−320,342号公報によれば、粉末の種類として硅素、炭素、鉄、アルミニウム、銅、炭化珪素、炭化チタン、窒化チタン、酸化硅素等の粉末、その大きさとして0.1〜5μmφ、又その添加混合量として0.5〜5%等と記載されているものである。
【0005】
しかしながら、上記何れの文献を見ても、その具体的な実験例や実験結果としては、粉末の種類として炭素(グラファイト、黒鉛、C)とシリコン(硅素、Si)が主であって、その他の各種粉末については具体的な実証に欠けるものであり、そして上記粉末中鏡面仕上げ加工ができる実験例等があるのは、上記後者のシリコン粉末を炭化水素系の油系放電加工液に添加混合した場合に実質上限られているものである。また、該添加混合するシリコン粉末の量については、大凡重量比で約0.5〜3%(約5〜30g/l)程度で、ほぼ共通しているが、その粉末の大きさ寸法については、上述のものの外3〜30μm、10〜40μm、及び20〜40μm等可成りのばらつきがあったものである。
【0006】
【発明が解決しようとする課題】
そして、上記シリコン(Si)粉末混入加工液を使用する粉末混入放電加工によれば、SUS304や13Cr鋼、もしくは高速度鋼の、被加工面が緻密なシリコン薄膜又は金属との合金膜によって隙間なく覆われた王水にも耐える高耐食性の、かつ耐高温酸化性のある、耐摩耗性の強い鏡面層の被覆が形成される(特開昭62−24,916号公報、及び前出特開平2−83,119号公報)と紹介されているもので、被加工面の面性状乃至は面特性等については、今一つ判然とせず、利用用途の開発が遅れていたものである。
【0007】
例えば被加工体としてSKD61等の金型用鋼材をSi粉末混入加工液を用いる放電加工により、必要に応じ荒加工条件から中加工、及び中仕上げ加工と順を追って加工し、加工面を例えば4〜6μmRmax程度の面粗さ及び所望の形状精度に面付け加工をした後、粉末混入放電加工処理すると、加工面が大凡0.5μmRmaxの面粗度に仕上った約5〜6μm前後厚の被覆変質層が形成されることが良く知られているが、該被加工体の加工面の断面を表面側から性状、特に硬度(2度測定の平均)を調べて行くと、下記表1のように被覆変質層の表面部分は大幅に硬度が大きく、母材に近づくに従って母材硬度に近い値迄低下し、そして特に母材の浅い部分で一旦母材硬度よりも大幅に低下した後母材硬度に迄回復して行くと言う、一種の弱点部分が形成されており、前記被覆変質層の厚さが用途によっては薄い所から、場合によっては研磨仕上げされる金型面、さらにはその強度等の点で問題があるものである。
【0008】
【表1】
【0009】
表1に於て、No.9は被加工体母材部分の硬度であり、No.4は前記被覆変質層直下の母材の上記弱点部分である。
【0010】
このため本発明者等は、粉末混入加工液を使用する放電加工に付き、種々の実験・研究を行なった結果、被加工体の被加工面に、緻密な高硬度の耐摩耗性の鏡面状の被覆変質層を前述シリコン粉末混入加工液を使用する放電加工の場合よりも厚く、そして上記被覆変質層直下の母材部分に前述No.4の如き大幅に硬度の低下した弱点部分に当るものが形成されない粉末混入放電加工用加工液及びその粉末混入加工液を使用する放電加工法を見出したことにより本発明が提案されるものである。
【0011】
【課題を解決するための手段】
前述の課題は、(1)被加工体に対し加工電極を微小間隙を介して相対向させ、前記間隙に固体粉末を混入した加工液を介在させた状態で両者間に休止時間を置いた間歇的な電圧パルスを印加して放電を発生させ、前記対向方向に相対的に加工送りを与えて加工する放電加工用加工液に於て、前記加工液が炭化水素系の鉱物油から成ると共に、前記混入固体粉末がケイ化物から成る粉末混入放電加工用加工液とすることにより、(2)又前述の課題は、Mを金属元素、Siを珪素元素とすると、前記ケイ化物がMSi型の化合物である前記(1)に記載の粉末混入放電加工用加工液とすることにより、(3)又前述の課題は、前記ケイ化物を構成する金属元素Mがクローム元素(Cr)である前記(1)又は(2)に記載の粉末混入放電加工用加工液とすることにより(4)又前述の課題は、前記ケイ化物粉末の大きさが0.5〜15μmφ、好ましくは1〜10μmφ、更に好ましくは1.5〜8μmφである前記(1)、(2)、又は(3)に記載の粉末混入放電加工用加工液とすることにより、(5)又前述の課題は、前記ケイ化物の加工液に対する添加混合量が3〜50g/l、好ましくは4〜35g/l、更に好ましくは5〜25g/lである前記(1)、(2)、(3)又は(4)に記載の粉末混入放電加工用加工液とすることにより、より良く達成されるものである。
【0012】
(6)又前述の課題は、被加工体に対し加工電極を微小間隙を介して相対向させ、前記間隙に固体粉末を混入した加工液を介在させた状態で両者間に休止時間を置いた間歇的な電圧パルスを印加して放電を発生させ、前記対向方向に相対的に加工送りを与えて加工する放電加工方法に於て、前記加工液が炭化水素系の鉱物油系放電加工液から成ると共に、前記混入固体粉末が平均粒径が0.5〜15μmφ、好ましくは1〜10μmφの、Mが金属元素Ti、V、Cr、Zr、Nb、Mn、Mo、Fe、Co、W、又はNiから成るMSi型のケイ化物の粉末で、3〜50g/l、好ましくは4〜35g/lの割合で前記鉱物に添加混合されて成り、放電加工工程が、前記粉末混入加工液、又は粉末非混入油系放電加工液を使用する加工面粗度と寸法・形状精度を所望に仕上げる前記電圧パルス等の電気的加工条件が荒加工、中加工、及び仕上げ加工の如く順次に切換えられる2工程以上の放電加工の段階と、前記電気的加工条件が前記所望の加工面粗度及び寸法形状精度に仕上げられた加工面に対する光沢面仕上げの粉末混入加工液使用の放電加工の段階とから成る粉末混入加工液を使用する放電加工方法とすることにより、(7)又前述の課題は、前記の放電加工が被加工体に対し棒状・総型等の型状加工電極を加工槽内の加工液中に於て微小間隙を介して相対向させ、両者間に間歇的な電圧パルスを印加して放電を発生させ、前記対向方向の相対的な加工送りと共に、必要に応じ前記対向方向と直角方向の並進運動送りを与えながら穿孔若しくは型彫り放電加工をする前記(6)に記載の粉末混入加工液を使用する放電加工方法とすることにより、(8)又前述の課題は、前記被加工体を所望の加工面粗度及び寸法・形状精度に仕上げる電圧パルス等の電気的加工条件が荒加工、中加工、及び仕上げ加工の如く順次に切換えられる2工程以上の放電加工の段階が、前記加工条件が加工電極低消耗、好ましくは無消耗の条件に設定された前記(6)、又は(7)に記載の粉末混入加工液を使用する放電加工方法とすることにより、(9)又前述の課題は、前記被加工体を所望の加工面粗度及び寸法・形状精度に仕上げる電圧パルス等の電気的加工条件が順次に切換えられる2工程以上の放電加工の段階における電圧印加極性が逆極性で、該面粗度及び寸法・形状精度が所望に仕上げられた加工面に対する光沢面仕上げの粉末混入放電加工の段階に於ける電圧印加極性が正極性である前記(6)、(7)、又は(8)に記載の粉末混入加工液を使用する放電加工方法とすることにより、(10)又前述の課題は、前記所望の加工面粗度及び寸法・形状精度に仕上げられた被加工体加工面に対する光沢面仕上げの粉末混入放電加工の段階の電気的加工条件が、加工電圧パルス源と放電間隙間の給電線が低キャパシタンス給電線に選定されると共に直列にインダクタンス線輪と抵抗体との並列回路が挿入され、2〜5μsのパルス幅で、振幅2〜8Aの放電パルスが供給されるように設定された前記(6)、(7)、(8)又は(9)に記載の粉末混入加工液を使用する放電加工方法とすることにより、より良く達成される。
【0013】
(11)又前述の課題は、前記の放電加工が、前記加工電極としてワイヤ電極を用いる、一対の間隔を置いて配置した位置決めガイド間に張架したワイヤ電極を軸方向に更新送りしながら前記軸方向と略直角方向から被加工体を微小間隔を隔てて相対向させた放電間隙を加工槽内の加工液中に形成せしめた状態で両者間に間歇的な電圧パルスを印加して放電を発生させ、前記直角方向に所望輪郭形状の相対的加工送りを与えて切断加工するワイヤ放電加工である前記(6)に記載の粉末混入加工液を使用する放電加工方法に於ても達成されるものである。
【0014】
【作用】
本発明の粉末混入放電加工用加工液は前述のような構成を有することにより、狭い加工面積から広い加工面積の加工迄、1μmRmax以下の微細加工面粗度で光沢のある鏡面状の被覆変質層を従来のシリコン粉末混入加工液を使用する放電加工の場合に比べて充分厚く、かつ該被覆変質層を直下母材部分に母材硬度低下等の弱点部分を生ぜしめない状態で形成させることができ、かつ前記の厚い被覆変質層が高い硬度で耐磨、耐食性を有する所から各種の金型や部品等の放電加工成形仕上げの際の粉末混入放電加工用加工液として有用なものである。
【0015】
又、本発明の粉末混入加工液を使用する放電加工方法によれば、上記粉末混入放電加工用加工液を使用した放電加工に於て、被加工体の被加工面に目的とする高硬度の厚い、光沢ある鏡面状の被覆変質層を確実、かつ所望に形成させることができる。
【0016】
【実施例】
図1は本発明の放電加工方法を穿孔若しくは型彫り放電加工法に於て実施する場合の穿孔若しくは型彫り放電加工用の主として仕上げ加工を主とした加工用電源回路の実施例説明図で、1は銅又はグラファイト等の穿孔若しくは型彫用型電極、3は加工槽20内の加工液中に浸漬状態に配置されたワークスタンド4に取付けられた被加工体、21は前記加工液で、後述する粉末混入加工液が加工槽20と加工液循環供給装置22との間で循環供給され、混入粉末が沈澱堆積等して混入粉末濃度が変化することがないように加工槽20及び加工液供給装置22に夫々撹拌装置23、22Aが設けられると共に、加工液中の加工屑を分離除去するフィルタが適宜の循環経路中、又は主として被加工体3の加工屑で通常強磁性体である前記加工屑を選択的に磁気吸着分離する磁気吸着体22Bが適宜の位置に設けられるものである。
【0017】
而して、電極1は被加工体3に対し加工槽20内の粉末混入放電加工液中に於て微小間隙を介して相対向せしめられ、両者間に休止時間を置いた間歇的な電圧パルスを印加して放電を発生させ、前記対向方向の相対的な通常サーボ制御による加工送りが与えられると共に、必要に応じ、加工中に電極又は被加工体に前記サーボ制御加工送りとは別の相対的な近接開離の往復運動を間歇的に行なわせ、及び/又は更に前記対向方向とはほぼ直角方向の並進運動を与えながら穿孔又は型彫り放電加工をするものである。
【0018】
5は前記間歇的な電圧パルス供給回路で、通常加工の間歇的な電圧パルス供給回路6と、前記通常加工の電圧パルスよりも高い電圧で小電流容量の電圧パルスを供給する間歇的な第2の電圧パルス供給回路8とが並設されており、前述通常所謂荒加工条件の加工や、中加工工程等に於て使用する、特に加工電流増加用回路の類は省略して示していない。
【0019】
而して、前記通常加工の電圧パルス供給回路6は、約60〜260Vと可変であるが、例えば通常は約80V程度のほぼ一定電圧として使用される直流電圧源6Aと、電流容量に応じて複数個が並列に接続されうMOS−FETトランジスタ等の電子スイッチ素子6Bと、例えば約100Ω等の切換え可能な電流制限抵抗6Cと、および逆電圧防止整流器6Dとの直列回路から成る、従来最も通常の間歇的な電圧パルスの生成供給回路6であって、前記荒加工工程や中加工工程においては、好ましくは切換スイッチ9と、その接点9A、9Bにより、単線や燃線等の低キャパシタンス給電線10Bから同軸ケーブル等の低インダクタンス給電線10Aを選択切換えて電極1と被加工体3間の放電間隙へ接続され、前記間歇的な電圧パルスは、パルス制御装置7によるスイッチ素子6Bの制御により所望に生成される。
【0020】
即ち、制御装置7の前記スイッチ素子6Bの制御装置部分としては、スイッチ素子6Bを放電間隙の放電状態検出信号による変更制御をする場合を除き、あらかじめ選択設定した一定のオン時間信号τONとオフ時間信号τOFFとを規則的に交互に繰り返して電圧パルスを生成供給する場合と、スイッチ素子6Bのオン時間信号を放電間隙に電圧パルスの印加開始後放電間隙で放電が開始するまでの該放電開始遅延期間の関数とし増大する、即ち各放電パルスの放電持続時間を設定の一定値とするよう電圧パルス印加開始後放電間隙での放電開始時より前記オン時間信号の計測を開始し、計測完了によりスイッチ素子6Bをオフとしてオフ時間に移行させる制御をするもの等があり、以下の説明では、主として前記後者の場合について説明を加えるが、本発明は何等これに限定されるものではない。又、前記給電線10Aと10Bを切換える切換えスイッチ9の接点9A、9Bを正負の両給電回路の一方の側にのみ設け、他方の側の給電線10Bを低インダクタンス給電線10Aの一方に常時兼用させた接続構成とすることもできる。
【0021】
又、前記第2の電圧パルス供給回路8は、可変直流電圧源8Aとスイッチ素子8Bと電流制限抵抗8C及び逆電圧防止整流器8Dとの直列回路からなるもう一つの電圧パルス供給回路であって、該第2の電圧パルス供給回路8は、開閉スイッチ8Eにより所望に応じて使用されるものであるが、例えば、直流電圧源8Aは、通常出力電圧が一定の直流電圧源6Aの約80〜260Vに対し、可変で電圧値は同等以上の約100〜350V、例えば約150V、又は280〜300Vであり、電流制限抵抗8Cは、抵抗6Cに対し大きな設定、例えば約1kΩで、回路8の電流容量を小さなものとし、スイッチ素子8Bをパルス制御装置7により、例えばスイッチ素子6Bとオン・オフ同期印加、又は遮断等と称して前記電圧パルス印加に先だって電圧印加を開始し、放電間隙での放電開始及びスイッチ素子6Bオンを検出してスイッチ素子8をオフとすることにより電圧印加を遮断するなどの制御をする等して、間隙の平均加工電圧を高めることにより放電開始を促進させると共に、間隙電圧検出によるサーボ制御作動をやり易くして安定加工を維持させるなどの作用をする副電源であって、本発明の実施に必須のものではない。
【0022】
以上の如き間歇的な電圧パルス供給回路5は、本発明の、光沢面形成の仕上げ加工を行なうに際しては、好ましくは切換えスイッチ9、9A、9Bにより前記の低インダクタンス給電線10Aから撚線や単線等の低キャパシタンス給電線10B、10Bに切換えられて放電間隙に接続されるが、本発明は更にその接続放電回路中に前記電圧パルス供給回路5からの供給放電パルス放電電流の波形成形を行なうインダクタンス線輪11と抵抗体12との並列回路が開閉スイッチ13の接点13A開により直列に挿入されている。14は電圧パルス供給回路5の出力端に前記開閉スイッチ13の接点13B閉により並列に接続される還流回路で、整流器14Aと抵抗体14Bとの直列回路から成り、光沢面形成の仕上げ加工を行なうために電圧パルス供給回路5に設定された放電電流パルスの加工条件、例えば前記放電電流パルスを供給するためのスイッチ6B、8Bに電流が流れているオン時間が1〜5μsで、設定電流振幅が2〜8Aのパルス電流を、抵抗体12により電流振幅を低減させると共に、インダクタンス線輪11により電流立ち上りを押さえて滑らかにし、かつその際に線輪11に放電電流のエネルギーの一部を電磁エネルギーとして蓄積し、そしてスイッチ6B、8Bがオフになって放電電力の供給が停止した後、当該放電を停止することなくインダクタンス線輪11蓄積エネルギーを、加工間隙及び前記還流回路14を介して放電回路に放出して放電パルスを伸長させ、前記電圧パルス供給回路5に於ける設定放電電流パルス条件に対し、放電回路、即ち加工間隙を実際に流れる放電電流パルスのパルス幅が前記設定条件1〜5μsの2倍以上と長く、かつ放電電流振幅が立ち上り部分を除き設定条件2〜8Aの1/2以下と低い値の放電電流パルスとするものである(なお、この加工条件等に付いては、例えば特公昭60−3932号公報等に詳しい)。
【0023】
そして、上述の実質上最終仕上げ加工工程である粉末混入加工液使用による光沢面形成の仕上げ加工は、被加工体3を正極、電極1を負極とする所謂正極性加工で行なわれるが、該仕上げ加工工程より前の荒加工、中加工、及び中仕上げ加工等の加工工程に於ては、加工液としては最終仕上げ加工工程の粉末混入加工液をそのまま用いても良いが、穿孔若しくは型彫等の型電極1を用いる加工に於ては、型電極1の消耗変形を避けるために、電極低消耗乃至は無消耗の加工条件設定に必要な極性切換器24を電圧パルス供給回路5出力と加工部放電間隙間に設け、前記荒加工等の加工工程に於ては前記極性切換器24により、電極1を正極、被加工体3を負極とする逆極性の切換え設定をするものである。
【0024】
本発明は、前記粉末混入加工液21に混入されている粉末の種類の点にも重要な要旨とする点が存するもので本発明は前記粉末としてケイ化物粉末を使用するものであり、そしてそのケイ化物粉末としては、好ましくはMが金属元素Ti、V、Cr、Zr、Nb、Mn、Fe、Mo、Co、W、又はNi等から成るMSi型のケイ化物の粉末で、平均粒径が0.5〜15μmφ、好ましくは1〜10μmφで、3〜50g/l、好ましくは4〜35g/lの割合で炭化水素系の所謂油系放電加工液に添加混合するものである。
【0025】
而して上記ケイ化物は、珪素とそれよりも電気的に陽性な元素との化合物で、通常金属との二元化合物のことを言い、多くは炭化物と類似して金属間化合物に近い組成及び性質を有し、そして組成は必ずしも原子価を満足せず、Li、Cu、Cr、又はNi等との化合物であるMSi型、Ca、Fe、Co、又はNi等との化合物であるMSi型、Cr、Mo、W、又はNi等との化合物であるMSi型、又はCo等の化合物であるMSi型等もあるが、通常的には前述MiSi型、及びこのMSi型と同様な金属と化合物を造るMSi型とMSi型が入手し易いものである。そして之等のケイ化物は、一般的に堅くて脆く、容易に粉砕が可能なものであり、リチウムとアルカリ土金属珪化物丈が水と作用し、稀酸に対して加水分解してシラン、水素等を発生する外は化学薬品に対する抵抗力が強く、カルシウム珪化物が塩酸の作用によりシロキサン(Si)を生ずる外は酸化し難く、低ケイ化物は耐熱性にも富むものである。
【0026】
このため一部の金属珪化物粉末は、耐熱、耐酸化性セラミックス材として使用され、又耐酸化性の高いMoSiは大気中の高温ヒータとして使用されており、又比較的融点が低い前記MSi型のものは、減圧プラズマ溶射などにより耐酸化性のある表面コーティング等に用いられている丈でなく、焼結用や粒子分散複合材用等としても用いられている。
【0027】
これ等のケイ化物中本発明の粉末混入放電加工用の加工液構成体として有用な添加混合用粉末としては、比較的により入手が容易なMSi型のケイ化物、特にTiSi、ZrSi、NbSi、TaSi、CrSi、MoSi、又はWSi等であって、之等のケイ化物の一部の物理定数等の大凡の値を示すと下記表2の通りである。
【0028】
なお、之等のケイ化物は、成分元素の直接化合によるか、二酸化珪素を過剰の金属で還元するか、または二酸化珪素と各金属酸化物とを高温で炭素によって還元する等して得ることができ、粒径が大凡6〜12μmφの粗粒と大凡2〜5μmφの微粒に篩分けしたものが市販されている。
【0029】
【表2】
【0030】
次に本発明を具体的な実験例により説明する。
被加工体 材質 SKD61
電極 材質 電気銅
寸法 40mmφ
加工液
種類 炭化水素油(第3類第4石油類)
粘度 1.885cSt/40℃
引火点 100℃
全酸化 0.01
比重 0.7629g/cm
加工液混合粉末
粒度及び不純物組成
【0031】
【表3】
【0032】
上記表3中、TiSi、CrSi、MoSi、及びWSiの各約5μmφの粉末を上記加工液に種々の割合で添加混合し、種々の放電加工の加工条件で加工した所、選択設定した加工条件と整合した組合せとなったと思われる上記CrSi粉末使用の際に最も良い加工結果が得られ、次いで上記WSi粉末、そしてMoSi粉末の順であった。下記表4は、粉末として上記CrSi粉末を用いて、上記電極、被加工体の組合せにより加工処理した場合の上記以外の各種の加工条件及びデータである。
【0033】
【表4】
【0034】
表4中に於て、電圧パルス源(6)は図1の前述電圧パルス供給回路6に、又電圧パルス源(8)は電圧パルス供給回路8に夫々符合し、加工工程の1乃至2は、電極減寸値が−0.4(片側)の電極で、電極ジャンプと前記並進運動(オービット型)を併用し、加工時間が150分に及び、電極低消耗乃至無消耗の荒加工(1)及び(2)で、荒加工(2)の終了後、電極減寸値−0.15(片側)の電極に交換し、加工工程3乃至5は加工時間が約100分で電極低又は無消耗、又電極ジャンプと並進運動を併用し、そして各加工工程毎の加工送り長さが各記載値の中仕上げ加工(3)及び仕上げ加工(4)及び(5)でこの第5加工工程迄で被加工体の加工面は、鏡面状の光沢付け加工処理を可能とする乃至は実現するための面付け加工の処理工程であり、前記加工面は約10μmRmaxの面粗度に仕上げられているものである。そして、通常この第5加工工程迄の加工で上述加工面粗度の面付けと、目的とする形状及び寸法精度に仕上げておいて、次の光沢付け加工に移行するものである。又この加工工程迄は各放電パルスの放電エネルギ及び密度が大きい所から、混入粉末材等の加工面に対する付着残置現象等が生ずることなく加工堀り進みが進行するから、加工液交換等の面倒を避けるための荒加工(1)から粉末混入加工液を使用しても良いが、仕上げ加工(5)迄通常の油系放電加工液により加工するようにしても良い。
【0035】
そして、上記加工工程(5)の後加工液をケイ化クローム(CrSi)の約5μmφサイズの粉末を6g/l混入した油系放電加工液とし、加工電圧極性を極性切換器24により正極性に切換えると共に、電圧パルス供給回路5からの給電線をスイッチ9、9A、9Bにより低インダクタンス給電線10Aから低キャパシタンス給電線10Bに切換え、供給放電パルスのエネルギーをパルス幅約2〜5μs、電流振幅約2〜8Aとし、開閉スイッチ13の接点13A及び13Bを夫々開及び閉して波形成形回路11、12及び還流回路14を機能するようにして光沢付けの仕上げ加工(6)及び(7)を表4記載の条件で夫々15分ずつのタイマ加工(加工送り込みの設定がないので、加工処理時間の設定による加工)により加工面粗度約0.7μmRmaxの鏡面に仕上がり、加工面に約6〜8μm強の厚さの被覆変質層が形成されていた。
【0036】
表5は、前記ケイ化クローム(CrSi)粉末混入加工液を使用する放電加工により、上述被加工体加工面に形成された被覆変質層及び該形成部分近傍の被加工体母材の性状、特に硬度を、前述シリコン粉末混入加工の結果の表1と同様にして示したものて、被覆変質層と母材との接合部よりも更に母材内部側のNo.6及びNo.7の約12〜15μm前後の部分に母材自体よりも僅かに硬度が低下した部分があるが、弱点部分と言う程のものではなく、そして上記の厚く形成さた被覆変質層部分全体にわたって高い硬度を維持しており、放電加工金型や部品等として有望なものである。
【0037】
即ち、本発明のような放電加工面、更には斯種粉末混入加工液を使用する放電加工により加工面に形成される鏡面状の面は、変質層の存在により、機械加工面等に対し耐腐食性に勝るものであるが、塩水噴射試験によれば、粉末混入加工液を使用した加工面の赤錆は、綿棒による軽摩擦により除去されて元の光沢を取り戻したが、ケイ化クロム(CrSi)混入の上記試験例のものに格別優位性は認められなかった。
【0038】
しかし、電極銅20mmφによる小面積加工では、被加工体の加工面を或る一定の加工面粗さ、例えば約7μmRmaxに仕上げた後、粉末混入加工液により約10〜15分間の光沢付け加工処理をした時の電極先端の加工送り方向の消耗長さは、シリコン粉末の場合の約10μmに対し、上記実験例に従うものは約3μmであり、炭化チタンは(TiC)及び炭化クロム(Cr)粉末使用の場合の約4μmより少ない傾向にあり、炭化タングステン(WC)粉末使用の場合の約3μmと同等であった。そして、この電極消耗が少ないことより、寸法精度出し加工が正確に行なわれ、その後に加工面の面付け加工ができるから、良好な形状精度が得易いと言う利点もある。
【0039】
又、加工面粗度に付いてみると、未だ適合加工条件の探求不足の問題はあるが、ケイ化クロム(CrSi)は、シリコン(Si)及び炭化クロム(CrC)とほぼ同等であるが、炭化チタン(TiC)や炭化タングステン(WC)より優れている傾向がみられ、又表5の硬度の点に於ても表面の最高値をみると、通常の加工液:824HV、シリコン(Si):885HV、炭化チタン(TiC):914HV、炭化タングステン(WC):946HV、炭化クロム(Cr):982HV、そしてケイ化クロム(CrSi):1018HVと言う値も得られており有望なものである。
【0040】
【表5】
【0041】
加工液に混合するケイ化クローム(CrSi)のサイズとしては、加工工程の1放電パルス当りの放電エネルギーの大きさや、その波形特性等によって大小或る程度変更選定する必要があるようであるが、鏡面状の光沢付け加工を前述表5記載のような加工条件設定により行なう限りに於ては、被覆変質層が所望に形成されるようになる0.5μmφ以上で、加工状態に疑似短絡状等の障害を与えない15μmφ以下で、好ましくは1〜10μmφ、更に好ましくは1.5〜8μmφに選定するのが良く、又油系放電加工液に対する添加混合量は粉末粒子の大きさにも少し影響されるが被覆変質層が所望に形成されるようになる少なくとも3g/l以上とすることが必要で、他方最大添加量は加工状態に不良放電状態が現われ始める50g/l以下とすることが必要で、好ましくは4〜35g/l、更に好ましくは5〜25g/l添加混合し撹拌しながら加工をするものである。なお、上記添加混合する粉末の種類によっては、例えば、ケイ化タンタル(TaSi)とかケイ化タングステン(ウオルフラム、WSi)のような高比重粉末の場合には、少なくとも粉末の微細化か、上述よりも増量添加が必要なようである。
【0042】
表6は、加工電極として100mm×100mmの大加工面銅電極を用いて、同じくSKD61被加工体を加工した場合の詳細な加工条件及び加工データを示すもので、之以外の加工条件は、前述表4に係る加工条件と同様のものである。
【0043】
表6に於て、加工工程(1)及び(2)は約150分の荒加工、加工工程(3)、(4)及び(5)は中仕上げ乃至仕上げ加工で、累計約240分間の加工により加工面を約15μmRmaxの加工面粗度に仕上げ面付けし、加工工程(6)に於て前述表4の加工工程(5)及び(6)の場合と同様に、粉末混入加工液、加工電圧極性、波形成形回路等を切換選定すると共に加工条件を切換え、タイマ加工により約60分間光沢付け加工処理を行ない、加工面粗度約0.9μmRmaxの鏡面状とすることができ、前記加工面の被覆変質層は、前述表4の実験の場合とほぼ同様に形成されていて、その面性状等も前述表5とほぼ同様であった。
【0044】
【表6】
【0045】
なお、本発明者等は、粉末混入加工液を使用する放電加工の粉末粒子として、炭化物粉末、特に炭化チタン(TiC)の微粉末をワイヤ放電加工の際に使用することを提案しているが、該炭化チタン粉末の場合には、被覆変質層の最表層部の硬度は一段と高いものと、電気伝導度が高いためか、形成される被覆変質層はSi粉末の場合よりも一般的に薄く、表面層から内部母材にかけての硬度特性は、前述表1のSi粉末混入加工液の場合とほぼ同一の特性傾向にあり、即ち、位置No.4〜5の部分に、母材硬度の1/2前後の低硬度部分があって、用途等に制限があったのであるが、本発明は上記の如き欠点を克服したものである。
【0046】
又上述のような本発明の粉末混入放電加工用加工液は、加工用電極として軸方向に更新案内されるワイヤ電極を用いる所謂ワイヤ放電加工の場合にも適用可能であって、その場合には本発明者等が、前記粉末として炭化チタン(TiC)微粉末を添加混合した加工液及び該加工液を用いるワイヤ放電加工方法として先に提案した下記の特許出願
整理番号 P95−004
出願日 平成7年(1995年)2月2日
出願番号 平成7年特許願第51673号
発明の名称 粉末混入加工液を使用する放電加工方法及び粉末混入放電加工用加工液
の図1に示した本発明の図1と類似の放電加工用電源回路、及び図2、図3に示した回路を用いることが推奨されるものであるが、放電パルスの電流特性をパルス幅が2〜5μsで、振幅が2〜4Aの立ち上りの滑らかな放電を持続させるように制御すれば良く、上述MSiの粉末として、ケイ化クローム(CrSi)を用いた場合には、先に提案の炭化チタン(TiC)程に微細粒とする必要はなく、平均粒径約1μmφ前後の粉末混入加工液で、光沢付け加工が可能である。
【0047】
【発明の効果】
本発明の粉末混入放電加工用加工液は前述のような構成を有することにより、狭い加工面積から広い加工面積の加工迄、1μmRmax以下の微細加工面粗度で光沢のある鏡面状の被覆変質層を従来のシリコン粉末混入加工液を使用する放電加工の場合に比べて充分厚く、かつ該被覆変質層を直下母材部分に母材硬度低下等の弱点部分を生ぜしめない状態で形成させることができ、かつ前記の厚い被覆変質層が高い硬度で耐磨性を有する所から、各種の金型や部品等の放電加工成形仕上げの際の粉末混入放電加工用加工液として有用なものである。
【0048】
又、本発明の粉末混入加工液を使用する放電加工方法によれば、上記粉末混入放電加工用加工液を使用した放電加工に於て、被加工体の被加工面に目的とする高硬度の厚い、光沢ある鏡面状の被覆変質層を確実、かつ所望に形成させることができる。
【図面の簡単な説明】
【図1】本発明の放電加工方法を実施する主として仕上げ加工用の電源回路の実施例説明図。
【符号の説明】
1 型電極
3 被加工体
4 ワークスタンド
5 電圧パルス供給回路
6、8 第1及び第2の電圧パルス供給回路
6A、8A 直流電圧源
6B、8B 電子スイッチ素子
6C、8C 電流制限抵抗
6D、8D 逆電圧防止整流器
7 制御装置
8E 開閉スイッチ
9、9A、9B 切換スイッチ、及び開閉接点
10A 低インダクタンス給電線
10B 低キャパシタンス給電線
11 インダクタンス線輪(波形成形回路)
12 抵抗体
13、13A、13B 開閉スイッチ、及び開閉接点
14 還流回路
14A 整流器
14B 抵抗体
20 加工槽
21 粉末混入加工液
22 加工液循環供給装置
22A、23 撹拌装置
22B 磁気吸着体
24 極性切換器
[0001]
[Industrial application fields]
In the present invention, a machining electrode is opposed to a workpiece through a minute gap, and a discharge is performed by applying an intermittent voltage pulse with a working liquid interposed in the gap with a pause time between them. And an electric discharge machining method for machining by applying a machining feed relative to the opposite direction, and the electric discharge machining method includes: In the machining fluid of the above, facing each other through a minute gap, applying an intermittent voltage pulse between them to generate a discharge, along with the relative machining feed in the facing direction, if necessary, the facing direction Drilling or die-sinking electric discharge machining while giving a translational motion feed in a direction perpendicular to the axis, and wire electrodes stretched between a pair of spaced-apart positioning guides using wire electrodes as the machining electrodes. While sending updates to Discharge by applying an intermittent voltage pulse between the two in a state where a discharge gap is formed in the machining liquid in the machining tank with the work piece facing each other at a slight interval from the direction perpendicular to the axis. In particular, a hydrocarbon-based mineral oil is used as a machining fluid that is supplied to the discharge gap, for example, through a wire electric discharge machining that cuts by giving a relative machining feed having a desired contour shape in the perpendicular direction. A so-called oil-based electrical discharge machining fluid containing a conductive or semi-conductive solid powder mixed in a so-called oil-based electrical discharge machining fluid, and a powder mixture containing a new and useful powder as the solid powder The present invention relates to a machining fluid for electric discharge machining.
[0002]
[Prior art]
The powder-mixed electric discharge machining using the above-mentioned machining liquid mixed with a solid powder is basically well known, for example, Japanese Patent Publication Nos. 55-43, 849, 52-26, 357, and Japanese Patent Laid-Open No. 54-159, No. 798 and the like, and it is also possible to use the powder-mixed electric discharge machining as a surface layer treatment or a kind of surface coating on a processed surface of a workpiece, for example, Japanese Patent Publication No. 59-2,746, This is well known as described in Japanese Patent Laid-Open No. 2-83,119 and Japanese Patent Laid-Open No. 3-277,421.
[0003]
Then, the latter powder-mixed electric discharge machining is performed at a high speed in a small area to a large area in the field of the above-described drilling or die-sinking electric discharge machining, and a mirror finishing technique for machining a workpiece surface (JP-A-3-277,421). As well as in the field of wire electric discharge machining (for example, JP-A-6-206,121, 6-320,342). No. publication etc.).
[0004]
And according to the various prior arts described above, various types of powders for the powder-mixed electric discharge machining, for example, according to the above-mentioned JP-A-3-277,421, Silicon, germanium, aluminum or the like, or further, a metal such as tungsten or molybdenum or a compound such as tungsten carbide or zirconium boride, or various semiconductor powders, the average particle size distribution is 5 to 5 The amount added to the kerosene oil-based or water-soluble processing fluid is 10 g / l, and the concentration is 20 g / l. For example, according to JP-A-6-320,342 related to wire electric discharge machining Powder, silicon, carbon, iron, aluminum, copper, silicon carbide, titanium carbide, titanium nitride, silicon oxide powder, etc. 0.1~5Myuemufai, also those which are described as 0.5% to 5% such as the addition mixing amount.
[0005]
However, in any of the above documents, the specific experimental examples and results are mainly carbon (graphite, graphite, C) and silicon (silicon, Si) as powder types. There is a lack of specific verification for various powders, and there is an experimental example that can perform mirror finishing in the above powder. The latter silicon powder was added to and mixed with a hydrocarbon-based oil-based electric discharge machining liquid. In some cases, there is a real upper limit. The amount of silicon powder to be added and mixed is about 0.5 to 3% (about 5 to 30 g / l) in weight ratio and is almost common. In addition to the above, there was considerable variation such as 3 to 30 μm, 10 to 40 μm, and 20 to 40 μm.
[0006]
[Problems to be solved by the invention]
And according to the powder-mixed electric discharge machining using the silicon (Si) powder-mixed machining fluid, the processed surface of SUS304, 13Cr steel, or high-speed steel has no gaps due to a dense silicon thin film or metal alloy film. A highly wear-resistant mirror surface coating having high corrosion resistance and high-temperature oxidation resistance that can withstand the covered aqua regia is formed (Japanese Patent Laid-Open Nos. 62-24,916 and JP No. 2-83,119)), the surface properties or surface characteristics of the surface to be processed are not clear yet, and the development of usage is delayed.
[0007]
For example, a steel material for molds such as SKD61 is processed as a workpiece by electrical discharge machining using Si powder mixed machining fluid, and is processed in order from rough machining conditions to intermediate machining and intermediate finish machining as necessary. After surface imposition to a surface roughness of about 6 μm Rmax and desired shape accuracy, when the powder-mixed electric discharge machining process is performed, the coated surface has a thickness of about 5 to 6 μm and the surface has been finished to a surface roughness of about 0.5 μm Rmax. It is well known that a layer is formed. When the cross section of the processed surface of the workpiece is examined from the surface side for properties, particularly hardness (average of two degrees measurement), as shown in Table 1 below. The surface portion of the coated altered layer is significantly harder and decreases to a value close to the base material hardness as it approaches the base material, and after the base material hardness has once decreased significantly below the base material hardness, especially in the shallow part of the base material A kind of recovery Weak portion is formed from the coating at the thickness of the affected layer is thin in some applications, the mold surface to be polished in some cases, further is that there is a problem in terms of its strength and the like.
[0008]
[Table 1]
[0009]
In Table 1, no. 9 is the hardness of the workpiece base material. 4 is the weak point portion of the base material immediately below the affected layer.
[0010]
For this reason, the present inventors have conducted various experiments and researches on electric discharge machining using a powder-mixed machining fluid, and as a result, the work surface of the work piece has a dense, hard and wear-resistant mirror surface. Is thicker than in the case of electric discharge machining using the silicon powder-mixed machining fluid, and the above-mentioned no. The present invention is proposed by finding a powder-mixed electric discharge machining fluid that does not form a weakened portion having a greatly reduced hardness such as 4 and an electric discharge machining method using the powder-mixed machining fluid. .
[0011]
[Means for Solving the Problems]
The above-mentioned problems are as follows: (1) A processing electrode is opposed to a workpiece through a minute gap, and a pause is placed between the two with a machining fluid mixed with solid powder interposed in the gap. In an electrical discharge machining fluid that is processed by applying an electrical voltage pulse to generate an electrical discharge and relatively machining in the opposite direction, the machining fluid is composed of a hydrocarbon-based mineral oil, By making the mixed solid powder into a powder mixed electric discharge machining fluid comprising a silicide, (2) the above-mentioned problem is that when M is a metal element and Si is a silicon element, the silicide is MSi.2(3) Further, the above-described problem is that the metal element M constituting the silicide is a chromium element (Cr). By using the powder mixed electric discharge machining fluid as described in (1) or (2) above (4), the above-mentioned problem is that the size of the silicide powder is 0.5 to 15 μmφ, preferably 1 to 10 μmφ. More preferably, by using the powder mixed electric discharge machining fluid according to (1), (2), or (3) of 1.5 to 8 μmφ, (5) In the above (1), (2), (3) or (4), the amount of the compound added to the processing fluid is 3 to 50 g / l, preferably 4 to 35 g / l, more preferably 5 to 25 g / l. Achieved better by using the powder mixed EDM machining fluid It is intended to be.
[0012]
(6) Further, the above-mentioned problem is that a machining electrode is opposed to a workpiece through a minute gap, and a rest time is set between the two in a state where a machining liquid mixed with solid powder is interposed in the gap. In an electric discharge machining method in which electric discharge is generated by applying intermittent voltage pulses and machining is relatively applied in the facing direction, the machining liquid is obtained from a hydrocarbon-based mineral oil-based electric discharge machining liquid. And the mixed solid powder has an average particle diameter of 0.5 to 15 μmφ, preferably 1 to 10 μmφ, and M is a metal element Ti, V, Cr, Zr, Nb, Mn, Mo, Fe, Co, W, or MSi composed of Ni2This type of silicide powder is added to and mixed with the mineral at a rate of 3 to 50 g / l, preferably 4 to 35 g / l. Electrical machining conditions such as voltage pulse that finishes machining surface roughness and dimensional / shape accuracy as desired using electrical discharge machining fluid. Electrical discharge machining in two or more steps that can be switched sequentially such as rough machining, medium machining, and finishing machining. A powder-mixed working fluid comprising: a step of electric discharge machining using a powder-mixed processing fluid having a glossy surface finish on a processing surface whose electrical processing conditions are finished to the desired processing surface roughness and dimensional shape accuracy. By adopting the electric discharge machining method to be used, (7) the above-mentioned problem is that the electric discharge machining causes the rod-like / general die-shaped machining electrode to be processed in the machining liquid in the machining tank. Opposing each other through a minute gap, both Electric discharge is generated by applying intermittent voltage pulses to the surface, and drilling or die-sinking electric discharge machining is performed while providing a relative machining feed in the opposite direction and a translational movement feed in a direction perpendicular to the opposite direction as necessary. By adopting the electric discharge machining method using the powder-mixed machining fluid as described in (6) above, (8) and the above-mentioned problem is the voltage for finishing the workpiece to a desired machining surface roughness and dimensional / shape accuracy. The electrical machining conditions such as pulses are set to the condition that the machining electrode is low consumption, preferably no consumption, in the electric discharge machining stage of two or more steps that are sequentially switched such as rough machining, medium machining, and finishing machining. By using the electric discharge machining method using the powder-mixed machining liquid according to (6) or (7), (9) or the above-mentioned problem is that the workpiece has a desired machining surface roughness and Finish with dimensional and shape accuracy Gloss is applied to the machined surface where the voltage applied polarity is reversed in two or more electrical discharge machining stages where electrical machining conditions such as voltage pulses are switched sequentially, and the surface roughness and dimensional / shape accuracy are finished as desired. By adopting the electric discharge machining method using the powder mixed machining liquid according to (6), (7), or (8), wherein the voltage application polarity at the stage of powder mixed electric discharge machining for surface finishing is positive. (10) The above-described problem is that the electrical machining conditions at the stage of powder-mixed electrical discharge machining of the glossy surface finish on the workpiece processed surface finished with the desired processed surface roughness and dimensional / shape accuracy are The power supply line between the voltage pulse source and the discharge gap is selected as a low-capacitance power supply line, and a parallel circuit of an inductance ring and a resistor is inserted in series, and a discharge having an amplitude of 2 to 8 A with a pulse width of 2 to 5 μs. pulse Set the as supplied (6), (7), by a discharge machining method using a powder mixing process solution according to (8) or (9), is better achieved.
[0013]
(11) Further, the above-described problem is that the electric discharge machining uses a wire electrode as the machining electrode, while the wire electrode stretched between a pair of spaced positioning guides is updated and fed in the axial direction. In a state where a discharge gap is formed in the machining liquid in the machining tank with the workpieces facing each other at a slight interval from the direction substantially perpendicular to the axial direction, an intermittent voltage pulse is applied between the two to cause discharge. It is also achieved in the electric discharge machining method using the powder mixed machining liquid according to (6), which is wire electric discharge machining that is generated and cut by applying a relative machining feed of a desired contour shape in the perpendicular direction. Is.
[0014]
[Action]
The powder-mixed electrical discharge machining fluid of the present invention has the above-described configuration, so that it has a glossy mirror-like coated alteration layer with a fine surface roughness of 1 μmRmax or less from a narrow machining area to a wide machining area. Is sufficiently thick compared to the case of electrical discharge machining using a conventional silicon powder-mixed machining fluid, and the altered coating layer is formed in a state where no weak point portion such as a decrease in the hardness of the base material is generated in the base material portion immediately below. In addition, it is useful as a powder mixed electric discharge machining fluid for electric discharge machining finishing of various molds and parts because the above-mentioned thick coated alteration layer has high hardness, abrasion resistance and corrosion resistance.
[0015]
Moreover, according to the electric discharge machining method using the powder-mixed machining fluid of the present invention, in the electric discharge machining using the powder-mixed electric discharge machining fluid, a desired high hardness on the workpiece surface of the workpiece. A thick, glossy, mirror-like coated alteration layer can be reliably and desirably formed.
[0016]
【Example】
FIG. 1 is an explanatory diagram of an embodiment of a power supply circuit for machining mainly for finishing for drilling or die-sinking electric discharge machining when the electric discharge machining method of the present invention is carried out in the drilling or die-sinking electric discharge machining method. 1 is a mold electrode for drilling or engraving such as copper or graphite, 3 is a workpiece attached to a work stand 4 placed in a machining liquid in a machining tank 20, and 21 is the machining liquid. The processing tank 20 and the processing liquid are supplied so that a powder mixed processing liquid, which will be described later, is circulated and supplied between the processing tank 20 and the processing liquid circulation supply device 22 so that the mixed powder does not precipitate and accumulate and the mixed powder concentration does not change. The supply device 22 is provided with stirrers 23 and 22A, respectively, and the filter for separating and removing the processing waste in the processing liquid is an appropriate circulatory path, or the processing waste of the workpiece 3 and is usually a ferromagnetic material. Processing scrap Magnetic adsorber 22B of the magnetic adsorptive separation are those provided at an appropriate position in 択的.
[0017]
Thus, the electrode 1 is opposed to the workpiece 3 in the powder-mixed electric discharge machining liquid in the machining tank 20 through a minute gap, and an intermittent voltage pulse with a pause time therebetween is provided. Is applied to generate a discharge and a machining feed by relative normal servo control in the opposite direction is given, and if necessary, a relative feed different from the servo-controlled machining feed is applied to the electrode or workpiece during machining. Drilling or die-sinking electric discharge machining is performed while intermittent reciprocating motions such as close separation are intermittently performed and / or further, translational motion in a direction substantially perpendicular to the facing direction is applied.
[0018]
Reference numeral 5 denotes the intermittent voltage pulse supply circuit, which is an intermittent second voltage pulse supply circuit 6 that supplies a voltage pulse with a small current capacity at a voltage higher than the normal processing voltage pulse. The voltage pulse supply circuit 8 is provided in parallel, and the processing current increasing circuit used in the above-described processing under the so-called rough machining conditions, the middle machining step, etc. is not shown.
[0019]
Thus, the normal processing voltage pulse supply circuit 6 is variable from about 60 to 260 V. For example, the DC voltage source 6 A normally used as a substantially constant voltage of about 80 V and the current capacity are used. Conventionally the most conventional circuit comprising a series circuit of a plurality of electronic switching elements 6B such as MOS-FET transistors connected in parallel, a switchable current limiting resistor 6C such as about 100Ω, and a reverse voltage preventing rectifier 6D. An intermittent voltage pulse generation and supply circuit 6, which is preferably a low-capacitance power supply line such as a single wire or a fuel wire by the changeover switch 9 and its contacts 9A and 9B in the roughing process and the intermediate processing process. The low-inductance feed line 10A such as a coaxial cable is selectively switched from 10B to the discharge gap between the electrode 1 and the workpiece 3, and the intermittent voltage pulse is It generated desired control of the switching element 6B by pulse controller 7.
[0020]
That is, the control device portion of the switch device 6B of the control device 7 includes a constant ON time signal τON and an OFF time that are selected and set in advance, except when the switch device 6B is controlled to be changed by the discharge state detection signal of the discharge gap. When a voltage pulse is generated and supplied by repeating the signal τOFF alternately and regularly, and the discharge start delay until the discharge starts after the voltage pulse is applied to the discharge gap after the voltage pulse is applied to the discharge gap. Increases as a function of period, that is, starts measurement of the on-time signal from the start of discharge in the discharge gap after the start of voltage pulse application, so that the discharge duration of each discharge pulse is set to a constant value, and switches on when measurement is completed. There is one that controls the element 6B to be turned off and shifts to the off time. In the following description, the latter case will be mainly described. In addition, the present invention is not limited to this. Further, the contacts 9A and 9B of the changeover switch 9 for switching between the feeding lines 10A and 10B are provided only on one side of both the positive and negative feeding circuits, and the other side feeding line 10B is always used as one of the low inductance feeding lines 10A. It is also possible to have a connected configuration.
[0021]
The second voltage pulse supply circuit 8 is another voltage pulse supply circuit comprising a series circuit of a variable DC voltage source 8A, a switch element 8B, a current limiting resistor 8C, and a reverse voltage prevention rectifier 8D. The second voltage pulse supply circuit 8 is used as desired by the open / close switch 8E. For example, the DC voltage source 8A is about 80 to 260 V of the DC voltage source 6A having a constant normal output voltage. On the other hand, it is variable and has a voltage value of about 100 to 350 V, for example, about 150 V or 280 to 300 V, which is equal to or greater than that. The current limiting resistance 8C is a large setting for the resistance 6C, for example, about 1 kΩ, and the current capacity of the circuit 8 And the switch element 8B is applied by the pulse control device 7 prior to the voltage pulse application, for example, as the switch element 6B is turned on / off synchronously or cut off. Thus, the average machining voltage of the gap is controlled by, for example, controlling the voltage application to be cut off by detecting the start of discharge in the discharge gap and the on-off of the switch element 6B by turning off the switch element 8B. This is a secondary power supply that promotes the start of discharge by increasing the voltage and facilitates the servo control operation by detecting the gap voltage to maintain stable machining, and is not essential for the implementation of the present invention.
[0022]
The intermittent voltage pulse supply circuit 5 as described above is preferably a twisted wire or a single wire from the low-inductance feeder 10A by the changeover switches 9, 9A, 9B when finishing the glossy surface formation of the present invention. The low-capacitance power supply lines 10B and 10B are switched to be connected to the discharge gap. The present invention further includes an inductance for shaping the waveform of the supply discharge pulse discharge current from the voltage pulse supply circuit 5 in the connection discharge circuit. A parallel circuit of the wire ring 11 and the resistor 12 is inserted in series by opening the contact 13 </ b> A of the open / close switch 13. A reflux circuit 14 is connected in parallel to the output terminal of the voltage pulse supply circuit 5 by closing the contact 13B of the opening / closing switch 13. The reflux circuit 14 is composed of a series circuit of a rectifier 14A and a resistor 14B, and finishes the glossy surface. Therefore, the processing conditions of the discharge current pulse set in the voltage pulse supply circuit 5, for example, the ON time during which the current flows through the switches 6B and 8B for supplying the discharge current pulse is 1 to 5 μs, and the set current amplitude is The pulse current of 2 to 8 A is reduced by the resistor 12 and is smoothed by suppressing the rise of current by the inductance wire ring 11, and at that time, part of the energy of the discharge current is transferred to the wire ring 11 as electromagnetic energy. After the switches 6B and 8B are turned off and the supply of the discharge power is stopped, the discharge is stopped without stopping the discharge. The accumulated energy of the wire 11 is discharged to the discharge circuit through the machining gap and the reflux circuit 14 to extend the discharge pulse, and the discharge circuit, in response to the set discharge current pulse condition in the voltage pulse supply circuit 5, That is, the pulse width of the discharge current pulse that actually flows through the machining gap is as long as twice or more of the setting condition 1 to 5 μs, and the discharge current amplitude is as low as 1/2 or less of the setting condition 2 to 8 A except for the rising portion. The discharge current pulse is used (note that the processing conditions and the like are detailed in, for example, Japanese Patent Publication No. 60-3932).
[0023]
The finishing process for forming the glossy surface by using the powder-mixed processing liquid, which is the final finishing process described above, is performed by so-called positive processing using the workpiece 3 as the positive electrode and the electrode 1 as the negative electrode. In processing steps such as roughing, intermediate processing, and intermediate finishing prior to the processing step, the powder-mixed processing fluid in the final finishing processing step may be used as it is as the processing fluid, but drilling, die-sculpting, etc. In the machining using the mold electrode 1, the polarity switch 24 required for setting the machining conditions for low or no wear of the electrode is connected to the output of the voltage pulse supply circuit 5 in order to avoid wear deformation of the mold electrode 1. It is provided between the partial discharge gaps, and in the machining step such as rough machining, the polarity switch 24 is used to switch the reverse polarity with the electrode 1 as the positive electrode and the workpiece 3 as the negative electrode.
[0024]
The present invention has an important point in the kind of the powder mixed in the powder-mixed processing liquid 21, and the present invention uses a silicide powder as the powder, and The silicide powder is preferably MSi in which M is composed of the metal element Ti, V, Cr, Zr, Nb, Mn, Fe, Mo, Co, W, Ni, or the like.2So-called oil-based electric discharge machining of a hydrocarbon type at a rate of 3 to 50 g / l, preferably 4 to 35 g / l with an average particle size of 0.5 to 15 μmφ, preferably 1 to 10 μmφ. It is added to the liquid and mixed.
[0025]
Thus, the silicide is a compound of silicon and an element that is more electrically positive than that, and usually refers to a binary compound with a metal. M, which has properties and does not necessarily satisfy the valence, and is a compound with Li, Cu, Cr, Ni or the like3M which is a compound with Si type, Ca, Fe, Co, Ni or the like3Si2M which is a compound with a mold, Cr, Mo, W, Ni or the like2Si3MSi which is a type or a compound such as Co3There are types, but usually the above-mentioned MiSi2Mold and this MSi2MSi type and M to make the same metal and compound as the type2Si type is easily available. And these silicides are generally hard and brittle and can be easily crushed. Lithium and alkaline earth metal silicides interact with water and hydrolyze with dilute acid to give silane, In addition to generating hydrogen, etc., it has strong resistance to chemicals, and calcium silicide is converted to siloxane (Si by the action of hydrochloric acid.6O3H3) Is difficult to oxidize, and the low silicide has high heat resistance.
[0026]
For this reason, some metal silicide powders are used as heat- and oxidation-resistant ceramic materials, and MoSi has high oxidation resistance.2Is used as a high-temperature heater in the atmosphere, and the MSi has a relatively low melting point.2The type is not the length used for oxidation-resistant surface coating or the like by low-pressure plasma spraying or the like, but is also used for sintering or particle-dispersed composite materials.
[0027]
Among these silicides, as additive powder useful as a working fluid composition for powder-mixed electrical discharge machining of the present invention, MSi is relatively easily available.2Mold silicides, especially TiSi2, ZrSi2, NbSi2, TaSi2, CrSi2, MoSi2Or WSi2Table 2 below shows approximate values of some of the physical constants of the silicides.
[0028]
These silicides can be obtained by direct combination of the constituent elements, by reducing silicon dioxide with excess metal, or by reducing silicon dioxide and each metal oxide with carbon at high temperature. In addition, a product obtained by sieving coarse particles having a particle size of approximately 6 to 12 μmφ and fine particles having a particle size of approximately 2 to 5 μmφ is commercially available.
[0029]
[Table 2]
[0030]
Next, the present invention will be described with specific experimental examples.
Workpiece Material SKD61
Electrode Material Copper
Dimension 40mmφ
Machining fluid
Type Hydrocarbon oil (3rd class 4th class petroleum)
Viscosity 1.885 cSt / 40 ° C
Flash point 100 ° C
Total oxidation 0.01
Specific gravity 0.7629g / cm3
Processing liquid mixed powder
Particle size and impurity composition
[0031]
[Table 3]
[0032]
In Table 3 above, TiSi2, CrSi2, MoSi2And WSi2Each of about 5 μmφ powder was added and mixed at various ratios in the above-mentioned machining liquid and processed under various electric discharge machining conditions, and the above-mentioned CrSi which seems to be a combination consistent with the selected machining conditions2The best processing results are obtained when using the powder, then the WSi2Powder and MoSi2The order was powder. Table 4 below shows the CrSi as a powder.2These are various processing conditions and data other than those described above when processing using a combination of the electrode and the workpiece using powder.
[0033]
[Table 4]
[0034]
In Table 4, the voltage pulse source (6) corresponds to the voltage pulse supply circuit 6 shown in FIG. 1, and the voltage pulse source (8) corresponds to the voltage pulse supply circuit 8, respectively. Electrode reduction value is -0.4 (one side), electrode jumping and translational motion (orbit type) are used in combination. Processing time is 150 minutes. ) And (2), after the rough machining (2) is completed, the electrode is replaced with an electrode with an electrode reduction value of −0.15 (one side). Consuming, electrode jumping and translational movement are used together, and the machining feed length for each machining process is the intermediate machining (3) and finishing machining (4) and (5) up to the fifth machining process. Therefore, the processed surface of the work piece can be mirror-finished or can be subjected to imposition for realizing it. A processing step, the processing surface are those which are finished to a surface roughness of about 10MyumRmax. Then, normally, the processing up to the fifth processing step is finished with the above-described surface roughness, the target shape and dimensional accuracy, and the next glossing processing is started. Moreover, since the discharge energy and density of each discharge pulse is large until this machining step, the process of excavating proceeds without causing the adhesion residual phenomenon to the processed surface of the mixed powder material etc. In order to avoid the problem, the powder mixed machining fluid may be used from the rough machining (1), but the machining may be performed with a normal oil-based electrical discharge machining fluid until the finishing machining (5).
[0035]
And the post-processing liquid of the said process process (5) is silicate silicide (CrSi).2) And an oil-based electric discharge machining fluid mixed with 6 g / l of about 5 μmφ size powder, the polarity of the machining voltage is switched to the positive polarity by the polarity switch 24, and the power supply line from the voltage pulse supply circuit 5 is switched to the switches 9, 9 A, 9B switches the low-inductance power supply line 10A to the low-capacitance power supply line 10B, sets the energy of the supply discharge pulse to a pulse width of about 2 to 5 μs and a current amplitude of about 2 to 8 A, and opens and closes the contacts 13A and 13B of the switch 13 respectively. Then, the finishing operations (6) and (7) for glossing are performed for 15 minutes each under the conditions described in Table 4 so that the waveform shaping circuits 11 and 12 and the reflux circuit 14 function. Therefore, the finished surface has a mirror surface with a surface roughness of about 0.7 μm Rmax, and the processed surface has a thickness of about 6-8 μm. An overlying alteration layer was formed.
[0036]
Table 5 shows the silicified chrome (CrSi2) As a result of the above-mentioned silicon powder mixing processing, the properties, particularly hardness, of the coating altered layer formed on the processed surface of the workpiece and the workpiece base material in the vicinity of the formed portion by electric discharge machining using the powder mixed machining fluid No. 1 shown in the same manner as in Table 1 of No. 1 on the inner side of the base material further than the joint portion between the coated altered layer and the base material. 6 and no. 7 has a portion whose hardness is slightly lower than that of the base material itself, but is not so weak as to be a weak point portion, and is high over the entire coated altered layer portion formed as described above. The hardness is maintained and it is promising as an electric discharge machining die and parts.
[0037]
That is, the electric discharge machining surface as in the present invention, and the mirror-like surface formed on the machining surface by electric discharge machining using such a powder-mixed machining fluid are resistant to the machining surface due to the presence of the altered layer. Although it is superior to corrosivity, according to the salt water injection test, the red rust on the processed surface using the powder-mixed processing liquid was removed by light friction with a cotton swab to restore the original gloss, but chromium silicide (CrSi2) No particular superiority was observed in the above-mentioned test example of contamination.
[0038]
However, in small-area machining with electrode copper 20 mmφ, the processed surface of the workpiece is finished to a certain processed surface roughness, for example, about 7 μm Rmax, and then polished for about 10 to 15 minutes with the powder-mixed processing liquid. The wear length in the processing feed direction at the tip of the electrode is about 10 μm in the case of silicon powder, and about 3 μm in accordance with the above experimental example, and titanium carbide is (TiC) and chromium carbide (Cr2C3) It tends to be less than about 4 μm when using powder, and is equivalent to about 3 μm when using tungsten carbide (WC) powder. Further, since the electrode consumption is small, the dimensional accuracy can be accurately processed, and the processed surface can be subsequently applied, so that there is an advantage that good shape accuracy can be easily obtained.
[0039]
In addition, regarding the roughness of the machined surface, there is still a problem of insufficient search for suitable machining conditions, but chromium silicide (CrSi2) Is silicon (Si) and chromium carbide (CrC)3), But tend to be superior to titanium carbide (TiC) and tungsten carbide (WC). Also, the hardness of Table 5 shows the maximum value of the surface. Liquid: 824HV, silicon (Si): 885HV, titanium carbide (TiC): 914HV, tungsten carbide (WC): 946HV, chromium carbide (Cr2C3): 982HV, and chromium silicide (CrSi)2): A value of 1018 HV is also obtained, which is promising.
[0040]
[Table 5]
[0041]
Silicided chrome (CrSi) to be mixed with machining fluid2)), It is necessary to select a certain level of change depending on the magnitude of the discharge energy per discharge pulse in the machining process and its waveform characteristics. As long as it is performed by setting the processing conditions as described, it is preferably 0.5 μmφ or more at which the coated altered layer can be formed as desired, and 15 μmφ or less that does not give an obstacle such as a pseudo short circuit to the processing state. Is preferably selected from 1 to 10 μmφ, more preferably from 1.5 to 8 μmφ, and the amount of added mixture to the oil-based electric discharge machining fluid is slightly affected by the size of the powder particles, but the coated altered layer is formed as desired. It is necessary to be at least 3 g / l or more, and on the other hand, the maximum addition amount needs to be 50 g / l or less, in which a defective discharge state starts to appear in the processed state, preferably 4 to 35 g. / L, more preferably 5 to 25 g / l is added and mixed and processed while stirring. Depending on the type of powder to be added and mixed, for example, tantalum silicide (TaSi)2) Or tungsten silicide (Wolfram, WSi)2In the case of a high specific gravity powder such as), it seems that at least the powder must be refined or added in a larger amount than described above.
[0042]
Table 6 shows the detailed processing conditions and processing data when processing a SKD61 workpiece using a 100 mm × 100 mm large surface copper electrode as the processing electrode. The processing conditions according to Table 4 are the same.
[0043]
In Table 6, machining steps (1) and (2) are rough machining for about 150 minutes, and machining steps (3), (4) and (5) are intermediate finishing to finishing machining for a total of about 240 minutes. Then, the processed surface is finished and roughened to a processed surface roughness of about 15 μm Rmax. In the processing step (6), in the same manner as in the processing steps (5) and (6) of Table 4 above, The voltage polarity, waveform shaping circuit, etc. can be switched and selected, the processing conditions can be switched, the glossing processing can be performed for about 60 minutes by timer processing, and the processing surface can be made into a mirror surface with a roughness of about 0.9 μm Rmax. The deteriorated coating layer was formed in substantially the same manner as in the experiment of Table 4 above, and the surface properties and the like thereof were substantially the same as in Table 5 above.
[0044]
[Table 6]
[0045]
In addition, although the present inventors have proposed to use carbide powder, particularly fine powder of titanium carbide (TiC), in the case of wire electric discharge machining, as powder particles for electric discharge machining using a powder-mixed machining fluid. In the case of the titanium carbide powder, the hardness of the outermost layer portion of the coated altered layer is much higher and the electric conductivity is higher, or the coated altered layer formed is generally thinner than in the case of Si powder. The hardness characteristics from the surface layer to the inner base material tend to be almost the same as those in the case of the Si powder-mixed working fluid shown in Table 1 above. The 4-5 portion has a low-hardness portion of about 1/2 of the base material hardness, and there are limitations on applications, etc., but the present invention overcomes the above-mentioned drawbacks.
[0046]
Further, the above-described machining fluid for electric discharge machining of the present invention of the present invention can be applied also to so-called wire electric discharge machining using a wire electrode that is renewed and guided in the axial direction as a machining electrode. The following patent application previously proposed by the present inventors as a machining liquid in which titanium carbide (TiC) fine powder is added and mixed as the powder and a wire electric discharge machining method using the machining liquid.
Reference number P95-004
Application date February 2, 1995
Application No. 1995 Patent Application No. 51673
Title of Invention Electric discharge machining method using powder mixed working fluid and powder mixed electric discharge machining fluid
It is recommended to use the power supply circuit for electric discharge machining similar to FIG. 1 of the present invention shown in FIG. 1 and the circuits shown in FIG. 2 and FIG. May be controlled so as to maintain a smooth discharge with a rise of 2 to 4 μs and an amplitude of 2 to 4 A.2As a powder of chrome silicide (CrSi)2) Is not required to be as fine as the previously proposed titanium carbide (TiC), and it can be polished with a powder mixed working fluid having an average particle size of about 1 μmφ.
[0047]
【The invention's effect】
The powder-mixed electrical discharge machining fluid of the present invention has the above-described configuration, so that it has a glossy mirror-like coated alteration layer with a fine surface roughness of 1 μmRmax or less from a narrow machining area to a wide machining area. Is sufficiently thick compared to the case of electrical discharge machining using a conventional silicon powder-mixed machining fluid, and the altered coating layer is formed in a state where no weak point portion such as a decrease in the hardness of the base material is generated in the base material portion immediately below. In addition, since the thick coating-modified layer has high hardness and abrasion resistance, it is useful as a powder mixed electric discharge machining fluid for electric discharge machining forming finishing of various molds and parts.
[0048]
Moreover, according to the electric discharge machining method using the powder-mixed machining fluid of the present invention, in the electric discharge machining using the powder-mixed electric discharge machining fluid, a desired high hardness on the workpiece surface of the workpiece. A thick, glossy, mirror-like coated alteration layer can be reliably and desirably formed.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of an embodiment of a power supply circuit mainly for finishing, which performs an electric discharge machining method of the present invention.
[Explanation of symbols]
Type 1 electrode
3 Workpiece
4 Workstand
5 Voltage pulse supply circuit
6, 8 First and second voltage pulse supply circuits
6A, 8A DC voltage source
6B, 8B Electronic switch element
6C, 8C current limiting resistor
6D, 8D Reverse voltage prevention rectifier
7 Control device
8E Open / close switch
9, 9A, 9B selector switch and switching contact
10A low inductance feeder
10B low capacitance feeder
11 Inductance wire ring (waveform shaping circuit)
12 resistors
13, 13A, 13B Open / close switch and open / close contact
14 Reflux circuit
14A rectifier
14B resistor
20 Processing tank
21 Powder mixed processing fluid
22 Processing fluid circulation supply device
22A, 23 Stirrer
22B Magnetic adsorption body
24 polarity switcher

Claims (3)

被加工体に対し加工電極を微小間隙を介して相対向させ、前記間隙に固体粉末を混入した加工液を介在させた状態で両者間に休止時間を置いた間歇的な電圧パルスを印加して放電を発生させ、前記対向方向に相対的に加工送りを与えて加工する放電加工用加工液に於て、前記加工液が炭化水素系の鉱物油から成ると共に、前記混入固体粉末がケイ化物から成ることを特徴とする粉末混入放電加工用加工液。Applying an intermittent voltage pulse with a processing time in which the processing electrodes are opposed to each other through a minute gap and a working liquid mixed with solid powder is interposed in the gap, with a pause between them. In the machining fluid for electric discharge machining that generates electric discharge and performs machining by applying a machining feed in the opposite direction, the machining fluid is made of hydrocarbon mineral oil, and the mixed solid powder is made of silicide. A powder mixed electric discharge machining fluid characterized by comprising: Mを金属元素、Siを珪素元素とすると、前記ケイ化物がMSi型の化合物であることを特徴とする請求項1に記載の粉末混入放電加工用加工液。The powder mixed electric discharge machining fluid according to claim 1, wherein when M is a metal element and Si is a silicon element, the silicide is a MSi 2 type compound. 被加工体に対し加工電極を微小間隙を介して相対向させ、前記間隙に固体粉末を混入した加工液を介在させた状態で両者間に休止時間を置いた間歇的な電圧パルスを印加して放電を発生させ、前記対向方向に相対的に加工送りを与えて加工する放電加工方法に於て、
前記加工液が炭化水素の鉱物油系放電加工液から成ると共に、前記混入固体粉末が平均粒径が0.5〜15μmφの、Mが金属元素Ti、V、Cr、Zr、Nb、Mn、Mo、Fe、Co、W、又はNiから成るMSi型のケイ化物の粉末で、3〜50g/lの割合で前記鉱物油に添加混合されて成り、放電加工工程が、前記粉末混入加工液、又は粉末非混入油系放電加工液を使用する加工面粗度と寸法・形状精度を所望に仕上げる前記電圧パルス等の電気的加工条件が荒加工、中加工、及び仕上げ加工の如く順次に切換えられる2工程以上の放電加工の段階と、前記電気的加工条件が前記所望の加工面粗度及び寸法形状精度に仕上げられた加工面に対する光沢面仕上げの粉末混入加工液使用の放電加工の段階とから成ることを特徴とする粉末混入加工液を使用する放電加工方法。
Apply an intermittent voltage pulse with a pause between the workpiece electrodes facing each other through a minute gap with a machining fluid mixed with solid powder in the gap. In the electric discharge machining method of generating electric discharge and machining by giving a machining feed relatively in the facing direction,
Together with the working fluid consists of mineral oil-based EDM fluid of hydrocarbon, the mixed solid powder average particle size of 0.5 to 15 m phi, M is a metal element Ti, V, Cr, Zr, Nb, Mn MSi 2 type silicide powder consisting of Mo, Fe, Co, W, or Ni, added to and mixed with the mineral oil at a rate of 3 to 50 g / l. The electrical processing conditions such as the above-mentioned voltage pulse that finish the desired surface roughness and dimensional / shape accuracy using a liquid or non-powdered oil-based electrical discharge machining fluid are sequentially applied, such as rough machining, medium machining, and finishing machining. Stages of electric discharge machining with two or more processes to be switched, and stages of electric discharge machining using powder-mixed machining liquid for glossy surface finishing on the machining surface whose electrical machining conditions are finished to the desired machining surface roughness and dimensional shape accuracy It is characterized by consisting of An electrical discharge machining method that uses powder mixed machining fluid.
JP08197695A 1995-02-02 1995-03-14 Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid Expired - Fee Related JP3668519B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08197695A JP3668519B2 (en) 1995-03-14 1995-03-14 Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid
PCT/JP1996/000225 WO2004078400A1 (en) 1995-02-02 1996-02-02 Electric discharge machining method and electric discharge machining fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08197695A JP3668519B2 (en) 1995-03-14 1995-03-14 Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid

Publications (2)

Publication Number Publication Date
JPH08243843A JPH08243843A (en) 1996-09-24
JP3668519B2 true JP3668519B2 (en) 2005-07-06

Family

ID=13761527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08197695A Expired - Fee Related JP3668519B2 (en) 1995-02-02 1995-03-14 Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid

Country Status (1)

Country Link
JP (1) JP3668519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107891198A (en) * 2017-11-14 2018-04-10 深圳大学 The preparation method of metal parts hydrophobic surface

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042839A (en) * 1998-07-31 2000-02-15 Mitsubishi Electric Corp Drawing/extrusion die and surface treatment method for drawing/extrusion die
JP2000042838A (en) * 1998-07-31 2000-02-15 Mitsubishi Electric Corp Press working die and surface treatment method of press working die
WO2000006332A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die and surface treating method for die

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107891198A (en) * 2017-11-14 2018-04-10 深圳大学 The preparation method of metal parts hydrophobic surface
CN107891198B (en) * 2017-11-14 2019-07-09 深圳大学 The preparation method of metal parts hydrophobic surface

Also Published As

Publication number Publication date
JPH08243843A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JP3376174B2 (en) Surface treatment method and apparatus by electric discharge machining
KR0154178B1 (en) Method and apparatus for surface treatment by electrical discharge
Shunmugam et al. Improvement of wear resistance by EDM with tungsten carbide P/M electrode
JP3363284B2 (en) Electrode for electric discharge machining and metal surface treatment method by electric discharge
US5434380A (en) Surface layer forming apparatus using electric discharge machining
Tailor et al. Evolution of electrochemical finishing processes through cross innovations and modeling
WO2003046262A1 (en) Sequential electromachining and electropolishing of metals and the like using modulated electric fields
Lee et al. Some characteristics of electrical discharge machining of conductive ceramics
JP3668519B2 (en) Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid
JPWO2010016121A1 (en) Discharge surface treatment method
Uno et al. Surface modification of EDMed surface with powder mixed fluid
WO2001023640A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
Gugulothu et al. Electric discharge machining: A promising choice for surface modification of metallic implants
Jahan et al. Nanofinishing of hard materials using micro-electrodischarge machining
Amorim et al. Performance and surface integrity of wire electrical discharge machining of thin Ti6Al4V plate using coated and uncoated wires
JP3798100B2 (en) Discharge surface treatment method and treatment apparatus
JP2001138141A (en) Method for surface coating treatment using submerged discharge and consumable electrode used therefor
WO2001051240A1 (en) Power supply for discharge surface treatment and discharge surface treatment method
JP3799962B2 (en) Surface treatment method for improving chipping resistance
JPH0283119A (en) Formation of surface layer by discharge machining
WO2000050194A1 (en) Method and device for discharge surface treatment
JPH11320272A (en) Discharged surface treatment method and object to be treated by the method
JP4621112B2 (en) Roll for electric discharge coating, consumable electrode for surface treatment of roll for rolling, electric discharge coating apparatus, and surface treatment method for roll for rolling
TW469203B (en) Method for treating a surface with electric discharge and apparatus therefor
Shu et al. Electrical discharge abrasive drilling of hard materials using a metal matrix composite electrode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees