JPH09189752A - Fiber-optic current and magnetic field sensor - Google Patents

Fiber-optic current and magnetic field sensor

Info

Publication number
JPH09189752A
JPH09189752A JP8000784A JP78496A JPH09189752A JP H09189752 A JPH09189752 A JP H09189752A JP 8000784 A JP8000784 A JP 8000784A JP 78496 A JP78496 A JP 78496A JP H09189752 A JPH09189752 A JP H09189752A
Authority
JP
Japan
Prior art keywords
optical
magneto
light
linearly polarized
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8000784A
Other languages
Japanese (ja)
Other versions
JP3148614B2 (en
Inventor
Hideaki Ishizaka
英明 石坂
Eiichi Nagao
栄一 永尾
Keita Ito
啓太 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP00078496A priority Critical patent/JP3148614B2/en
Publication of JPH09189752A publication Critical patent/JPH09189752A/en
Application granted granted Critical
Publication of JP3148614B2 publication Critical patent/JP3148614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the measurement accuracy of a fiber-optic current and magnetic field sensor against temperature changes by deciding the length of the optical path of a magneto- optical element from a specific formula by using the Verdet constant of the element and the temperature coefficient of the constant. SOLUTION: The light emitted from a light source 11 and having a wavelength of 850nm is polarized into linearly polarized light by means of a polarizer 12 after being propagated through a first fiber 20a and the polarized light is made incident to a magneto-optical element 13a by which the plane of polarization is rotated by a Farady effect. The linearly polarized light coming out from the element 13a is made incident to a Bi12 GeO20 element 13b by which the plane of polarization is further rotated by a Farady effect and further made incident to an analyzer 14 which gives intensity modification to the light. The linearly polarized light coming out from the analyzer 14 is made incident to an optical receiver 15 after being propagated through a second optical fiber 20b and the receiver 15 detects the light as the electric signal corresponding to the intensity of the light. As a result, the intensity of a magnetic field is measured. The length L of the optical path of the element 13a is decided from formula I when the optical axes of the polarizer 12 and analyzer 14 are parallel to each other or from formula II when the optical axes intersect each other at right angles. The VO and α in the formulae respectively represent the Verdet constant of the element 13a at the center operating temperature and the temperature efficiency of the constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はファラデー効果を
利用して電流、磁界を測定する光ファイバ電流・磁界セ
ンサ、とくに、ファラデー効果を備えた磁気光学素子と
ファラデー効果および自然旋光性を兼ね備えたBi12
eO20素子とを組み合わせ、磁気光学素子の光路の長さ
を特定して温度の変化に対する測定精度を高くすること
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber current / magnetic field sensor for measuring an electric current and a magnetic field by utilizing the Faraday effect, and in particular, a magneto-optical element having the Faraday effect and a Bi having the Faraday effect and the natural optical rotatory power. 12 G
In combination with the eO 20 element, the present invention relates to specifying the length of the optical path of the magneto-optical element to increase the measurement accuracy with respect to changes in temperature.

【0002】[0002]

【従来の技術】図2に示すのは特公平4−24665号
公報に掲載された従来の光ファイバ電流・磁界センサの
構成図である。光源1を出射した光は光ファイバ10a
を伝搬し、偏光子2に入射して直線偏光に変わる。この
直線偏光は磁気光学素子3に入射するが、この磁気光学
素子3はファラデー効果と自然旋光性とを兼ね備えてお
り、その光路の長さは自然旋光性による直線偏光の回転
角が45度の感度が最大になる値になっているので、自
然旋光性により偏光面が45度回転し、更に、ファラデ
ー効果により光路に平行に作用する磁界の強さに比例し
て一定角度回転する。この偏光面の自然旋光性とファラ
デー効果とによる回転角Δψ、磁界の強さH、磁気光学
素子3のヴェルデ定数V、自然旋光能θ、光路の長さL
の間に存在する定量的関係は数式1に示す通りである。
2. Description of the Related Art FIG. 2 is a block diagram of a conventional optical fiber current / magnetic field sensor disclosed in Japanese Patent Publication No. 4-24665. The light emitted from the light source 1 is the optical fiber 10a.
Of the light, is incident on the polarizer 2, and is changed to linearly polarized light. This linearly polarized light is incident on the magneto-optical element 3. The magneto-optical element 3 has both the Faraday effect and the natural optical rotatory power, and the optical path length is such that the rotation angle of the linearly polarized light due to the natural optical rotatory power is 45 degrees. Since the sensitivity is maximized, the polarization plane rotates by 45 degrees due to the natural optical rotatory power, and further rotates by a fixed angle in proportion to the strength of the magnetic field acting in parallel to the optical path due to the Faraday effect. The rotation angle Δψ due to the natural optical rotatory power of the plane of polarization and the Faraday effect, the magnetic field strength H, the Verdet constant V of the magneto-optical element 3, the natural optical rotatory power θ, and the optical path length L.
The quantitative relationship existing between is as shown in Equation 1.

【0003】[0003]

【数1】 [Equation 1]

【0004】磁気光学素子3を出射した直線偏光は検光
子4に入射し、磁気光学素子3での偏光面の回転角Δψ
に対応して光の強度変調を受ける。検光子4を出射した
直線偏光は光ファイバ10bを伝搬し、光受信機5に入
射して光電変換され直線偏光の強度、したがって、磁界
の強さHに対応した電気信号として検出される。これに
より磁界の強さを測定することができ、また、その磁界
が電流によるものであれば、その電流の大きさを測定す
ることができる。
The linearly polarized light emitted from the magneto-optical element 3 enters the analyzer 4, and the rotation angle Δψ of the plane of polarization of the magneto-optical element 3 is changed.
Corresponding to the intensity modulation of light. The linearly polarized light emitted from the analyzer 4 propagates through the optical fiber 10b, enters the optical receiver 5 and is photoelectrically converted, and is detected as an electric signal corresponding to the intensity of the linearly polarized light, that is, the strength H of the magnetic field. This makes it possible to measure the strength of the magnetic field, and if the magnetic field is due to current, the magnitude of the current can be measured.

【0005】[0005]

【発明が解決しようとする課題】従来の光ファイバ電流
・磁界センサは以上のように構成されており磁気光学素
子3の光路の長さをその自然旋光性による直線偏光の偏
光面の回転角が45度になる値にするとともに、偏光子
2と検光子4の各光軸を幾何学に互いに垂直または平行
にして感度が最大になるようにしているが、周囲温度が
変化すると、磁気光学素子3のヴェルデ定数と自然旋光
能の変化はその光路の長さの変化に比べて無視できず、
偏光面の回転角が変化して出力誤差が大きくなり、測定
精度が低くなると云う課題があった。
The conventional optical fiber current / magnetic field sensor is constructed as described above, and the length of the optical path of the magneto-optical element 3 is determined by the rotation angle of the plane of polarization of linearly polarized light due to its natural optical rotatory power. The optical axes of the polarizer 2 and the analyzer 4 are geometrically perpendicular to or parallel to each other so as to maximize the sensitivity while the value becomes 45 degrees, but when the ambient temperature changes, the magneto-optical element The Verde constant of 3 and the change in natural optical rotatory power cannot be ignored compared to the change in the length of the optical path,
There is a problem in that the rotation angle of the polarization plane changes, the output error increases, and the measurement accuracy decreases.

【0006】[0006]

【課題を解決するための手段】この発明に係る光ファイ
バ電流・磁界センサは波長が850nmの光を発する光
源と、この光源からの光を直線偏光にかえる偏光子と、
この偏光子からの直線偏光の偏光面をファラデー効果に
より回転させる磁気光学素子と、偏光子からの直線偏光
の偏光面を自然旋光性により45度回転させ、ファラデ
ー効果により更に回転させる酸化物結晶のBi12GeO
20素子と、磁気光学素子およびBi12GeO20素子での
直線偏光の偏光面の回転角に対応して光の強度変調を行
なう検光子と、この検光子からの直線偏光を光電変換し
てその強度に対応した電気信号を検出する光受信機と、
光源と偏光子との間で光を伝送する第一光ファイバと、
検光子と光受信機との間で直線偏光を伝送する第二光フ
ァイバとを備えて磁気光学素子とBi12GeO20素子の
各光路に並行に作用する磁界の強さを測定するものであ
って、Bi12GeO20素子の使用中心温度における自然
旋光能とその温度係数、ならびにヴェルデ定数とその温
度係数は既知であり、また、光源の光の波長が850n
mであるので、Bi12GeO20素子の光路の長さは自然
旋光性による直線偏光の偏光面の回転角を45度にする
ことから一義的に決り、磁気光学素子の使用中心温度に
おけるヴェルデ定数をVo、このヴェルデ定数の温度係
数をαとして、磁気光学素子の光路の長さLを偏光子と
検光子の各光軸が互いに平行なときは L=−0.019/Vo(α−0.039)(mm) とし、互いに垂直なときは L=−0.046/Vo(α+0.039)(mm) とすることにより磁気光学素子とBi12GeO20素子の
各定数が互いに相殺して検光子で直線偏光の強度変調を
行なうときの感度に及ぼす温度の変化の影響が殆どなく
なる。
An optical fiber current / magnetic field sensor according to the present invention comprises a light source which emits light having a wavelength of 850 nm, and a polarizer which converts the light from the light source into linearly polarized light.
Magneto-optical elements that rotate the plane of linearly polarized light from this polarizer by the Faraday effect, and oxide crystals that rotate the plane of polarized linearly polarized light from the polarizer by 45 degrees by natural optical rotation and further rotate by the Faraday effect. Bi 12 GeO
20 elements, an analyzer that performs intensity modulation of light in accordance with the rotation angle of the polarization plane of the linearly polarized light in the magneto-optical element and the Bi 12 GeO 20 element, and the linearly polarized light from this analyzer is photoelectrically converted to An optical receiver that detects an electrical signal corresponding to the intensity,
A first optical fiber for transmitting light between the light source and the polarizer,
A second optical fiber for transmitting linearly polarized light is provided between the analyzer and the optical receiver to measure the strength of the magnetic field acting in parallel on each optical path of the magneto-optical element and the Bi 12 GeO 20 element. The natural optical rotatory power of the Bi 12 GeO 20 element at the use center temperature and its temperature coefficient, as well as the Verdet constant and its temperature coefficient are known, and the wavelength of the light from the light source is 850 n.
Therefore, the length of the optical path of the Bi 12 GeO 20 element is uniquely determined by setting the rotation angle of the polarization plane of the linearly polarized light due to the natural optical rotation to 45 degrees, and the Verde constant at the use center temperature of the magneto-optical element. Is Vo and the temperature coefficient of this Verdet constant is α, the length L of the optical path of the magneto-optical element is L = −0.019 / Vo (α−0 when the optical axes of the polarizer and the analyzer are parallel to each other. 0.039) (mm), and when they are perpendicular to each other, L = -0.046 / Vo (α + 0.039) (mm) is set to cancel each constant of the magneto-optical element and the Bi 12 GeO 20 element. There is almost no influence of temperature change on the sensitivity when the intensity of linearly polarized light is modulated by the analyzer.

【0007】また、前記光ファイバ電流・磁界センサで
磁気光学素子をFR−5ガラスからなるものとし、その
光路の長さを1.8mmとすることにより検光子で直線
偏光の強度変調を行なうときの感度に及ぼす温度の変化
の影響が殆どなくなる。
When the magneto-optical element of the optical fiber current / magnetic field sensor is made of FR-5 glass and the optical path length is 1.8 mm, the intensity of linearly polarized light is modulated by the analyzer. The influence of temperature change on the sensitivity of is almost eliminated.

【0008】さらに、前記の光ファイバ電流・磁界セン
サで磁気光学素子を(Cd1-x Mnx )Te(x=0.
1)からなるものとし、その光路の長さを0.1mmと
することにより検光子で直線偏光の強度変調を行なうと
きの感度に及ぼす温度の変化の影響が殆どなくなる。
Further, the magneto-optical element is (Cd 1-x Mn x ) Te (x = 0.
1) and by setting the length of its optical path to 0.1 mm, the influence of temperature change on the sensitivity when linearly polarized light intensity modulation is performed by the analyzer is almost eliminated.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1はこの発明の実施の形態1を示す構
成図である。図において、11は波長が850nmの光
を発する光源、12は光源11からの光を直線偏光にか
える偏光子で偏光ビームスプリッタからなり透過光を利
用している。13aはファラデー効果を備えた磁気光学
素子で自然旋光性はなく、ファラデー効果により光路の
長さと光路に平行に作用する磁界の強さに比例して偏光
子12からの直線偏光の偏光面を回転する。13bはフ
ァラデー効果と自然旋光性とを備えた酸化物結晶のBi
12GeO20素子で磁気光学素子13aからの直線偏光の
偏光面を自然旋光性により45度回転させ、更に、ファ
ラデー効果により光路の長さと光路に平行に作用する磁
界の強さに比例して回転させる。14はBi12GeO20
素子13bにおける直線偏光の偏光面の回転角に対応し
てその強度変調を行なう検光子、15は検光子14から
の直線偏光を光電変換してその強度に対応した電気信号
を検出する光受信機、20aは光源11と偏光子12と
の間で光を伝送する第一光ファイバ、20bは検光子1
4と光受信機15との間で直線偏光を伝送する第二光フ
ァイバである。
Embodiment 1 FIG. FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention. In the figure, 11 is a light source that emits light with a wavelength of 850 nm, and 12 is a polarizer that changes the light from the light source 11 into linearly polarized light, which is a polarization beam splitter and uses transmitted light. Reference numeral 13a denotes a magneto-optical element having a Faraday effect, which does not have a natural optical rotatory power, and rotates the polarization plane of linearly polarized light from the polarizer 12 in proportion to the length of the optical path and the strength of the magnetic field acting parallel to the optical path due to the Faraday effect. To do. 13b is an oxide crystal Bi having Faraday effect and natural optical rotatory power.
The 12 GeO 20 element rotates the plane of polarization of the linearly polarized light from the magneto-optical element 13a by 45 degrees due to the natural optical rotatory power, and further rotates by the Faraday effect in proportion to the length of the optical path and the strength of the magnetic field acting parallel to the optical path. Let 14 is Bi 12 GeO 20
An analyzer that modulates the intensity of the linearly polarized light in the element 13b according to the rotation angle of the plane of polarization, and an optical receiver 15 that photoelectrically converts the linearly polarized light from the analyzer 14 and detects an electrical signal corresponding to the intensity. , 20a is a first optical fiber for transmitting light between the light source 11 and the polarizer 12, and 20b is an analyzer 1
4 is a second optical fiber for transmitting linearly polarized light between the optical receiver 4 and the optical receiver 15.

【0010】実施の形態1は以上のように構成され、光
源11で発した波長850nmの光は第一ファイバ20
aを伝搬し、偏光子12に入射して直線偏光になる。こ
の直線偏光は磁気光学素子13aに入射してファラデー
効果によりその光路に平行に作用する磁界の強さに比例
して偏光面が回転する。磁気光学素子13aを出射した
直線偏光はBi12GeO20素子13bに入射し、自然旋
光性により偏光面が45度回転し、更に、ファラデー効
果によりその光路に平行に作用する磁界の強さに比例し
て回転する。磁気光学素子13aとBi12GeO20素子
13bで偏光面の回転した直線偏光は検光子14に入射
してその偏光面の回転角に対応して強度変調をうける。
なお、偏光子12と検光子14の各光軸は互いに垂直ま
たは平行になっている。検光子14を出射した直線偏光
は第二光ファイバ20bを伝搬し、光受信機15に入射
して光電変換され直線偏光の強度、したがって、磁気光
学素子13aとBi12GeO20素子13bの各光路に平
行に作用する磁界の強さに対応した電気信号として検出
される。これにより磁界の強さを測定することができ
る。
The first embodiment is configured as described above, and the light having a wavelength of 850 nm emitted from the light source 11 is emitted from the first fiber 20.
It propagates through a and enters the polarizer 12 to become linearly polarized light. This linearly polarized light is incident on the magneto-optical element 13a, and its plane of polarization is rotated by the Faraday effect in proportion to the strength of the magnetic field acting in parallel to the optical path. The linearly polarized light emitted from the magneto-optical element 13a is incident on the Bi 12 GeO 20 element 13b, the plane of polarization is rotated by 45 degrees due to the natural optical rotatory property, and is further proportional to the strength of the magnetic field acting in parallel to the optical path due to the Faraday effect. And then rotate. The linearly polarized light whose polarization plane has been rotated by the magneto-optical element 13a and the Bi 12 GeO 20 element 13b enters the analyzer 14 and undergoes intensity modulation according to the rotation angle of the polarization plane.
The optical axes of the polarizer 12 and the analyzer 14 are perpendicular or parallel to each other. The linearly polarized light emitted from the analyzer 14 propagates through the second optical fiber 20b, is incident on the optical receiver 15 and is photoelectrically converted, and thus the intensity of the linearly polarized light, and therefore, the optical paths of the magneto-optical element 13a and the Bi 12 GeO 20 element 13b. Is detected as an electric signal corresponding to the strength of the magnetic field acting in parallel with. This allows the strength of the magnetic field to be measured.

【0011】次に、検光子14で直線偏光の強度変調を
行なうときの感度に及ぼす温度の変化の影響について説
明する。検光子14で強度変調する直線偏光の強度の電
界ベクトル成分Ex,Eyは磁気光学素子13aを経て
Bi12GeO20素子13bから検光子14に入射する直
線偏光の強度を1とし、磁気光学素子13aとBi12
eO20素子13bの各光路に平行に作用する磁界の強さ
をH、磁気光学素子13aのヴェルデ定数をV、その光
路の長さをL、Bi12GeO20素子13bのヴェルデ定
数をVr、その自然旋光能をθ、その光路の長さをL
r、偏光子12と検光子14の各光軸のなす角度をψと
してジョーンズベクトル行列を用いて数式2で表わされ
る。
Next, the influence of a change in temperature on the sensitivity when the intensity of linearly polarized light is modulated by the analyzer 14 will be described. The electric field vector components Ex and Ey of the intensity of the linearly polarized light intensity-modulated by the analyzer 14 are set to 1 as the intensity of the linearly polarized light incident on the analyzer 14 from the Bi 12 GeO 20 element 13b via the magneto-optical element 13a. And Bi 12 G
The strength of the magnetic field acting in parallel with each optical path of the eO 20 element 13b is H, the Verdet constant of the magneto-optical element 13a is V, the length of the optical path is L, the Verdet constant of the Bi 12 GeO 20 element 13b is Vr, and The natural optical rotation is θ, and the optical path length is L
r and the angle formed by the optical axes of the polarizer 12 and the analyzer 14 is ψ, and is expressed by Equation 2 using a Jones vector matrix.

【0012】[0012]

【数2】 [Equation 2]

【0013】検光子14で強度変調した直線偏光の強度
Iは数式3で求められる。
The intensity I of the linearly polarized light intensity-modulated by the analyzer 14 is obtained by the mathematical formula 3.

【0014】[0014]

【数3】 (Equation 3)

【0015】数式3で右辺の括弧内の第一項と第二項は
磁界の影響を受けない成分であり、第三項は磁界の影響
を受ける成分である。前者をIdc、後者をIacで表
わし、磁気光学素子13aとBi12GeO20素子13b
の各光路に平行に作用する磁界を交番磁界としてその強
さ(実効値)をH、検光子14で直線偏光の強度変調を
行なうときの感度をηで表わしてη=Iac/Idcで
定義すると数式4が得られる。
In Equation 3, the first and second terms in the parentheses on the right side are components that are not affected by the magnetic field, and the third term is a component that is affected by the magnetic field. The former is represented by Idc and the latter is represented by Iac, and the magneto-optical element 13a and Bi 12 GeO 20 element 13b are represented.
Let H be the strength (effective value) of a magnetic field acting in parallel with each of the optical paths of ## EQU1 ## and η be the sensitivity when linearly polarized light intensity is modulated by the analyzer 14, and η = Iac / Idc Equation 4 is obtained.

【0016】[0016]

【数4】 (Equation 4)

【0017】この感度ηに及ぼす温度の変化の影響につ
いて考察する。温度の変化の影響を受けるものとして磁
気光学素子13aのヴェルデ定数、その光路の長さ、B
12GeO20素子13bのヴェルデ定数、自然旋光能、そ
の光路の長さが考えられるが、磁気光学素子13a、B
12GeO20素子13bのいずれも光路の長さの温度特
性はヴェルデ定数や自然旋光能のそれに比べて無視する
ことができるので、ここでは考慮しないこととする。磁
気光学素子13aの所定温度ならびに使用中心温度にお
けるヴェルデ定数をそれぞれV,Vo、このヴェルデ定
数の温度係数をαとし、Bi12GeO20素子13bの所
定温度ならびに使用中心温度におけるヴェルデ定数をそ
れぞれVr,Vro、このヴェルデ定数の温度係数を
β、同じく所定温度ならびに使用中心温度における自然
旋光能をθ,θo、この自然旋光能の温度係数をγ、所
定温度と使用中心温度との温度差をΔTとすると、V,
Vr,θはそれぞれ数式5、数式6、数式7で表わされ
る。
The influence of temperature change on the sensitivity η will be considered. What is affected by the temperature change is the Verdet constant of the magneto-optical element 13a, its optical path length, B
i 12 GeO 20 element 13b's Verdet constant, natural optical rotatory power, and the length of its optical path are considered.
Since the temperature characteristic of the optical path length of any of the i 12 GeO 20 elements 13b can be ignored as compared with that of the Verdet constant and the natural optical rotatory power, it is not considered here. The Verde constants of the magneto-optical element 13a at the predetermined temperature and the use center temperature are V and Vo, the temperature coefficient of this Verde constant is α, and the Verde constants of the Bi 12 GeO 20 element 13b at the predetermined temperature and the use center temperature are Vr and Vo, respectively. Vro, the temperature coefficient of this Verdet constant is β, the natural optical rotatory power is also θ and θo at the predetermined temperature and the use center temperature, the temperature coefficient of the natural optical rotatory power is γ, and the temperature difference between the predetermined temperature and the use center temperature is ΔT. Then V,
Vr and θ are represented by Equation 5, Equation 6, and Equation 7, respectively.

【0018】[0018]

【数5】 (Equation 5)

【数6】 (Equation 6)

【数7】 (Equation 7)

【0019】数式4、数式5、数式6、数式7から近似
的に感度ηの数式8が得られる。
From Equation 4, Equation 5, Equation 6, and Equation 7, Equation 8 of the sensitivity η can be obtained approximately.

【0020】[0020]

【数8】 (Equation 8)

【0021】数式8の右辺の大括弧内にあるΔTの係数
が感度の温度係数であり、温度が変化するとこれにより
出力誤差を生じる。この感度の温度係数をδで表わし、
偏光子12と検光子14の各光軸が互いに垂直(ψ=π
/2)であるか平行(ψ=0)であるものとすると数式
9が得られる。数式9の右辺の第二項の符号はマイナス
がψ=π/2、プラスがψ=0に対応する。
The coefficient of ΔT in the brackets on the right side of Equation 8 is the temperature coefficient of sensitivity, and this causes an output error when the temperature changes. The temperature coefficient of this sensitivity is represented by δ,
The optical axes of the polarizer 12 and the analyzer 14 are perpendicular to each other (ψ = π
If it is / 2) or parallel (ψ = 0), then Equation 9 is obtained. Regarding the sign of the second term on the right side of Expression 9, minus corresponds to ψ = π / 2, and plus corresponds to ψ = 0.

【0022】[0022]

【数9】 [Equation 9]

【0023】ところで、Bi12GeO20素子13bの自
然旋光性による直線偏光の偏光面の回転角が45度にな
る光路の長さは光源11の光の波長が800nmから9
00nmの範囲にあれば比例関係にあることを実験によ
り確認しており、光の波長が850nmであれば、その
光路の長さLrは4.4mmになる。これについては特
願平7−172130号の願書に添付した明細書にも記
載されている。また、Bi12GeO20素子13bの使用
中心温度におけるヴェルデ定数Vroは雑誌「機能材
料」1983年11月号、第17頁に掲載された値が
0.188min/Oe・cmであり、このヴェルデ定
数の温度係数βは上記の同じ明細書に記載されていて1
65ppm/℃である。さらにBi12GeO20素子13
bの使用中心温度における自然旋光能θoは上記の雑誌
「機能材料」1983年11月号、第17頁に掲載され
ていて9.6deg/minであり、この自然旋光能θ
oの温度係数γは電気学会センサ技術研究会資料(資料
番号ST−92−19,1992年12月10日)「光
ファイバ電圧センサの高精度化」第41頁により−25
0ppm/℃である。これらの各数値を用い、ヴェルデ
定数Vroの単位をmin/Gauss・cm、その温
度係数βの単位を%/℃、自然旋光能θoの温度係数γ
の単位を%/℃に換算したうえ、数式9の感度の温度係
数δをゼロとする磁気光学素子13aの光路の長さLを
求めると、偏光子12と検光子14の各光軸が互いに平
行なときは数式10、また、その各光軸が互いに垂直な
ときは数式11となる。なお、θoLr=π/4であ
る。
By the way, the length of the optical path where the rotation angle of the plane of polarization of linearly polarized light due to the natural optical rotatory power of the Bi 12 GeO 20 element 13b is 45 degrees is from the wavelength of the light of the light source 11 to 9 nm.
It has been experimentally confirmed that there is a proportional relationship in the range of 00 nm, and if the wavelength of light is 850 nm, the length Lr of the optical path is 4.4 mm. This is also described in the specification attached to the application of Japanese Patent Application No. 7-172130. Further, the Verde constant Vro at the use center temperature of the Bi 12 GeO 20 element 13b is 0.188 min / Oe · cm, which is the value published in page 17 of the magazine “Functional Material”, November 1983, and this Verde constant. The temperature coefficient β of is given in the same specification above
It is 65 ppm / ° C. Furthermore, Bi 12 GeO 20 element 13
The natural optical rotation power θo at the use central temperature of b is 9.6 deg / min in the above-mentioned magazine “Functional Material” November 1983, page 17, and the natural optical rotation power θo.
The temperature coefficient γ of o is -25 according to "High accuracy of optical fiber voltage sensor" on page 41 of the material of the Institute of Electrical Engineers of Japan Sensor Technology Study Group (Document number ST-92-19, December 10, 1992).
It is 0 ppm / ° C. Using each of these numerical values, the unit of the Verde constant Vro is min / Gauss · cm, the unit of the temperature coefficient β thereof is% / ° C, the temperature coefficient γ of the natural optical rotation power θo.
When the unit of is converted into% / ° C. and the length L of the optical path of the magneto-optical element 13a in which the temperature coefficient δ of the sensitivity of Expression 9 is zero is obtained, the optical axes of the polarizer 12 and the analyzer 14 are When they are parallel to each other, Equation 10 is obtained, and when their optical axes are perpendicular to each other, Equation 11 is obtained. Note that θoLr = π / 4.

【0024】[0024]

【数10】 (Equation 10)

【数11】 [Equation 11]

【0025】磁気光学素子13aの材料を具体的に決め
ると、数式10または数式11により感度の温度係数δ
がゼロになる光路の長さが決定する。この光路の長さの
磁気光学素子13aを用いれば、周囲温度が変化しても
検光子14で直線偏光の強度変調を行なうときの感度の
温度係数がほぼゼロになって出力誤差は殆どなくなり、
精度の高い磁界の測定が可能になる。
When the material of the magneto-optical element 13a is specifically determined, the temperature coefficient δ of the sensitivity is calculated by the formula 10 or the formula 11.
The length of the optical path at which is zero is determined. If the magneto-optical element 13a having this optical path length is used, even if the ambient temperature changes, the temperature coefficient of sensitivity when the intensity of linearly polarized light is modulated by the analyzer 14 becomes almost zero, and the output error is almost eliminated.
Highly accurate magnetic field measurement is possible.

【0026】実施の形態2.実施の形態2は実施の形態
1と同じ構成であって、磁気光学素子13aに鉛ガラス
の一種のFR−5ガラスを用いたものである。FR−5
ガラスの使用中心温度におけるヴェルデ定数Voとその
温度係数αは雑誌「機能材料」1983年11月号、第
17頁に掲載された数値からそれぞれ、0.11min
/Os・cm,−2730ppm/℃である。ヴェルデ
定数Voの単位をmin/Gauss・cm、その温度
係数の単位を%/℃に換算して偏光子12と検光子14
の各光軸を互いに垂直にすると数式11により感度の温
度係数δをゼロとする磁気光学素子13aの光路の長さ
Lは1.8mmとなる。この光路の長さのFR−5ガラ
スからなる磁気光学素子13aを用いれば、周囲温度が
変化しても検光子14で直線偏光の強度変調を行なうと
きの感度の温度係数がほぼゼロになって出力誤差は殆ど
なくなり、精度の高い磁界の測定ができる。
Embodiment 2 FIG. The second embodiment has the same configuration as that of the first embodiment, and uses a kind of lead glass, FR-5 glass, for the magneto-optical element 13a. FR-5
The Verde constant Vo and its temperature coefficient α at the use center temperature of glass are 0.11 min from the values published in the "Functional Material" magazine, November 1983, page 17, respectively.
/ Os · cm, −2730 ppm / ° C. The unit of the Verdet constant Vo is min / Gauss · cm, and the unit of the temperature coefficient is converted into% / ° C. The polarizer 12 and the analyzer 14
When the respective optical axes of 1 are perpendicular to each other, the length L of the optical path of the magneto-optical element 13a which makes the temperature coefficient δ of the sensitivity zero according to the formula 11 becomes 1.8 mm. If the magneto-optical element 13a made of FR-5 glass having this optical path length is used, the temperature coefficient of sensitivity when the intensity of linearly polarized light is modulated by the analyzer 14 becomes substantially zero even if the ambient temperature changes. The output error is almost eliminated and the magnetic field can be measured with high accuracy.

【0027】実施の形態3.実施の形態3も実施の形態
1と同じ構成であって、磁気光学素子13aに(Cd
1-x Mnx )Te(x=0.1)を用いたものである。
(Cd1-x Mnx )Te(x=0.1)の使用中心温度
におけるヴェルデ定数Voとその温度係数αはTech
nical Digest of The 9th S
ensor Symposium,1990.pp55
〜58,“Fiber−OpticMagnetic−
Field Sensor Using(Cd1-x Mn
x )Te Single Crystal”p.56に
掲載された数値からそれぞれ3.3min/Gauss
・cm,−1630ppm/℃である。ヴェルデ定数V
oの単位をmin/Gauss・cm、その温度係数の
単位を%/℃に換算して偏光子12と検光子14の各光
軸を互いに垂直すると数式11により感度の温度係数δ
をゼロとする磁気光学素子13aの光路の長さLは0.
1mmとなる。この光路の長さの(Cd1-x Mnx )T
e(x=0.1)からなる磁気光学素子13aを用いれ
ば、周囲温度が変化しても検光子14で直線偏光の強度
変調を行なうときの感度の温度係数がほぼゼロになって
出力誤差は殆どなくなり、精度の高い磁界の測定ができ
る。
Embodiment 3 The third embodiment also has the same configuration as that of the first embodiment, and the magneto-optical element 13a has (Cd
1-x Mn x ) Te (x = 0.1) is used.
The Verdet constant Vo at the use center temperature of (Cd 1-x Mn x ) Te (x = 0.1) and its temperature coefficient α are Tech.
natural Digest of The 9th S
ensor Symposium, 1990. pp55
~ 58, "Fiber-Optical Magnetic-
Field Sensor Using (Cd 1-x Mn
x ) 3.3 min / Gauss from the values published in Te Single Crystal ”p.56.
-Cm, -1630 ppm / degreeC. Verde constant V
When the unit of o is min / Gauss · cm and the unit of the temperature coefficient is converted to% / ° C and the optical axes of the polarizer 12 and the analyzer 14 are made perpendicular to each other, the temperature coefficient δ of the sensitivity is calculated by Equation 11.
Is zero, the optical path length L of the magneto-optical element 13a is 0.
1 mm. (Cd 1-x Mn x ) T of this optical path length
If the magneto-optical element 13a made of e (x = 0.1) is used, the temperature coefficient of the sensitivity when the intensity modulation of the linearly polarized light is performed by the analyzer 14 becomes substantially zero even if the ambient temperature changes, and the output error is reduced. Is almost eliminated, and the magnetic field can be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】 従来の光ファイバ電流・磁界センサの構成図
である。
FIG. 2 is a configuration diagram of a conventional optical fiber current / magnetic field sensor.

【符号の説明】[Explanation of symbols]

11 光源 12 偏光子 13a 磁気光学素子 13b Bi12
eO20素子 14 検光子 15 光受信機 20a 第一光ファイバ 20b 第二光フ
ァイバ
11 Light source 12 Polarizer 13a Magneto-optical element 13b Bi 12 G
eO 20 element 14 analyzer 15 optical receiver 20a first optical fiber 20b second optical fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 波長が850nmの光を発する光源、前
記光源からの光を直線偏光にかえる偏光子、前記偏光子
からの直線偏光の偏光面をファラデー効果により回転さ
せる磁気光学素子、前記偏光子からの直線偏光の偏光面
を自然旋光性により45度回転させ、ファラデー効果に
より更に回転させる酸化物結晶のBi12GeO20素子、
前記磁気光学素子および前記Bi12GeO20素子での直
線偏光の偏光面の回転角に対応して光の強度変調を行な
う検光子、前記検光子からの直線偏光を光電変換してそ
の強度に対応した電気信号を検出する光受信機、前記光
源と前記偏光子との間で光を伝送する第一光ファイバ、
前記検光子と前記光受信機との間で直線偏光を伝送する
第二光ファイバを備え、前記磁気光学素子と前記Bi12
GeO20素子の各光路に並行に作用する磁界の強さを測
定する光ファイバ電流・磁界センサにおいて、前記磁気
光学素子の使用中心温度におけるヴェルデ定数をVo、
このヴェルデ定数の温度係数をαとして、前記磁気光学
素子の光路の長さLを前記偏光子と前記検光子の各光軸
が互いに平行なときは L=−0.019/Vo(α−0.039)(mm) とし、前記偏光子と前記検光子の各光軸が互いに垂直な
ときは L=−0.046/Vo(α+0.039)(mm) とする光ファイバ電流・磁界センサ。
1. A light source that emits light having a wavelength of 850 nm, a polarizer that converts the light from the light source into linearly polarized light, a magneto-optical element that rotates the plane of polarization of the linearly polarized light from the polarizer by the Faraday effect, and the polarizer. Bi 12 GeO 20 element of an oxide crystal that rotates the plane of polarization of the linearly polarized light from 4 by 45 degrees by natural optical rotation and further rotates by the Faraday effect,
An analyzer that modulates the intensity of light in accordance with the rotation angle of the plane of polarization of the linearly polarized light in the magneto-optical element and the Bi 12 GeO 20 element, and linearly polarized light from the analyzer is photoelectrically converted to correspond to the intensity. An optical receiver for detecting an electric signal, a first optical fiber for transmitting light between the light source and the polarizer,
A second optical fiber for transmitting linearly polarized light is provided between the analyzer and the optical receiver, and the magneto-optical element and the Bi 12
In an optical fiber current / magnetic field sensor for measuring the strength of a magnetic field acting in parallel on each optical path of a GeO 20 element, a Verde constant at a use center temperature of the magneto-optical element is Vo,
When the temperature coefficient of this Verdet constant is α, the length L of the optical path of the magneto-optical element is L = −0.019 / Vo (α−0) when the optical axes of the polarizer and the analyzer are parallel to each other. 0.039) (mm), and when the optical axes of the polarizer and the analyzer are perpendicular to each other, L = −0.046 / Vo (α + 0.039) (mm).
【請求項2】 磁気光学素子はFR−5ガラスからな
り、その光路の長さを1.8mmとする請求項1に記載
の光ファイバ電流・磁界センサ。
2. The optical fiber current / magnetic field sensor according to claim 1, wherein the magneto-optical element is made of FR-5 glass, and its optical path length is 1.8 mm.
【請求項3】 磁気光学素子は(Cd1-x Mnx )Te
(x=0.1)からなり、その光路の長さを0.1mm
とする請求項1に記載の光ファイバ電流・磁界センサ。
3. The magneto-optical element is (Cd 1-x Mn x ) Te.
(X = 0.1), and the optical path length is 0.1 mm
The optical fiber current / magnetic field sensor according to claim 1.
JP00078496A 1996-01-08 1996-01-08 Optical fiber current / magnetic field sensor Expired - Fee Related JP3148614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00078496A JP3148614B2 (en) 1996-01-08 1996-01-08 Optical fiber current / magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00078496A JP3148614B2 (en) 1996-01-08 1996-01-08 Optical fiber current / magnetic field sensor

Publications (2)

Publication Number Publication Date
JPH09189752A true JPH09189752A (en) 1997-07-22
JP3148614B2 JP3148614B2 (en) 2001-03-19

Family

ID=11483333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00078496A Expired - Fee Related JP3148614B2 (en) 1996-01-08 1996-01-08 Optical fiber current / magnetic field sensor

Country Status (1)

Country Link
JP (1) JP3148614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913298A (en) * 2014-03-31 2014-07-09 电子科技大学 Device and method for measuring high nonlinear optical fiber Verdet constants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913298A (en) * 2014-03-31 2014-07-09 电子科技大学 Device and method for measuring high nonlinear optical fiber Verdet constants
CN103913298B (en) * 2014-03-31 2016-06-29 电子科技大学 A kind of apparatus and method measuring highly nonlinear optical fiber Verdet constant

Also Published As

Publication number Publication date
JP3148614B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
CA2262640C (en) Fiber optics apparatus and method for accurate current sensing
US4563093A (en) Voltage and electric field measuring device using light
US5053617A (en) Instrument for concurrently optically measuring thermal and electric quantities
EP0086373B1 (en) Magneto-optical converter
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects
WO2000019217A9 (en) In-line electro-optic voltage sensor
JP3144928B2 (en) Optical sensor
JP3148614B2 (en) Optical fiber current / magnetic field sensor
JPS59107273A (en) Photocurrent and magnetic field sensor
JPH0445813B2 (en)
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JP2509692B2 (en) Optical measuring device
JP3046874B2 (en) Optical voltage / electric field sensor
JP3235301B2 (en) Light voltage sensor
Takahashi et al. Semiconductor Optical Amplifier (SOA)-fiber ring laser for sensor application
JP4053677B2 (en) Photocurrent / voltage measuring device
JP3041637B2 (en) Optical applied DC current transformer
CN117405960A (en) Detection device and detection method
JP3148579B2 (en) Optical fiber current / magnetic field sensor
JP2580443B2 (en) Optical voltage sensor
JP2948677B2 (en) Optical magnetic field sensor
JPH01127984A (en) Magnetic field sensor
JPH05119075A (en) Optical voltage sensor
JP2003279601A (en) Faraday rotator, and polarization control method and current measurement method using the same
JPH04315074A (en) Optical magnetic field sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees