JPS59107273A - Photocurrent and magnetic field sensor - Google Patents

Photocurrent and magnetic field sensor

Info

Publication number
JPS59107273A
JPS59107273A JP57217157A JP21715782A JPS59107273A JP S59107273 A JPS59107273 A JP S59107273A JP 57217157 A JP57217157 A JP 57217157A JP 21715782 A JP21715782 A JP 21715782A JP S59107273 A JPS59107273 A JP S59107273A
Authority
JP
Japan
Prior art keywords
optical
magnetic field
magneto
photocurrent
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57217157A
Other languages
Japanese (ja)
Other versions
JPH0424665B2 (en
Inventor
Kazuo Hisama
和生 久間
Kouji Takioka
滝岡 孝司
Toshio Aranishi
新西 俊雄
Hiroaki Kato
博明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57217157A priority Critical patent/JPS59107273A/en
Publication of JPS59107273A publication Critical patent/JPS59107273A/en
Publication of JPH0424665B2 publication Critical patent/JPH0424665B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To attain a small-sized and high-sensitive sensor, by using an oxide crystal having optical Farady effect as a magneto-optic element. CONSTITUTION:The light emitted from a light source 1 reaches a polarizer 3b through an optical fiber 2 and is coverted to a linearly polarized light, and the plane of polarization is rotated at 45 deg. by the optical rotatory power of BGO (Bi12GeO20) constituting a magnetooptic element 4b while this linearly polarized light passes through the element 4b to reach an analyzer 5b; and at this time, if a magnetic field H acts upon the element, 4b, a rotation angle DELTAphi of the plane of polarization satisfies equation DELTAphi=(V2H+theta)l. In this equation, V2 is the verdet's constant of BGO, and theta is its optical rotatory capability. Since the Verdet's constant of BGO is 4-5 times as high as that of a lead glass, the rotation angle of the plane of polarization and the sentivity are 4-5 times high as those of a conventional sensor.

Description

【発明の詳細な説明】 この発明は、偏光子、検光子および磁気光学素子からな
り、この磁気光学素子の光ファラデー効果Z利用して電
流・磁界を検出する光電流・磁界センサに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photocurrent/magnetic field sensor that includes a polarizer, an analyzer, and a magneto-optical element, and detects a current/magnetic field by utilizing the optical Faraday effect Z of the magneto-optical element. .

従来、この種の光電流・磁界センサとして第1図に示す
ものがあった。図において、1は光源、2は光ファイバ
、3aは偏光子、41は鉛ガラスからなる磁気光学セン
サ、5aは検光子、6は光ファイバ、7は光受信機であ
る。
Conventionally, there has been a photocurrent/magnetic field sensor of this type as shown in FIG. In the figure, 1 is a light source, 2 is an optical fiber, 3a is a polarizer, 41 is a magneto-optical sensor made of lead glass, 5a is an analyzer, 6 is an optical fiber, and 7 is an optical receiver.

光R1から出た光は、光ファイバ2によって偏光子3a
K導かれる。光ファイバ2で導かれた光は無偏光である
ため、偏光子3aによって直線偏光される。いま、磁気
光学素子4aに磁界11が作用している場合ン考えると
、この磁気光学素子4aに導かれた直線偏光は、光ファ
ラデー効果によって、 で表わされる回転角だけ回転する。ここでV、は磁気光
学素子4aン構成している鉛ガラスのヴエルデ定数、l
は磁気光学素子4aの長さであり、これらの値は同一の
磁気光学素子では一定であるので、回転角Δψは磁界H
ttc比例することになる。
The light emitted from the light R1 is passed through the optical fiber 2 to the polarizer 3a.
K is guided. Since the light guided by the optical fiber 2 is non-polarized, it is linearly polarized by the polarizer 3a. Now, if we consider that the magnetic field 11 is acting on the magneto-optical element 4a, the linearly polarized light guided to the magneto-optical element 4a is rotated by the rotation angle expressed by the optical Faraday effect. Here, V is the Werde constant of the lead glass constituting the magneto-optical element 4a, l
is the length of the magneto-optical element 4a, and these values are constant for the same magneto-optical element, so the rotation angle Δψ is the length of the magnetic field H
It will be proportional to ttc.

磁気光学素子4ILから出た光は、検光子5ILによっ
て光強度変調されたのち、光ファイバ6’a’経テ光受
信機7に導かれ、光電変換される。この光強度に対応す
る電気信号乞測定することにより、印加磁界Hの大きさ
?検知することができ、この印加磁界の発生源が電流で
あれば、その電流の大きさン検知できる。
The light emitted from the magneto-optical element 4IL is intensity-modulated by an analyzer 5IL, and then guided to an optical receiver 7 through an optical fiber 6'a', where it is photoelectrically converted. By measuring the electric signal corresponding to this light intensity, we can determine the magnitude of the applied magnetic field H? If the source of this applied magnetic field is an electric current, the magnitude of the electric current can be detected.

以上のように構成された従来の光電流・磁界センサにお
いて、磁気光学素子4aを構成している鉛ガラスのヴエ
ルデ定数V、の値は小さく、十分な感度ン得るためには
素子の寸法を大きくしなければならないという欠点があ
った。ヴエルデ定数の値が大きいYI(J等の強磁性も
あるが、これらは温度特性が悪いという欠点馨もつ。ま
たどのような材質のものであっても、偏光子、検光子お
よび磁気光学素子はそれぞれ独・立の部品として構成さ
れているので、組立精度などの不確定要素が存在し、信
頼性にも欠ける。
In the conventional photocurrent/magnetic field sensor configured as described above, the Weerde constant V of the lead glass constituting the magneto-optical element 4a is small, and in order to obtain sufficient sensitivity, the dimensions of the element must be increased. The drawback was that it had to be done. There are also ferromagnetic materials such as YI (J) with a large Werde constant value, but these have the disadvantage of poor temperature characteristics.Also, regardless of the material they are made of, polarizers, analyzers, and magneto-optical elements are Since each component is constructed as an independent component, there are uncertainties such as assembly accuracy, and reliability is also lacking.

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、磁気光学素子として、Bib、
 (Jo026 、 Bi、 5i02oなどのような
光ファラデー効果乞有する酸化物結晶を用いることによ
り、小型で高感度の光電流・磁界センサを提供すること
を目的としている。
This invention was made in order to eliminate the drawbacks of the conventional devices as described above, and as a magneto-optical device, Bib,
(By using oxide crystals such as Jo026, Bi, 5i02o, etc. that exhibit an optical Faraday effect, the purpose is to provide a small and highly sensitive photocurrent/magnetic field sensor.

以下、この発明の一実施例を図について説明する。第2
図において、1は光源、2は光ファイバ、3bは偏光□
子、4bは磁気光学素子、5bは検光子、6は光ファイ
バ、7は光受信機である。この例では、磁気光学素子4
bはB1□OeO,I、(以下1B00」と記す)から
なり、その長さlは、BGOが有している旋光性によっ
て、偏光面がちょうど45突は回転し、偏光子3bおよ
び検光子5bの光軸が等価的に45°の関係になるよう
な値に選ばれている。また偏光子3bおよび検光子5b
は。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, 1 is a light source, 2 is an optical fiber, and 3b is a polarized light □
4b is a magneto-optical element, 5b is an analyzer, 6 is an optical fiber, and 7 is an optical receiver. In this example, the magneto-optical element 4
b consists of B1□OeO,I, (hereinafter referred to as 1B00), and its length l is such that the plane of polarization rotates exactly 45 degrees due to the optical rotation that BGO has, and the polarizer 3b and analyzer The value is selected so that the optical axis of 5b is equivalently at an angle of 45°. Also, polarizer 3b and analyzer 5b
teeth.

磁気光学素子4bの両端に蒸着によって形成された偏光
ビームスプリッタからなっている。
It consists of polarizing beam splitters formed by vapor deposition at both ends of the magneto-optical element 4b.

つぎ1C動作について説明する。光#、1から出た光は
、光フアイバ2乞経て偏光子5bVC達し、直線偏光に
変換され、磁気光学素子4by<通って検光子5bに進
む間に、磁気光学素子Ab2構成しているBGOの旋光
性によって偏光面が45°だけ回転し、このとき磁気光
学素子4bに磁界I]が作用していれば、偏光面の回転
角ΔψはΔψ= (V、 H+θ)l! となる。ここでV、はBGOのグエルデ定数、θはその
旋光能7表わす。BOOのヴエルデ定敬は鉛ガラスの4
〜5倍であるので、第1図に示した従来のものに比べて
偏光面の回転角が4〜5倍になり、感度も4〜5倍にな
る。
Next, the 1C operation will be explained. The light emitted from the light #1 passes through the optical fiber 2, reaches the polarizer 5bVC, is converted into linearly polarized light, passes through the magneto-optical element 4by, and proceeds to the analyzer 5b. If the plane of polarization is rotated by 45° due to the optical rotation of , and at this time the magnetic field I] is acting on the magneto-optical element 4b, the rotation angle Δψ of the plane of polarization is Δψ= (V, H+θ)l! becomes. Here, V represents the Guelde constant of BGO, and θ represents its optical rotation power 7. BOO's Vuelde Sadataka is lead glass 4
5 times, the angle of rotation of the plane of polarization is 4 to 5 times greater than that of the conventional one shown in FIG. 1, and the sensitivity is also 4 to 5 times greater.

また磁気光学素子4bからの出射光の偏光面は、@述の
ようKBOOの旋光性によって45°だけ回転している
ので、偏光子6bと検光子5bの光軸が相対的[45°
の角度?なしているのと等価である。したがって偏光子
6bおよび検光子5bv幾何学的に45°に配置しなく
ても、最大感度と最大ダイナミックレンジ?得ることが
できる。さらに偏光子3bおよび検光子5 b ’a’
 fa気光学素子4bの両端面に蒸着したlli光ビー
ムスプリッタで構成した場合には、各々の占有体積が小
さくてすむ。
In addition, since the polarization plane of the light emitted from the magneto-optical element 4b is rotated by 45° due to the optical rotation of KBOO as described in @, the optical axes of the polarizer 6b and analyzer 5b are relative to each other [45°
angle? This is equivalent to doing so. Therefore, even if the polarizer 6b and the analyzer 5b are not geometrically arranged at 45°, the maximum sensitivity and maximum dynamic range can be achieved. Obtainable. Furthermore, polarizer 3b and analyzer 5b 'a'
When the optical beam splitter is constructed of LLI optical beam splitters deposited on both end faces of the optical element 4b, the volume occupied by each element can be small.

第8図および第4図はこの発明のそれぞれ他の実施に’
II Y示すもので、第8図の場合[1:よ、光ファイ
バ2から磁気光学素子4brc光を磁界1.1と平行に
入射させ、光ファイバ6へも平行に出射させるように構
成され、また第4図の場合には、光ファイバ2から磁気
光学素子4bへは光乞磁界iIと直角に入射させ、光フ
ァイバ6へは平行に出射させるように構成されている。
FIGS. 8 and 4 illustrate alternative implementations of the invention.
In the case of FIG. 8 [1:Y, the magneto-optical element 4 is configured to input light from the optical fiber 2 parallel to the magnetic field 1.1 and output it parallel to the optical fiber 6, In the case of FIG. 4, the configuration is such that the light enters the magneto-optical element 4b from the optical fiber 2 at right angles to the magnetic field iI, and exits the light into the optical fiber 6 in parallel.

いずれの場合にも、第2図に示したものと同様の効果χ
奏することはいうまでもない。
In either case, an effect χ similar to that shown in Figure 2
Needless to say, it is played.

以上のようにこの発明によれば、磁気光学素子として 
331.、、0eOtn j Bi、、 5io26 
 等のヴエルデ定数の大きい酸化物結晶Y (e用した
ので、従来のものに比べて奢るしく高い感度のものがi
uられる。
As described above, according to the present invention, as a magneto-optical element,
331. ,,0eOtn j Bi,, 5io26
Since the oxide crystal Y (e) with a large Werde constant such as
u will be beaten.

また酸化物結晶からなる磁気光学素子は、その旋光性に
よって偏光面?回転させるので、光軸方向の長さを適当
な値、すなわち偏光面を45°+90°・m(ただしm
は0または整数)だけ回転させるのに必要な長さVC選
定しておくことにより、偏光子および検光子の相対的な
角度χ等価的に45°の関係にすることが9能であり、
構造を簡略化できる。
Also, magneto-optical elements made of oxide crystals have polarization planes depending on their optical rotation. Since it is rotated, the length in the optical axis direction is set to an appropriate value, that is, the polarization plane is set to 45° + 90°・m (however, m
By selecting the length VC necessary to rotate the polarizer and the analyzer by an amount (0 or an integer), it is possible to set the relative angle χ of the polarizer and analyzer to an equivalent relationship of 45°.
The structure can be simplified.

また偏光子および検光子を磁気光学素子の両端面に蒸着
によって設けられた偏光ビームスプリッタで構成した場
合には、偏光子、検光子および磁気光学素子が一体とな
り、さらに小形化、高信頼化。
In addition, when the polarizer and analyzer are configured with polarizing beam splitters provided by vapor deposition on both end faces of a magneto-optical element, the polarizer, analyzer, and magneto-optical element are integrated, resulting in further miniaturization and higher reliability.

低価格化が実現できる。Lower prices can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光電流・磁気センサの構成?示すブロッ
ク図、第2図はこの発明の一実施例による光電流・磁界
センサの構成を示すブロック図、第8図および第4図は
この発明のそれぞれ他の実施例を示すブロック図である
。 1・・・光源、2・・・光ファイバ、3b・・・偏光子
、4b・・・磁気光学素子、5b・・・検光子、6・・
・光ファイバ、7・・・光受信機。 なお、図中同一符号は同−一又は相当部分を示す。
Figure 1 shows the configuration of a conventional photocurrent/magnetic sensor? FIG. 2 is a block diagram showing the configuration of a photocurrent/magnetic field sensor according to one embodiment of the present invention, and FIGS. 8 and 4 are block diagrams showing other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Light source, 2... Optical fiber, 3b... Polarizer, 4b... Magneto-optical element, 5b... Analyzer, 6...
- Optical fiber, 7... optical receiver. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)偏光子、検光子および磁気光学素子を備え、上記
磁気光学素子の光ファラデー効果を利用して電流または
磁界を検出する光電流・磁界センサにおいて、上記磁気
光学素子として、光ファラデー効果を有する酸化物結晶
を用いたことを特徴とする光電流・磁界センサ。
(1) In a photocurrent/magnetic field sensor that includes a polarizer, an analyzer, and a magneto-optical element and detects a current or a magnetic field by utilizing the optical Faraday effect of the magneto-optical element, the optical Faraday effect is used as the magneto-optical element. A photocurrent/magnetic field sensor characterized by using an oxide crystal having
(2)上記酸化物結晶は、Bil 2 Ge0t oま
たはB’+t Sin、。 である特許請求の範囲第1項記載の光電流・磁界センサ
(2) The oxide crystal is Bil 2 Ge0t o or B'+t Sin. A photocurrent/magnetic field sensor according to claim 1.
(3)上記偏光子および上記検光子は各々の光軸が等価
的に45°の関係になるように配置されている特許請求
の範囲第1項または第2項記載の光電流・磁界センサ。
(3) The photocurrent/magnetic field sensor according to claim 1 or 2, wherein the polarizer and the analyzer are arranged so that their respective optical axes are equivalently at an angle of 45°.
(4)上記偏光子および上記検光子は、上記酸化物結晶
の両端面に蒸着によって形成された偏光ビームスプリッ
タで構成されている特許請求の範囲第1項ないし第8項
のいずれかに記載の光電流・磁界センサ。
(4) The polarizer and the analyzer are comprised of polarizing beam splitters formed by vapor deposition on both end faces of the oxide crystal. Photocurrent/magnetic field sensor.
JP57217157A 1982-12-10 1982-12-10 Photocurrent and magnetic field sensor Granted JPS59107273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57217157A JPS59107273A (en) 1982-12-10 1982-12-10 Photocurrent and magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217157A JPS59107273A (en) 1982-12-10 1982-12-10 Photocurrent and magnetic field sensor

Publications (2)

Publication Number Publication Date
JPS59107273A true JPS59107273A (en) 1984-06-21
JPH0424665B2 JPH0424665B2 (en) 1992-04-27

Family

ID=16699741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217157A Granted JPS59107273A (en) 1982-12-10 1982-12-10 Photocurrent and magnetic field sensor

Country Status (1)

Country Link
JP (1) JPS59107273A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182177A (en) * 1984-09-29 1986-04-25 Toshiba Corp Light applied magnetic field sensor
JPS61243380A (en) * 1985-04-22 1986-10-29 Mitsubishi Electric Corp Photocurrent/magnetic field sensor
JPS63292084A (en) * 1987-05-25 1988-11-29 Japan Atom Energy Res Inst Magnetic field sensor
US8957667B2 (en) 2009-05-21 2015-02-17 Adamant Kogyo Co., Ltd. Electric current measuring apparatus
CN105699748A (en) * 2016-03-29 2016-06-22 南通市天源安全设备有限公司 Transmission and distribution line AC same-phase potential live display device with signal acquisition function
RU2650615C2 (en) * 2013-03-07 2018-04-16 Адамант Ко., Лтд. Current measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737277A (en) * 1980-08-18 1982-03-01 Hitachi Ltd Measuring device for magnetic field
JPS57196165A (en) * 1981-05-28 1982-12-02 Iwatsu Electric Co Ltd Light intensity modulation measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737277A (en) * 1980-08-18 1982-03-01 Hitachi Ltd Measuring device for magnetic field
JPS57196165A (en) * 1981-05-28 1982-12-02 Iwatsu Electric Co Ltd Light intensity modulation measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182177A (en) * 1984-09-29 1986-04-25 Toshiba Corp Light applied magnetic field sensor
JPH06100642B2 (en) * 1984-09-29 1994-12-12 株式会社東芝 Optical applied magnetic field sensor
JPS61243380A (en) * 1985-04-22 1986-10-29 Mitsubishi Electric Corp Photocurrent/magnetic field sensor
JPS63292084A (en) * 1987-05-25 1988-11-29 Japan Atom Energy Res Inst Magnetic field sensor
US8957667B2 (en) 2009-05-21 2015-02-17 Adamant Kogyo Co., Ltd. Electric current measuring apparatus
RU2650615C2 (en) * 2013-03-07 2018-04-16 Адамант Ко., Лтд. Current measuring device
CN105699748A (en) * 2016-03-29 2016-06-22 南通市天源安全设备有限公司 Transmission and distribution line AC same-phase potential live display device with signal acquisition function

Also Published As

Publication number Publication date
JPH0424665B2 (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US4563093A (en) Voltage and electric field measuring device using light
US4560932A (en) Magneto-optical converter utilizing Faraday effect
EP0514492A4 (en) Light wave polarization determination using a hybrid system
US4608535A (en) Magnetic field and current measuring device using a Faraday cell with a thin electrically conductive film substantially covering the Faraday cell
JP3144928B2 (en) Optical sensor
JPS59107273A (en) Photocurrent and magnetic field sensor
JPH0445813B2 (en)
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JPS59145977A (en) Magnetic field measuring device
JPH0115808B2 (en)
JPH0782036B2 (en) Optical fiber type voltage sensor
JP3044084B2 (en) Magneto-optical element for magnetic field sensor
Peek Dynamic polarization detection
JP2782071B2 (en) Optical rotator
SU757990A1 (en) Optronic current meter
SU853592A1 (en) Light flux comparator
JPS60375A (en) Measuring device of magnetic field
JPH09274056A (en) Current measuring device for optical fiber
JPH04366783A (en) Photomagnetic field and current sensor
JPH05119075A (en) Optical voltage sensor
JPS63217284A (en) Magnetic field sensor
JPS61243380A (en) Photocurrent/magnetic field sensor
JPH0720217A (en) Polarization surface storage optical fiber type magnetic field sensor
JPH07140183A (en) Optical voltage sensor
JPS58109857A (en) Neasuring device of electricity