JPH0749170B2 - Method of forming surface layer by electrical discharge machining - Google Patents
Method of forming surface layer by electrical discharge machiningInfo
- Publication number
- JPH0749170B2 JPH0749170B2 JP1015813A JP1581389A JPH0749170B2 JP H0749170 B2 JPH0749170 B2 JP H0749170B2 JP 1015813 A JP1015813 A JP 1015813A JP 1581389 A JP1581389 A JP 1581389A JP H0749170 B2 JPH0749170 B2 JP H0749170B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- silicon
- surface layer
- machining
- discharge machining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は放電加工による表面層の形成方法に関し、特
に、導電性を有する材料の表面に放電分散を促すことに
よる微細加工面の実現、もしくは耐蝕、耐摩耗性の強い
被覆を形成する方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for forming a surface layer by electric discharge machining, and in particular, realizes a finely machined surface by promoting electric discharge dispersion on the surface of a material having conductivity, or The present invention relates to a method of forming a coating having strong corrosion resistance and abrasion resistance.
[従来の技術] 特開昭62−24916号公報にて公知の通り、本発明者等
は、既にシリコン電極等の半金属と称される金属の電極
を用いた放電加工によって、王水にも侵されず、また数
10%の永久変形を与えても剥離や割れなどの損傷の起り
にくい強靭な表面層を形成する方法を提案している。こ
の従来方法は、通常の放電加工機を使用して、電極材料
にシリコン電極等の半金属を用い、被加工材料としてSU
S304(18Cr−8Niステンレス鋼)や13Cr鋼、もしくは高
速度鋼に放電加工を行なうものであって、数10分ないし
数時間の加工によってSUS304ないし13Cr鋼や、高速度鋼
の表面に強い耐蝕性の加工面を得るものである。[Prior Art] As is known in Japanese Patent Laid-Open No. 62-24916, the present inventors have found that even in aqua regia by electric discharge machining using a metal electrode called a semimetal such as a silicon electrode. Not invaded, number again
We propose a method to form a tough surface layer that is resistant to damage such as peeling and cracking even when subjected to 10% permanent deformation. In this conventional method, a normal electric discharge machine is used, a semi-metal such as a silicon electrode is used as an electrode material, and SU is used as a work material.
S304 (18Cr-8Ni stainless steel), 13Cr steel, or high-speed steel is subjected to electrical discharge machining, and it has strong corrosion resistance on the surface of SUS304 or 13Cr steel or high-speed steel by machining for several tens of minutes to several hours. To obtain the processed surface.
この場合の電極構造の一例を第13図に示し説明すると、
(1)は例えばシリコン板で、銅丸棒(2)に通電性接
着剤(3)によって貼りつけた構造を示す。勿論、電極
はシリコンの素材を機械加工や放電加工することによっ
ても形成することができる。このようなものにおいて、
放電加工により金型などを加工し、その表面に耐蝕、耐
摩耗性の表面処理を上記の方法で行なうには、先ずはじ
めに、低電極消耗特性の銅またはグラファイト電極を用
いて形状の荒加工を行い、その後、シリコン電極による
加工を行なうことになる。2工程で加工する理由はシリ
コン材料が高価格であり、また放電加工における電極消
耗が著しく大きいため、加工除去量の大きい形状加工に
は使用が困難であることによる(加工量の10倍程度は消
耗する)。An example of the electrode structure in this case is shown in FIG. 13 and explained,
(1) is a silicon plate, for example, and shows a structure in which it is attached to a copper round bar (2) with a conductive adhesive (3). Of course, the electrodes can also be formed by machining or electric discharge machining a silicon material. In something like this,
In order to process the mold etc. by electric discharge machining and to perform the surface treatment of the corrosion resistance and wear resistance on the surface by the above method, first, rough machining the shape using copper or graphite electrode with low electrode consumption characteristics After that, processing with a silicon electrode is performed. The reason for machining in two steps is that the silicon material is expensive and the electrode consumption during electrical discharge machining is extremely large, so it is difficult to use for shape machining with a large amount of machining removal (about 10 times the machining amount exhaust).
[発明が解決しようとする課題] すなわち、現状では形状加工用の銅やグラファイト電極
の他に、シリコン電極を必要とすると云う二度の工程と
なる。換言すれば、形状加工用電極(銅,グラファイ
ト)の他に、シリコン電極を作る必要があり、また電極
取換えが必要となる。[Problems to be Solved by the Invention] That is, it is a two-step process that requires a silicon electrode in addition to a copper or graphite electrode for shape processing at present. In other words, in addition to the shape-processing electrodes (copper, graphite), it is necessary to make a silicon electrode, and the electrodes need to be replaced.
従って、形状加工用の銅やグラファイト電極のみで、被
加工物の表面にシリコン電極等を用いたのと同様な表面
層を形成できるようにすることが可能となれば、工業
上、大きな意義がある。Therefore, if it is possible to form a surface layer similar to that using a silicon electrode or the like on the surface of a workpiece only with a copper or graphite electrode for shape processing, it will have great industrial significance. is there.
本発明は上記のような課題を解決するためになされたも
ので、表面処理を行おうとするシリコンの粉体を介在さ
せることにより、形状加工用の銅,グラファイトなど通
常放電加工に用いられる電極によつても、被加工材料表
面を微細化または被加工材料表面に被覆膜を形成するこ
とのできる放電加工による表面層の形成方法を提供しよ
うとするものである。The present invention has been made to solve the above problems, and by interposing a silicon powder to be surface-treated, copper or graphite for shape processing can be applied to an electrode normally used for electric discharge machining. Another object of the present invention is to provide a method for forming a surface layer by electric discharge machining, which can miniaturize the surface of a material to be processed or form a coating film on the surface of the material to be processed.
また、本発明の別の発明は、上記目的に加えて、表面処
理を行おうとするシリコンの粉体が固着して被加工材料
表面が平坦度を損なうのを防止できる放電加工による表
面層の形成方法を提供しようとするものである。Further, in addition to the above object, another invention of the present invention is to form a surface layer by electric discharge machining which can prevent silicon powder to be surface-treated from sticking and impairing the flatness of the surface of the material to be processed. It is intended to provide a method.
[課題を解決するための手段] 本発明に係る放電加工による表面層の形成方法は、電極
と被加工物により形成される極間に、上記被加工物の表
面層を形成するシリコンを、粉末状態にして介在させた
後、放電を行なうことによって、被加工物の表面層を形
成するようにしたものである。[Means for Solving the Problems] A method for forming a surface layer by electric discharge machining according to the present invention is a method in which silicon for forming a surface layer of the workpiece is powdered between electrodes and an electrode formed by the workpiece. In this state, the surface layer of the work is formed by discharging after having been interposed.
また、本発明の別の発明に係る放電加工による表面層の
形成方法は、上記放電加工中に電極と被加工物間に揺動
運動を付与するようにしたものである。A method of forming a surface layer by electric discharge machining according to another invention of the present invention is such that a swinging motion is applied between the electrode and the workpiece during the electric discharge machining.
[作用] 本発明においては、極間に介在させた被加工物の表面層
を形成しようとするシリコンの粉末が、放電加工中に蒸
発,溶解し、その状態で被加工面に高速度で衝突して強
固な表面層を形成する。[Operation] In the present invention, the silicon powder, which is interposed between the electrodes and forms the surface layer of the workpiece, evaporates and melts during electric discharge machining, and collides with the workpiece surface at a high speed in that state. To form a strong surface layer.
また、本発明の別の発明においては、放電加工中に、電
極と被加工物間に揺動運動を付与するようにしているの
で、表面処理を行おうとするシリコンの粉体が固着する
のを防止でき、これによって加工材料表面が平坦度を損
なうのを防止できる。Further, in another invention of the present invention, since the oscillating motion is applied between the electrode and the workpiece during the electric discharge machining, the silicon powder to be subjected to the surface treatment is fixed. This can prevent the surface of the processed material from impairing the flatness.
[発明の実施例] 以下、本発明方法の一実施例を図に基づき説明するが、
先ず、本発明の原理から説明する。[Embodiment of the Invention] An embodiment of the method of the present invention will be described below with reference to the drawings.
First, the principle of the present invention will be described.
第2図は通常の放電状態を示し、放電発生にはじまり、
溶融金属の飛散,放電痕,加工粉の生成,絶縁回復まで
を示す。又、第1図は極間にシリコンの粉体がある場合
を示す。Figure 2 shows a normal discharge state, starting with the occurrence of discharge,
It shows processes such as molten metal scattering, electric discharge marks, generation of machining powder, and insulation recovery. Further, FIG. 1 shows the case where silicon powder is present between the electrodes.
放電の発生はシリコンの粉体が介在している点から発生
し易い。これは、見かけ上、極間が狭くなったのと同様
の作用があるためである。放電発生によりシリコンの粉
体は溶融して電極面に高温高圧状態にて衝突し圧着され
る。相手の電極材質(例えば銅,グラファイト)も同様
に作用するが、実施例では極間にシリコン粉末を介在さ
せているので、極間にはこのシリコン粉末の方が多く、
加工点への距離が対向電極よりも近いので、殆んどシリ
コンが圧着することになる。The discharge is likely to occur due to the presence of the silicon powder. This is because there is apparently the same effect as that between the gaps is narrowed. The silicon powder is melted by the occurrence of electric discharge and collides against the electrode surface under high temperature and high pressure conditions and is pressure bonded. The mating electrode material (for example, copper or graphite) also acts in the same manner, but since silicon powder is interposed between the electrodes in the embodiment, this silicon powder is more in between the electrodes,
Since the distance to the processing point is shorter than that of the counter electrode, most of the silicon will be pressure bonded.
以上が本発明の原理説明であるが、これを第3図の概略
構成図に基づき更に詳述する。第3図(a)は非加工
時、第3図(b)は加工時を示し、図において、(4)
は電極、(5)は加工槽(6)内に設置された被加工物
で、被加工物(5)と電極(4)とにより極間(7)を
形成している。(8)は加工槽(6)内の加工液、
(9)は加工液(8)中に混入されたシリコン粉末、
(10)は極間(7)へ加工エネルギを供給する電源装
置、(11)は空気ポンプで、加工槽(6)内に空気を送
り込むことにより加工液(8)に撹拌作用を与えるもの
である。(12)は電極(4)を被加工物(5)に対して
昇降動作させる油圧シリンダ装置、(13)はそのピスト
ンロッド、(14)は油圧シリンダ装置(12)の制御を司
どるサーボ装置である。本発明方法は上記実施例装置に
より成されるもので、加工液(8)の中にシリコン粉末
(9)(平均粒径20〜40μm,シリコン粉末と加工液の混
合割合20gr/l)を混合して加工槽(6)に満し、空気ポ
ンプ(11)から加工槽(6)に空気を送り込み、撹拌作
用を与えシリコン粉末の沈澱を防いだ。また、図のよう
に電極(4)を自動的に間歇的に上下して放電によって
生成される加工液分解物や加工粉が、極間(7)に蓄積
せずに拡散できるようにした。なお、空気ポンプ(11)
の代り、加工液循環ポンプを使用してもよい。また、電
極材料は銅、およびグラファイトから構成した。The above is a description of the principle of the present invention, which will be described in more detail based on the schematic configuration diagram of FIG. FIG. 3 (a) shows a non-processed state and FIG. 3 (b) shows a processed state.
Is an electrode, and (5) is a work piece installed in the processing tank (6), and a gap (7) is formed by the work piece (5) and the electrode (4). (8) is the working fluid in the working tank (6),
(9) is silicon powder mixed in the working fluid (8),
(10) is a power supply device that supplies machining energy to the gap (7), and (11) is an air pump, which supplies stirring fluid to the machining fluid (8) by sending air into the machining tank (6). is there. (12) is a hydraulic cylinder device that moves the electrode (4) up and down with respect to the workpiece (5), (13) is its piston rod, and (14) is a servo device that controls the hydraulic cylinder device (12). Is. The method of the present invention is carried out by the apparatus of the above-mentioned embodiment, wherein silicon powder (9) (average particle size 20 to 40 μm, mixing ratio of silicon powder and processing liquid of 20 gr / l) is mixed in the processing liquid (8). Then, the processing tank (6) was filled, and air was sent from the air pump (11) to the processing tank (6) to give a stirring action to prevent the precipitation of the silicon powder. Further, as shown in the figure, the electrode (4) is automatically and intermittently moved up and down so that the processing liquid decomposition product and the processing powder generated by the discharge can diffuse without accumulating in the electrode gap (7). The air pump (11)
Instead of the above, a machining fluid circulation pump may be used. The electrode material was composed of copper and graphite.
第4図及び第5図は本発明方法の効果を説明するための
金属組織を示す顕微鏡写真図であり、この中第4図は電
極(4)の材料として銅、被加工物としてSKH−51を使
用し、電気条件として電流ピーク値10A,パルス幅16μs,
休止幅16μsを設定したものである。第4図(a)は加
工液として灯油を使用したもので、その面粗度は9μmR
maxであった。これに対し、第4図(b)は加工液とし
て灯油を使用し、この灯油1の中にシリコン粉末を20
g(但し、平均粒径20〜40μφ)を介在させたもので、
その面粗度は4μmRmaxである。FIGS. 4 and 5 are micrographs showing the metal structure for explaining the effect of the method of the present invention, in which FIG. 4 shows copper as the material of the electrode (4) and SKH-51 as the work piece. Current peak value 10A, pulse width 16μs,
The pause width is set to 16 μs. Fig. 4 (a) uses kerosene as the working fluid, and its surface roughness is 9μmR.
It was max. On the other hand, in Fig. 4 (b), kerosene is used as the working fluid, and 20 powder of silicon powder is used in the kerosene 1.
g (however, average particle size 20-40μφ) is interposed,
The surface roughness is 4 μm Rmax.
又、第5図は電極(4)の材料としてシリコン、被加工
物としてSKH−51を使用し、電気条件として電流ピーク
値1A,パルス幅2μs,休止幅2μsを設定したものであ
る。第5図(a)は加工液として灯油を、又、第5図
(b)は加工液として灯油を使用し、この灯油の中にシ
リコン粉末を介在させたものである。Further, FIG. 5 shows that silicon is used as the material of the electrode (4), SKH-51 is used as the workpiece, and the electric peak value is 1 A, the pulse width is 2 μs, and the rest width is 2 μs. FIG. 5 (a) shows kerosene as a working fluid, and FIG. 5 (b) shows kerosene as a working fluid, in which silicon powder is interposed.
なお、第4図、第5図に示す結果は、上記の条件以外
に、極間距離を拡げるために、主電源電圧80Vの他に、
0〜220Vの補助電源を使用した。In addition to the above conditions, the results shown in FIG. 4 and FIG.
An auxiliary power supply of 0-220V was used.
第6図はこの時に使用した高電圧重畳回路を示し、図
中、R1,R2は抵抗器、Dはダイオード、TR1,TR2はトラン
ジスタ、(10a)は主電源、(10b)は補助電源を示して
いる。このような高電圧重畳回路により補助電源の電圧
を変化させて得られる加工の安定度の実験結果を第7図
に示す。FIG. 6 shows the high voltage superposition circuit used at this time. In the figure, R 1 and R 2 are resistors, D is a diode, TR 1 and TR 2 are transistors, (10a) is the main power supply, and (10b) is Auxiliary power supply is shown. FIG. 7 shows the experimental result of the stability of processing obtained by changing the voltage of the auxiliary power supply by such a high voltage superposition circuit.
上記実施例によって得られた事をまとめると、次の事項
となる。The following is a summary of the results obtained by the above-mentioned examples.
電圧の高い程安定であることを示している。すなわち、
シリコン粉末が極間に介在した場合、同一電圧でも放電
は大きな極間距離で発生し易くなるが、それでもなお、
高い電圧を加えた方が加工は安定であることが判る。The higher the voltage is, the more stable it is. That is,
When silicon powder is present between the electrodes, discharge tends to occur at a large distance between the electrodes even at the same voltage, but still,
It can be seen that the processing is more stable when a high voltage is applied.
この実験で得られた試験片を王水に50分浸漬したが、浸
蝕を受けなかった。第4図,第5図の顕微鏡写真図はこ
の時の試験片表面組織の状態を示している。第4図
(a)に見られる如く、銅電極のみではシリコン被覆膜
は生成せず、又、仕上げ面粗さもあらい。シリコン粉末
を介在させると、平滑なシリコン皮覆膜の生成が見られ
る(第4図(b))。第5図からは溶融シリコンが衝撃
的に加工面に衝突している様子が観察される。また、極
間にシリコン粉体を介在させると、仕上面粗さが精細に
なる(第5図(b)参照)。The test piece obtained in this experiment was immersed in aqua regia for 50 minutes, but was not corroded. The micrographs of FIGS. 4 and 5 show the state of the surface structure of the test piece at this time. As shown in FIG. 4 (a), the silicon coating film is not formed only by the copper electrode, and the finished surface roughness is rough. The formation of a smooth silicon covering film is observed when silicon powder is interposed (Fig. 4 (b)). From FIG. 5, it can be observed that the molten silicon is impacted and collides with the processed surface. Further, when silicon powder is interposed between the electrodes, the finished surface roughness becomes fine (see FIG. 5 (b)).
実験した加工例によれば、シリコン電極を用いた場合に
加工液は通常の鉱物性油(灯油)を用いて、30分程度を
要するものが、3〜5分程度で達成される。According to the processing example that was tested, when a silicon electrode was used, the processing liquid used was ordinary mineral oil (kerosene), which required about 30 minutes, but was achieved in about 3 to 5 minutes.
ところで、放電加工の加工速度を仕上面粗さの精細な条
件で電極を電気的に分割するとともに、電源から各電極
への接続を、それぞれ抵抗を通して加工する多分割加工
回路がある。By the way, there is a multi-division machining circuit that electrically divides an electrode under the condition that the machining speed of the electric discharge machining is a fine finish surface roughness and that the connection from the power source to each electrode is machined through each resistance.
第8図はこの多分割加工回路を用いた本発明方法の他の
実施例を示すもので、図中、(15)は抵抗器群、(16)
は発振器、(17)は増幅器、(18)はトランジスタスイ
ッチング回路、(4a),(4b)…(4n)は分割電極であ
る。FIG. 8 shows another embodiment of the method of the present invention using this multi-division processing circuit. In the figure, (15) is a resistor group, (16)
Is an oscillator, (17) is an amplifier, (18) is a transistor switching circuit, and (4a), (4b) ... (4n) are split electrodes.
このように分割する代りに電気抵抗をもっている材料を
電極とすると一体の電極でありながら、放電が発生する
たびに分割されて同時に多数の放電が発生することを、
本発明者等は既に明らかにし、その代表的電極材料がシ
リコン電極であることを発表している。この実施例にお
いても、多分割加工回路の各極間にシリコン粉末を介在
させることにより、前述した実施例同様の作用効果を奏
する。If an electrode is made of a material having an electric resistance instead of being divided in this way, it is an integral electrode, but it is divided every time a discharge occurs and a large number of discharges are generated at the same time.
The present inventors have already clarified and announced that a typical electrode material thereof is a silicon electrode. Also in this embodiment, by interposing silicon powder between the respective poles of the multi-divided processing circuit, the same effect as the above-mentioned embodiment can be obtained.
また、シリコン粉末を極間に介在させて放電加工を行な
う場合においても、シリコンで形成した電極や、グラフ
ァイト表面をシリコンと反応させSiCの表面とする場合
や、シリコン粉末と亜鉛との混合体,シリコン粉末と銅
との混合体,シリコンと水ガラスの混合体,シリコンと
亜鉛と水ガラスとの混合体などのように、抵抗性をもた
せた電極で、放電加工を行なうと、同一の電気条件で
も、仕上面あらさが細かくなると言う結果を得ている。Also, when performing electric discharge machining with silicon powder interposed between electrodes, an electrode made of silicon, a graphite surface reacting with silicon to form a SiC surface, a mixture of silicon powder and zinc, When electrical discharge machining is performed using an electrode with resistance such as a mixture of silicon powder and copper, a mixture of silicon and water glass, a mixture of silicon, zinc and water glass, the same electrical conditions are obtained. However, the result is that the finished surface becomes finer.
さて、本発明は上述したように、電極と被加工物により
形成される極間に、上記被加工物の表面層を形成するシ
リコンを、粉末状態にして介在させた後、放電を行なう
ことによって、被加工物の表面層を形成するようにした
ものであるが、このようなものにおいても、表面処理を
行おうとするシリコンの粉体が互いに固着するのを防ぐ
ことについては必ずしも万全ではない。As described above, according to the present invention, the silicon forming the surface layer of the workpiece is interposed between the electrodes and the electrode formed by the workpiece in the powder state, and then the discharge is performed. Although the surface layer of the workpiece is formed, even in such a case, it is not always perfect to prevent the silicon powders to be surface-treated from sticking to each other.
第8図乃至第12図は表面処理を行おうとするシリコンの
粉体が互いに固着するのを防止できるよう、揺動運動機
構を付加した本発明の別の発明を示すものである。これ
を更に詳述すると、(20)は被加工物(図示せず)を載
置するテーブル、(4)は被加工物と対向する電極、
(4A)〜(4D)は交換用電極、(12)は電極(4)をサ
ーボ制御する油圧シリンダ装置、(21)は油圧シリンダ
装置(12)のサーボ制御を司どる数値制御装置、(22)
はテーブル(20)をX軸方向へ駆動するX軸モータ、
(23)はテーブル(20)をY軸方向へ駆動するY軸モー
タ、(24)は電極交換装置であって、前述したように荒
加工、中加工、仕上げ加工の段階にわけて電極(4A)〜
(4D)を自動的に交換する機能を有する。なお、(10)
は電極(4)と被加工物間に加工エネルギを供給する加
工電源、(13)は油圧シリンダ装置(12)のピストンロ
ッドであり、先端に電極(4)が装着されている。FIGS. 8 to 12 show another invention of the present invention in which a swinging motion mechanism is added so as to prevent the silicon powders to be surface-treated from sticking to each other. More specifically, (20) is a table on which a workpiece (not shown) is placed, (4) is an electrode facing the workpiece,
(4A) to (4D) are replacement electrodes, (12) is a hydraulic cylinder device that servo-controls the electrode (4), (21) is a numerical control device that controls servo control of the hydraulic cylinder device (12), and (22) )
Is an X-axis motor that drives the table (20) in the X-axis direction,
(23) is a Y-axis motor for driving the table (20) in the Y-axis direction, and (24) is an electrode exchanging device. As described above, the electrode (4A) is divided into the stages of rough machining, intermediate machining and finishing machining. ) ~
(4D) has a function to automatically replace. In addition, (10)
Is a machining power supply that supplies machining energy between the electrode (4) and the workpiece, and (13) is a piston rod of the hydraulic cylinder device (12), and the electrode (4) is attached to the tip.
このようなものにおいて、テーブル(20)上には加工液
を収納する図示しない加工層が載置され、またX軸モー
タ(22)、Y軸モータ(23)のそれぞれの方向における
動き、電極交換装置(24)の動作、加工電源(10)の電
気条件は、油圧シリンダ装置(12)と同様、数値制御装
置(21)により制御されるようになっている。そして、
電極(4)と被加工物間には、第10図に示すようなパタ
ーンの揺動運動が付与されるようになっている。In such a structure, a machining layer (not shown) for accommodating the machining fluid is placed on the table (20), and movements of the X-axis motor (22) and the Y-axis motor (23) in respective directions and electrode replacement. The operation of the device (24) and the electrical conditions of the machining power source (10) are controlled by the numerical control device (21) as in the hydraulic cylinder device (12). And
An oscillating motion having a pattern as shown in FIG. 10 is applied between the electrode (4) and the workpiece.
第11図は揺動運動機構を付加した上記実施例の効果を説
明するために、次の加工条件により行った実験例を示す
ものである。FIG. 11 shows an experimental example conducted under the following processing conditions in order to explain the effect of the above-mentioned embodiment in which the swinging motion mechanism is added.
加工条件は 電極:銅 被加工物:高速度鋼(SKH−51) 加工液:灯油にシリコン粉末を20g/l混入 電気条件:電流ピーク値Ip=1A パルス幅τp=2μs 休止幅τs=2μs 電極極性:電極(−) 即ち、第11図において、第1図(a)は加工液のみで加
工した場合の面粗さを、第11図(b)は加工液中にシリ
コン粉末を混入して電極(4)と被加工物間に揺動運動
を付与しない場合の面粗さを、第11図(c)は加工液中
にシリコン粉末を混入して電極(4)と被加工物間に揺
動運動(揺動速度96mm/min)を付与した場合の面粗さ
を、それぞれ示している。Processing conditions are: Electrode: Copper Workpiece: High speed steel (SKH-51) Working fluid: 20g / l of silicon powder mixed in kerosene Electrical conditions: Current peak value Ip = 1A Pulse width τp = 2μs Rest width τs = 2μs Electrode Polarity: Electrode (-) That is, in FIG. 11, FIG. 1 (a) shows the surface roughness in the case of processing only with the working liquid, and FIG. 11 (b) shows the silicon powder mixed in the working liquid. FIG. 11 (c) shows the surface roughness when no oscillating motion is applied between the electrode (4) and the work piece. The surface roughness when an oscillating motion (oscillating speed 96 mm / min) is given is shown.
また、第12図は揺動運動機構を付加した上記実施例の効
果を説明するための金属組織を示す顕微鏡写真図であ
り、この中第12図(a)は加工液中にシリコン粉末を混
入して電極(4)と被加工物間に揺動運動を付与しない
場合における金属組織の状態を、第12図(b)は加工液
中にシリコン粉末を混入して電極(4)と被加工物間に
揺動運動を付与した場合における金属組織の状態を、そ
れぞれ示している。第12図(a)ではシリコンの固着し
た様子が見られ、仕上面粗さもやや荒いことがわかる。
電極(4)と被加工物間に揺動運動を付与した第12図
(b)ではなだらかにみえる。この理由は、電極(4)
と被加工物表面との凹凸の相は位置が変わるために、平
滑化するからと考えられる。Further, FIG. 12 is a micrograph showing a metal structure for explaining the effect of the above-mentioned embodiment to which a swinging motion mechanism is added. Among them, FIG. 12 (a) shows that silicon powder is mixed in the working liquid. Fig. 12 (b) shows the state of the metallographic structure when no oscillating motion is applied between the electrode (4) and the work piece. The state of the metallographic structure when an oscillating motion is given between the objects is shown respectively. In FIG. 12 (a), it can be seen that silicon is fixed and the finished surface roughness is rather rough.
It can be seen gently in FIG. 12 (b) in which a swinging motion is applied between the electrode (4) and the workpiece. The reason for this is the electrode (4)
It is considered that the phase of the unevenness on the surface of the workpiece and the surface of the workpiece is smoothed because the position changes.
以上、本発明方法の実施例について説明したが、本発明
は以下のような変形例をも含むことは言うまでもない。Although the embodiments of the method of the present invention have been described above, it goes without saying that the present invention also includes the following modifications.
イ)シリコン粉末のみならず、他の半金属性材料の表面
層の形成にも使用できる。B) It can be used not only for forming silicon powder but also for forming a surface layer of other semi-metallic material.
ロ)また、加工液を鉱物性の油と限らず、シリコン油
や、水(蒸溜水)を用いても放電加工さえ行われるなら
ば、実用可能である。B) Further, the working fluid is not limited to a mineral oil, and silicon oil or water (distilled water) can be used as long as electric discharge machining is performed.
ハ)非導電性のセラミックスなどへ被覆する時は、セラ
ミックス表面を無電解メッキや銀鏡反応等で表面のみ導
体化して、上記の表面層の形成を行なうことができる。C) When coating a non-conductive ceramic or the like, the surface of the ceramic can be formed by making the surface of the ceramic a conductor only by electroless plating, silver mirror reaction, or the like.
ニ)被覆物質として非導電性のものも使用したい時に
は、できるだけ微細な粉体を用い、その中に、導電性粉
体を混入させて上記のことを行なえば可能な場合があ
る。この場合の非導電性物質とは、たとえばアルミナ
(Al2O3)の如きものである。D) When it is desired to use a non-conductive material as the coating material, it may be possible to use the finest powder possible and mix the conductive powder therein to perform the above. The non-conductive material in this case is, for example, alumina (Al 2 O 3 ).
ホ)表面層を形成するシリコンの粉体を極間に介在さ
せ、この極間で気中放電させることにより表面層を形成
しても同様効果を発揮する。(E) The same effect can be obtained even if the surface layer is formed by interposing the silicon powder forming the surface layer between the electrodes and discharging in the air between the electrodes.
なお、上述した各実施例のいずれの場合においても重要
なことは、シリコン粉末等の表面層を形成するシリコン
を極間に充分に介在せしめることである。すなわち1回
の放電により加工除去される量よりも、過剰にシリコン
粉末を放電点付近に存在させるために、通常の放電加工
よりも、極間距離を広くとることである。In any of the above-mentioned embodiments, what is important is to sufficiently interpose the silicon forming the surface layer such as silicon powder between the electrodes. That is, in order to make the silicon powder exist near the discharge point in excess of the amount that is machined and removed by one electric discharge, the distance between the electrodes is made wider than in normal electric discharge machining.
[発明の効果] 以上述べたように、本発明によれば、被加工物に対し、
表面層を形成したいシリコンを粉体として極間に介在さ
せ、放電加工を行なうようにしたことにより、通常放電
加工に用いられる電極によつても、耐蝕性が大きく、密
着度も大きな表面処理が可能となる。一般的に知られて
いる高温窒化やCVDなどは、900℃前后の高温で処理する
ために、素材に歪や軟化を生じやすく、温度を下げれば
剥離しやすくなるが、本発明は、素材に歪や軟化を起こ
すことはなく、多種少量にも適する。[Effects of the Invention] As described above, according to the present invention,
By using silicon as a powder to form a surface layer between the electrodes and performing electrical discharge machining, even electrodes that are normally used for electrical discharge machining have a high corrosion resistance and a high adhesion. It will be possible. Generally known high-temperature nitriding, CVD, etc. are processed at a high temperature of 900 ° C. or higher, so that the material is likely to be distorted or softened and easily peeled off when the temperature is lowered. It does not cause distortion or softening, and is suitable for various small quantities.
また、本発明の別の発明によれば、放電加工中に、電極
と被加工物間に揺動運動を付与するようにしているの
で、表面処理を行おうとするシリコンの粉体が固着する
のを防止でき、これによって加工材料表面が平坦度を損
なうのを防止できる。Further, according to another invention of the present invention, since the oscillating motion is applied between the electrode and the workpiece during the electric discharge machining, the silicon powder to be subjected to the surface treatment is fixed. This can prevent the surface of the processed material from impairing the flatness.
第1図及び第2図はいずれも本発明の原理を説明するた
めの図で、第1図は極間にシリコンの粉体がある場合の
説明図、第2図は通常の放電状態の説明図、第3図
(a),(b)はいずれも本発明の一実施例を説明する
ための概略構成図、第4図(a),(b)及び第5図
(a),(b)はいずれも本発明の効果を説明するため
の金属組織を示す顕微鏡写真図、第6図は第3図の電源
装置部の一例を主電源に補助電源を重畳した高電圧重畳
回路で示す原理図、第7図(a),(b),(c)はい
ずれも放電開始電圧に対する加工の安定度を示す説明
図、第8図は電源装置部の他の例を示す多分割加工回路
の原理図、第9図は本発明の別の発明を説明するための
第3図相当図、第10図は第9図の揺動運動のパターンを
示す説明図、第11図(a),(b),(c)は仕上面粗
さを揺動運動の有無による比較で示す説明図、第12図は
第9図の効果を説明するための金属組織を示す顕微鏡写
真図、第13図は従来例を説明するための電極の構成図で
ある。 図において、(4)は電極、(5)は被加工物、(7)
は極間、(8)は加工液、(9)はシリコン粉末、(1
0)は電源装置、(11)は空気ポンプ、(21)は数値制
御装置、(22)はX軸モータ(揺動運動機構)、(23)
はY軸モータ(揺動運動機構)である。 なお、図中、同一符号は同一又は相当部分を示す。1 and 2 are diagrams for explaining the principle of the present invention. FIG. 1 is an explanatory diagram when silicon powder is present between the electrodes, and FIG. 2 is an explanation of a normal discharge state. FIGS. 3 (a) and 3 (b) are schematic configuration diagrams for explaining one embodiment of the present invention, and FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b). ) Are micrographs showing the metal structure for explaining the effect of the present invention, and FIG. 6 is a principle showing an example of the power supply unit of FIG. 3 by a high voltage superposition circuit in which an auxiliary power supply is superposed on a main power supply. FIGS. 7 (a), 7 (b), and 7 (c) are explanatory views showing the stability of processing with respect to the discharge start voltage, and FIG. 8 is a multi-division processing circuit showing another example of the power supply unit. Principle diagram, FIG. 9 is a view equivalent to FIG. 3 for explaining another invention of the present invention, FIG. 10 is an explanatory view showing the pattern of the swinging motion of FIG. 9, FIG. 11 (a), (B) and (c) are explanatory views showing a comparison of finished surface roughness with and without oscillating motion, and FIG. 12 is a micrograph showing a metal structure for explaining the effect of FIG. 9, and FIG. FIG. 6 is a configuration diagram of electrodes for explaining a conventional example. In the figure, (4) is an electrode, (5) is a workpiece, (7)
Is the gap, (8) is the working fluid, (9) is the silicon powder, (1
0) is a power supply device, (11) is an air pump, (21) is a numerical control device, (22) is an X-axis motor (oscillating motion mechanism), (23)
Is a Y-axis motor (oscillating motion mechanism). In the drawings, the same reference numerals indicate the same or corresponding parts.
Claims (2)
上記被加工物の表面層を形成するシリコンを、粉末状態
にして介在させた後、放電を行なうことによって、被加
工物の表面層を形成する放電加工による表面層の形成方
法。1. A gap between an electrode and a work piece,
A method of forming a surface layer by electric discharge machining, wherein the surface layer of a work piece is formed by powdering silicon, which is then interposed, and then discharged to form a surface layer of the work piece.
上記被加工物の表面層を形成するシリコンを、粉末状態
にして介在させた後、上記電極と被加工物間に揺動運動
を付与し、放電を行なうことによって、被加工物の表面
層を形成する放電加工による表面層の形成方法。2. Between the electrode and the electrode formed by the workpiece,
Silicon, which forms the surface layer of the work piece, is interspersed in a powder state, and then oscillating motion is applied between the electrode and the work piece to discharge the surface layer of the work piece. A method of forming a surface layer by electrical discharge machining.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1560288 | 1988-01-26 | ||
JP63-145233 | 1988-06-13 | ||
JP63-15602 | 1988-06-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8140211A Division JP3015730B2 (en) | 1996-06-03 | 1996-06-03 | Method of forming surface layer by electric discharge machining |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0283119A JPH0283119A (en) | 1990-03-23 |
JPH0749170B2 true JPH0749170B2 (en) | 1995-05-31 |
Family
ID=11893269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1015813A Expired - Lifetime JPH0749170B2 (en) | 1988-01-26 | 1989-01-25 | Method of forming surface layer by electrical discharge machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0749170B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5434380A (en) * | 1990-07-16 | 1995-07-18 | Mitsubishi Denki Kabushiki Kaisha | Surface layer forming apparatus using electric discharge machining |
JP3001314B2 (en) * | 1991-12-25 | 2000-01-24 | 三菱電機株式会社 | Electric discharge machine |
US5315087A (en) * | 1992-03-02 | 1994-05-24 | Mitsubishi Denki Kabushiki Kaisha | Wirecut electrical discharge machine utilizing silicon powder suspended in a dielectric material |
JP3393885B2 (en) * | 1992-11-02 | 2003-04-07 | 信之 高橋 | Powder EDM and EDM |
JP3002621B2 (en) * | 1993-10-15 | 2000-01-24 | 尚武 毛利 | Surface treatment method and apparatus by electric discharge machining |
US5922221A (en) * | 1996-02-02 | 1999-07-13 | Sodick Co., Ltd. | Electric discharge machining method and electric discharge machining fluid |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB787731A (en) * | 1952-12-31 | 1957-12-18 | Sparcatron Ltd | Improvements in methods and apparatus for cutting electrically conductive materials |
GB828336A (en) * | 1956-11-14 | 1960-02-17 | Ass Elect Ind | Improvements in and relating to metal surfaces |
JPS5226357A (en) * | 1975-08-26 | 1977-02-26 | Itakura Kougiyou Yuugen | Method of forming thrust washers |
CH621077A5 (en) * | 1978-06-01 | 1981-01-15 | Charmilles Sa Ateliers | |
JPS6224916A (en) * | 1985-07-22 | 1987-02-02 | Masahiko Suzuki | Formation of outer surface layer by electric discharge machining with use of melalloid electrode |
-
1989
- 1989-01-25 JP JP1015813A patent/JPH0749170B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0283119A (en) | 1990-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5434380A (en) | Surface layer forming apparatus using electric discharge machining | |
JP3363284B2 (en) | Electrode for electric discharge machining and metal surface treatment method by electric discharge | |
KR0154178B1 (en) | Method and apparatus for surface treatment by electrical discharge | |
US6929829B2 (en) | Method and device discharging surface treatment | |
EP0131367B1 (en) | Method of and apparatus for machining ceramic materials | |
JPH0749170B2 (en) | Method of forming surface layer by electrical discharge machining | |
WO2000029154A1 (en) | Apparatus for discharge surface treatment and method for discharge surface treatment | |
EP0688624B1 (en) | Electric discharge machining method for insulating material using electroconductive layer formed thereon | |
US6020568A (en) | Electro mechanical process and apparatus for metal deposition | |
US20140203856A1 (en) | Device for Controlling the On and Off Time of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET), A Device Spark Coating the Surfaces of Metal Workpiece Incorporating the Said Control Device and a Method of Coating Metal Surfaces Using the Said Device | |
JP5547864B2 (en) | Discharge surface treatment method and apparatus | |
JP2001279465A (en) | Surface discharge treating method, electrode for surface treatment used therefor and obtained surface treated film | |
JPH10225824A (en) | Discharge surface treatment method, and treatment device | |
JPH09192931A (en) | Surface layer forming method by electrical discharge machining | |
Chak | Electro chemical discharge machining: process capabilities | |
JP3668519B2 (en) | Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid | |
RU2074796C1 (en) | Method of electric spark coating application | |
WO2000067941A1 (en) | Method and apparatus for surface treatment by electrodischarging, and discharge electrode | |
CN1322162A (en) | Discharge surface treating method and electrode for discharge surface treatment | |
Tripathy et al. | Performance Enhancement of Micro-Machined Surfaces Using Powder Mixed EDM | |
Yadav et al. | Investigations on performance characteristics of hybrid peripheral surface grinding on Al/Al2O3p/B4Cp hybrid metal matrix composite | |
Singh | Nonconventional Machining Operations | |
KR100466271B1 (en) | Method and system of treatmenting surface | |
Singh et al. | Study of Electro Discharge Machining of Non-Conductive Ceramic On Alumina & Glass | |
SU841887A1 (en) | Method and apparatus for electroerosion treatment of metals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080531 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090531 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090531 Year of fee payment: 14 |