JPH05119075A - Optical voltage sensor - Google Patents

Optical voltage sensor

Info

Publication number
JPH05119075A
JPH05119075A JP3281539A JP28153991A JPH05119075A JP H05119075 A JPH05119075 A JP H05119075A JP 3281539 A JP3281539 A JP 3281539A JP 28153991 A JP28153991 A JP 28153991A JP H05119075 A JPH05119075 A JP H05119075A
Authority
JP
Japan
Prior art keywords
optical
light
analyzer
voltage sensor
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3281539A
Other languages
Japanese (ja)
Inventor
Kyoichi Tatsuno
恭市 辰野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3281539A priority Critical patent/JPH05119075A/en
Publication of JPH05119075A publication Critical patent/JPH05119075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To obtain an optical voltage sensor which can suppress a decline in measurement accuracy resulting from a change in optical rotary power caused by a change in ambient temperature by incorporating an electrooptic element in which both an electrooptic effect and optical rotary power coexist in the sensor. CONSTITUTION:This optical voltage sensor leads the light introduced through an optical fiber 3 to a light receiving system 13 through a route composed of a polarizer 6, electrooptic element 8 the magnitude of double refraction of which changes in corresponding to applied voltages, and analyzer 9, and optical fiber 12 and, at the same time, a phase element 7 is provided in the route between the polarizer 6 and analyzer 9. In addition, the light transmitting surface of the analyzer 9 is aligned in the direction of the principal axis of an ellipse representing the polarized state of the light when the light passes through the element 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光信号の授受だけで電
圧を測定できる光電圧センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical voltage sensor which can measure a voltage only by transmitting and receiving an optical signal.

【0002】[0002]

【従来の技術】電気信号の授受を基本とする電気式の電
圧センサは、使用できる場所が大幅に制限される。たと
えば高電界中や高磁界中さらには引火性のガス中で使用
できるようにするには、それなりの大掛かりな絶縁対
策、無誘導対策、安全対策を必要とする。
2. Description of the Related Art Electric voltage sensors, which are based on the transmission and reception of electric signals, are greatly limited in the places where they can be used. For example, in order to be able to use it in a high electric field, a high magnetic field, or in a flammable gas, it is necessary to have some large-scale insulation, non-induction, and safety measures.

【0003】このようなことから、最近では、光信号の
授受だけで電圧を測定できるようにした、いわゆる光電
圧センサが出現している。この光電圧センサは、通常、
光ファイバを介して導かれた光を、偏光子、印加電圧に
対応して複屈折の大きさが変化する電気光学素子、検光
子からなる経路を経由させた後に光ファイバを介して受
光系へ導くとともに上記偏光子と上記検光子との間の経
路に位相要素を介在させた構成を採用し、印加電圧に対
応した出力信号を受光系から得るようにしている。
For these reasons, a so-called optical voltage sensor has recently appeared, which can measure the voltage only by transmitting and receiving an optical signal. This optical voltage sensor is usually
Light guided through an optical fiber is passed through a path consisting of a polarizer, an electro-optical element whose birefringence changes according to the applied voltage, and an analyzer, and then to the light receiving system via the optical fiber. A structure in which a phase element is interposed in the path between the polarizer and the analyzer is adopted so as to obtain an output signal corresponding to the applied voltage from the light receiving system.

【0004】ところで、光電圧センサでは種々の電気光
学素子(ポッケルス素子)が用いられている。これらの
電気光学素子のうち、感度および温度特性に優れたもの
としては、Bi12GeO20やBi12SiO20などの立方
晶系酸化物の単結晶が知られている。
By the way, various electro-optical elements (Pockels elements) are used in the optical voltage sensor. Among these electro-optical elements, single crystals of cubic oxides such as Bi 12 GeO 20 and Bi 12 SiO 20 are known as those having excellent sensitivity and temperature characteristics.

【0005】しかしながら、上述した単結晶は、大きな
旋光性を有しており、しかも周囲温度の変化に伴なって
旋光性も変化する特性を有している。このため、これら
の単結晶を電気光学素子として組込んだ光電圧センサに
あっては、旋光性の影響で精度の高い測定が困難であっ
た。
However, the above-mentioned single crystal has a large optical rotatory power, and further has a characteristic that the optical rotatory power also changes with a change in ambient temperature. Therefore, in an optical voltage sensor in which these single crystals are incorporated as an electro-optical element, it is difficult to perform highly accurate measurement due to the effect of optical rotation.

【0006】[0006]

【発明が解決しようとする課題】上述の如く、Bi12
eO20やBi12SiO20などのように電気光学効果と旋
光性とを持つ電気光学素子を組込んだ光電圧センサにあ
っては、周囲温度の変化に伴なう旋光性の変化が原因し
て精度の高い測定が困難であった。
As described above, Bi 12 G
In an optical voltage sensor incorporating an electro-optical element having an electro-optical effect and optical activity such as eO 20 and Bi 12 SiO 20 , a change in optical activity due to a change in ambient temperature is the cause. It was difficult to measure with high accuracy.

【0007】そこで本発明は、電気光学効果と旋光性と
が共存する電気光学素子を組込んだものにおいて、周囲
温度の変化に伴って起こる旋光性の変化で測定精度が低
下するのを抑制できる光電圧センサを提供することを目
的としている。
Therefore, in the present invention, in the case where the electro-optical element in which the electro-optical effect and the optical rotatory power coexist, is incorporated, it is possible to prevent the measurement accuracy from deteriorating due to the change in the optical rotatory power accompanying the change in ambient temperature. It is intended to provide an optical voltage sensor.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る光電圧センサでは、光が電気光学素子
を透過したときの偏波状態を表す楕円の主軸方向にその
透過面を一致させて検光子を設けている。
In order to achieve the above object, in the photovoltage sensor according to the present invention, the transmitting surface is arranged in the principal axis direction of the ellipse representing the polarization state when light passes through the electro-optical element. An analyzer is provided so as to match.

【0009】[0009]

【作用】検光子を上記関係に配置すると、周囲温度の変
化に伴って旋光性がΔγt 変化した場合でも、検光子の
出射光強度の変化は、1−cos 2 Δγt となり、Δγt
の影響を最も受け難い状態が得られる。
When the analyzer is arranged in the above relationship, even if the optical rotation changes by Δγ t due to the change in ambient temperature, the change in the emitted light intensity of the analyzer becomes 1-cos 2 Δγ t , and Δγ t
It is possible to obtain the most difficult state to be affected by.

【0010】[0010]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1には本発明の一実施例に係る光電圧センサの概
略構成が示されている。この光電圧センサでは、駆動回
路1でLED2を発光させる。そして、LED2から出
た光を光ファイバ3を介して測定光学部4へと導く。
Embodiments will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an optical voltage sensor according to an embodiment of the present invention. In this optical voltage sensor, the drive circuit 1 causes the LED 2 to emit light. Then, the light emitted from the LED 2 is guided to the measurement optical unit 4 via the optical fiber 3.

【0011】測定光学部4は、光ファイバ3を介して導
かれた光を平行ビームに変換するコリメータレンズ5
と、このコリメータレンズ5から出た光を直線偏光に変
換する偏光子6と、この偏光子6を出た光に初期位相を
与えて円偏光に変換する位相要素としての1/4 波長板7
と、印加電圧に比例して屈折率が変化し、1/4 波長板7
を出た円偏光を楕円偏光に変換するBi12GeO20やB
12SiO20などの単結晶からなる電気光学素子8と、
この電気光学素子8を透過した楕円偏光を光強度に変換
する検光子9と、この検光子9を出た光を集光させるレ
ンズ10とで構成されている。電気光学素子8における
光透過方向の両面には、透明電極11a、11bが設け
てある。これら透明電極11a、11bを介して被測定
電圧Vsが電気光学素子8に印加される。
The measurement optical section 4 converts the light guided through the optical fiber 3 into a collimator lens 5.
And a polarizer 6 for converting the light emitted from the collimator lens 5 into linearly polarized light, and a 1/4 wavelength plate 7 as a phase element for giving an initial phase to the light emitted from the polarizer 6 and converting it into circularly polarized light.
And the refractive index changes in proportion to the applied voltage,
Bi 12 GeO 20 or B that converts circularly polarized light emitted from
an electro-optical element 8 made of a single crystal such as i 12 SiO 20 ;
It is composed of an analyzer 9 for converting the elliptically polarized light transmitted through the electro-optical element 8 into a light intensity, and a lens 10 for condensing the light emitted from the analyzer 9. Transparent electrodes 11a and 11b are provided on both surfaces of the electro-optical element 8 in the light transmitting direction. The voltage Vs to be measured is applied to the electro-optical element 8 via the transparent electrodes 11a and 11b.

【0012】ここで、電気光学素子8は、その屈折率楕
円体の主軸が偏光子6の主軸に対して45度回転した位
置となるように配置されている。また検光子9は、その
透過面の方向Iが図2に示すように、電気光学素子8を
透過する光の偏波状態を表す楕円の主軸方向に一致する
ように偏光子6の主軸の方向xに対して角度φだけ回転
させて配置されている。
Here, the electro-optical element 8 is arranged such that the principal axis of its index ellipsoid is rotated by 45 degrees with respect to the principal axis of the polarizer 6. As shown in FIG. 2, the analyzer 9 has a direction of the principal axis of the polarizer 6 such that the direction I of the transmission surface thereof coincides with the principal axis direction of the ellipse representing the polarization state of the light transmitted through the electro-optical element 8. It is arranged to be rotated by an angle φ with respect to x.

【0013】コリメータレンズ10を出た光は、光ファ
イバ12を介してフォトダイオード13に導かれ、この
フォトダイオード13によって電気信号に変換される。
この電気信号は増幅器14で増幅された後、差動増幅器
15の一方の入力端に導入されるとともに低域フィルタ
16を介して差動増幅器15の他方の入力端に導入され
る。差動増幅器15は、後述するように端子17から印
加電圧Vに比例した出力を送出する。そして、駆動回路
1は、低域フィルタ16の出力が一定となるようにLE
D2を駆動する。
The light emitted from the collimator lens 10 is guided to a photodiode 13 via an optical fiber 12 and is converted into an electric signal by the photodiode 13.
This electric signal is amplified by the amplifier 14 and then introduced into one input end of the differential amplifier 15 and also introduced into the other input end of the differential amplifier 15 via the low-pass filter 16. The differential amplifier 15 outputs an output proportional to the applied voltage V from the terminal 17, as described later. Then, the drive circuit 1 sets the LE so that the output of the low-pass filter 16 becomes constant.
Drive D2.

【0014】上記のように構成された光電圧センサにお
いて、フォトダイオード13に入射する光の強度Pは、
電気光学素子8に電圧が印加されていないときの光の強
度をP0 としたとき、 P=P0 (1+sin αV) …(1) となる。なお、(1) 式において、Vは印加電圧、αは比
例定数である。αVが1より十分に小さいとき、sin α
VはαVとみなすことができるので、(1) 式は近似的
に、 P=P0 (1+αV) …(2) となる。
In the optical voltage sensor constructed as described above, the intensity P of the light incident on the photodiode 13 is
Assuming that the intensity of light when no voltage is applied to the electro-optical element 8 is P 0 , P = P 0 (1 + sin αV) (1) In the equation (1), V is an applied voltage and α is a proportional constant. When αV is sufficiently smaller than 1, sin α
Since V can be regarded as αV, the equation (1) is approximately P = P 0 (1 + αV) (2)

【0015】低域フィルタ16によってP0 が抽出さ
れ、このP0 が差動増幅器15の他方の入力端に与えら
れる。したがって、差動増幅器15の出力端17には、
αVなる出力が現れ、印加電圧Vのレベルを知ることが
できる。
[0015] P 0 by the low-pass filter 16 is extracted, the P 0 is provided to the other input terminal of the differential amplifier 15. Therefore, at the output terminal 17 of the differential amplifier 15,
An output of αV appears, and the level of the applied voltage V can be known.

【0016】なお、実際には、LED2の出力変化や光
ファイバを含む全光路での損失変化を補償するために、
0 が一定になるように駆動回路1でLED2への注入
電流が調節される。
Actually, in order to compensate the output change of the LED 2 and the loss change in the entire optical path including the optical fiber,
The injection current into the LED 2 is adjusted by the drive circuit 1 so that P 0 becomes constant.

【0017】ところで、この実施例では電気光学素子8
を透過する光の偏波状態を表す楕円の主軸方向に検光子
9の透過面を一致させている。このため、周囲温度の変
化に伴って電気光学素子8の旋光性が変化しても、この
旋光性の変化によって出力が受ける影響を最小に抑える
ことができる。以下、この理由を説明する。
By the way, in this embodiment, the electro-optical element 8 is used.
The transmission surface of the analyzer 9 is aligned with the direction of the principal axis of the ellipse that represents the polarization state of the light that passes through. Therefore, even if the optical rotatory power of the electro-optical element 8 changes with the change of the ambient temperature, it is possible to minimize the influence of the change of the optical rotatory power on the output. The reason for this will be described below.

【0018】この光電圧センサの測定光学部4では、図
3に示すように、偏光子6を通過した光を入射光H1
すると、この入射光H1 が電気光学素子8を通過して出
射光H2 となり、この出射光H2 が検光子9を透過して
出射光H3 となる。なお、電気光学素子8としてBi12
GeO20単結晶を用いる場合、この単結晶はその主軸が
偏光子6の主軸、つまり図2中x軸に対して45度回転
したx′,y′の方向となるように配置される。
In the measurement optical section 4 of this optical voltage sensor, as shown in FIG. 3, assuming that the light passing through the polarizer 6 is the incident light H 1 , this incident light H 1 passes through the electro-optical element 8. It becomes emitted light H 2 , and this emitted light H 2 passes through the analyzer 9 and becomes emitted light H 3 . Note that Bi 12 is used as the electro-optical element 8.
When a GeO 20 single crystal is used, this single crystal is arranged so that its main axis is the main axis of the polarizer 6, that is, the x ′ and y ′ directions rotated by 45 ° with respect to the x axis in FIG.

【0019】本発明者は、Bi12GeO20単結晶のよう
に、電気光学効果と旋光性とを併せ持つ電気光学素子8
を用いた場合について、この素子から出射する出射光H
2 と検光子9から出射する出射光H3 の偏光状態を計算
するプログラムを開発した。
The inventor of the present invention has found that the electro-optical element 8 having both the electro-optical effect and the optical rotatory power, such as the Bi 12 GeO 20 single crystal.
When H is used, the emitted light H emitted from this element
2 and a program for calculating the polarization state of the emitted light H 3 emitted from the analyzer 9 have been developed.

【0020】まず、Bi12GeO20単結晶を光路方向に
N分割し、厚さΔL(=L/N、ただし、Lは素子の光
路方向の長さ)の薄い素子を考え、この薄い素子におい
て電気光学効果によってΔδ(=δ/N)なる位相遅れ
が生じた後、旋光性によって偏光面がΔγ(=γ/N)
なる角度回転するものとみなす。δは長さLの場合の位
相遅れである。位相遅れとは、x′方向の光の電場成分
と、y′方向の光の電場成分との位相差のことである。
First, a Bi 12 GeO 20 single crystal is divided into N in the optical path direction, and a thin element having a thickness ΔL (= L / N, where L is the length of the element in the optical path direction) is considered. After a phase delay of Δδ (= δ / N) due to the electro-optic effect, the polarization plane is changed to Δγ (= γ / N) due to the optical rotatory power.
It is considered to rotate by an angle. δ is a phase delay when the length is L. The phase delay is the phase difference between the electric field component of light in the x ′ direction and the electric field component of light in the y ′ direction.

【0021】光の偏光状態をジョーンズ・ベクトルで表
示し、ΔLの薄い素子からなる位相遅れ素子を表示する
マトリックス、旋光性を表示するマトリックスで表わす
ことにする。なお、これらの表示方法については、D.Cl
arke,J.F.Grainger “Polrized Light and Optical Mea
surement”Pergamon Pressに詳しく説明されている。B
12GeO20単結晶への入射光H1 のジョーンズ・ベク
トルは、
The polarization state of light is represented by a Jones vector, and is represented by a matrix showing a phase delay element consisting of a thin element of ΔL and a matrix showing an optical rotatory power. For information on how to display these, see D.Cl.
arke, JFGrainger “Polrized Light and Optical Mea
surement ”Pergamon Press. B
The Jones vector of the incident light H 1 on the i 12 GeO 20 single crystal is

【0022】[0022]

【数1】 と表される。Bi12GeO20単結晶からの出射光H2
ジョーンズ・ベクトルは、
[Equation 1] Is expressed as The Jones vector of the emitted light H 2 from the Bi 12 GeO 20 single crystal is

【0023】[0023]

【数2】 と表される。一方、検光子9からの出射光H3 のジョー
ンズ・ベクトルは、
[Equation 2] Is expressed as On the other hand, the Jones vector of the emitted light H 3 from the analyzer 9 is

【0024】[0024]

【数3】 と表される。位相遅れ素子は、主軸x′,y′の座標系
で、
[Equation 3] Is expressed as The phase delay element is a coordinate system of principal axes x'and y ',

【0025】[0025]

【数4】 と表され、旋光性は、[Equation 4] Is expressed as

【0026】[0026]

【数5】 と表される。x−y座標系から主軸のx′−y′座標系
に変換するマトリックスは、
[Equation 5] Is expressed as The matrix for converting from the xy coordinate system to the x'-y 'coordinate system of the main axis is

【0027】[0027]

【数6】 であるので、Bi12GeO20単結晶の出射光H2 は、[Equation 6] Therefore, the emitted light H 2 of the Bi 12 GeO 20 single crystal is

【0028】[0028]

【数7】 となる。また、検光子9は透過面の方向をxA ,これに
垂直な方向をyA とした座標系で、
[Equation 7] Becomes The analyzer 9 has a coordinate system in which the direction of the transmitting surface is x A and the direction perpendicular to this is y A.

【0029】[0029]

【数8】 と表すことができる。一方、x−y座標系からxA −y
A 座標系への変換マトリックスは、
[Equation 8] It can be expressed as. On the other hand, from the x-y coordinate system, x A -y
The transformation matrix to the A coordinate system is

【0030】[0030]

【数9】 であるので、検光子9の出射光H3 は、[Equation 9] Therefore, the output light H 3 of the analyzer 9 is

【0031】[0031]

【数10】 となる。そして、検光子9の出射光H3 の強度Eは、E
xA 2 +EyA 2 に比例したものとなる。
[Equation 10] Becomes The intensity E of the emitted light H 3 from the analyzer 9 is E
xA 2 + E yA 2 Will be proportional to.

【0032】上記の計算手法にしたがい、旋光性を50゜
一定とし、印加電圧Vで位相差δが生じたとき、Bi12
GeO20単結晶による偏光の楕円主軸方向のx軸からの
角度を計算してみたところ、下表に示す結果が得られ
た。
According to the above calculation method, when the optical rotatory power is kept constant at 50 ° and the phase difference δ occurs at the applied voltage V, Bi 12
When the angle from the x axis of the elliptical main axis direction of the polarized light by the GeO 20 single crystal was calculated, the results shown in the table below were obtained.

【0033】[0033]

【表1】 [Table 1]

【0034】この表から判るように、Bi12GeO20
結晶における偏光楕円の主軸の方向は、印加電圧Vが変
化してδが変化しても、25.0゜〜25.1゜の範囲にあり、
大きくは変化しない。
As can be seen from this table, the direction of the principal axis of the polarization ellipse in the Bi 12 GeO 20 single crystal is in the range of 25.0 ° to 25.1 ° even if the applied voltage V changes and δ changes.
It doesn't change much.

【0035】一方、δ=10゜,γ=50゜のときに、検光
子9の透過面方向をX軸に対して0〜90゜の範囲で変化
させ、検光子9の出射光H3 の強度が最大になる位置を
求めたところ、図4に示すように25゜の位置であり、B
12GeO20単結晶における偏光楕円の主軸に一致して
いることが判った。
On the other hand, when δ = 10 ° and γ = 50 °, the direction of the transmitting surface of the analyzer 9 is changed within the range of 0 to 90 ° with respect to the X axis, and the emitted light H 3 of the analyzer 9 is changed. When the position where the strength is maximized was obtained, it was 25 ° as shown in FIG.
It was found that they coincided with the principal axis of the polarization ellipse in the i 12 GeO 20 single crystal.

【0036】次に、周囲温度の変化に伴って旋光性が変
化することを想定し、γ=50゜からγ=55゜の範囲でγ
を変化させてセンサ出力の変動を調べたところ、図5に
示す結果が得られた。Bi12GeO20単結晶の場合、周
囲温度が25℃から70℃に変化した場合には、2゜程度の
旋光性の変化(Δγt )がある。したがって、周囲温度
が25℃から70℃に変化した場合、検光子9の出射光強
度、すなわちセンサの出力の変化は0.15%程度である。
Next, assuming that the optical rotatory power changes with a change in ambient temperature, γ in the range of γ = 50 ° to γ = 55 °
When the fluctuation of the sensor output was examined by changing the value of, the results shown in FIG. 5 were obtained. In the case of Bi 12 GeO 20 single crystal, when the ambient temperature changes from 25 ° C. to 70 ° C., there is a change (Δγ t ) in optical rotation of about 2 °. Therefore, when the ambient temperature changes from 25 ° C. to 70 ° C., the intensity of the light emitted from the analyzer 9, that is, the change in the sensor output is about 0.15%.

【0037】γの変化は、出射光H2 の偏光楕円の主軸
の変化として現れるので、この主軸と検光子9の透過面
とを一致させた条件、つまり本実施例の条件では、cos
2 Δγt に比例して出射光H3 の強度が変化する。そし
て、Δγt が1より十分に小さいとき最も強度変化が少
なくなることになる。
Since the change in γ appears as a change in the principal axis of the polarization ellipse of the outgoing light H 2 , cos is obtained under the condition that the principal axis coincides with the transmitting surface of the analyzer 9, that is, the condition of this embodiment.
The intensity of the emitted light H 3 in proportion to 2 [Delta] [gamma] t is changed. Then, when Δγ t is sufficiently smaller than 1, the intensity change becomes the smallest.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
測定感度を減ずることなく、周囲温度の変化に伴う旋光
性の変化の影響を少なくできる。
As described above, according to the present invention,
It is possible to reduce the influence of the change in the optical rotatory power due to the change in the ambient temperature without reducing the measurement sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る光電圧センサのブロッ
ク構成図、
FIG. 1 is a block configuration diagram of an optical voltage sensor according to an embodiment of the present invention,

【図2】同センサにおいて検光子の透過面の方向を説明
するための図、
FIG. 2 is a diagram for explaining a direction of a transmission surface of an analyzer in the sensor,

【図3】本発明の基本となる計算の方法を説明するため
の図、
FIG. 3 is a diagram for explaining a calculation method which is the basis of the present invention;

【図4】検光子の透過面角度に対するセンサ出力変動の
計算結果を示す図、
FIG. 4 is a diagram showing a calculation result of sensor output fluctuation with respect to a transmission surface angle of an analyzer;

【図5】旋光性の変化に対するセンサ出力変動の計算結
果を示す図。
FIG. 5 is a diagram showing calculation results of sensor output fluctuations with respect to changes in optical rotation.

【符号の説明】[Explanation of symbols]

1…駆動回路、 2…LED, 3…光ファイバ、 4…測定光学
系、 6…偏光子、 7…1/4 波長
板、 8…電気光学素子、 9…検光子、 11a,11b…透明電極、 12…光ファイ
バ、 13…フォトダイオード、 14…増幅器、 15…差動増幅器、 16…低域フィ
ルタ。
DESCRIPTION OF SYMBOLS 1 ... Driving circuit, 2 ... LED, 3 ... Optical fiber, 4 ... Measurement optical system, 6 ... Polarizer, 7 ... 1/4 wavelength plate, 8 ... Electro-optical element, 9 ... Analyzer, 11a, 11b ... Transparent electrode , 12 ... Optical fiber, 13 ... Photodiode, 14 ... Amplifier, 15 ... Differential amplifier, 16 ... Low-pass filter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光ファイバを介して導かれた光を、偏光
子、印加電圧に対応して複屈折の大きさが変化する電気
光学素子、検光子からなる経路を経由させた後に光ファ
イバを介して受光系へ導くとともに上記偏光子と上記検
光子との間の経路に位相要素を介在させてなる光電圧セ
ンサにおいて、前記光が前記電気光学素子を透過したと
きの偏波状態を表す楕円の主軸方向にその透過面を一致
させて前記検光子が設けられていることを特徴とする光
電圧センサ。
1. The optical fiber is passed through a path consisting of a polarizer, an electro-optical element whose birefringence magnitude changes in response to an applied voltage, and an analyzer after the light guided through the optical fiber is passed through the optical fiber. In an optical voltage sensor having a phase element interposed in the path between the polarizer and the analyzer while being guided to a light receiving system via an ellipse indicating a polarization state when the light passes through the electro-optical element. The optical voltage sensor, wherein the analyzer is provided such that its transmission surfaces are aligned with each other in the main axis direction.
JP3281539A 1991-10-28 1991-10-28 Optical voltage sensor Pending JPH05119075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3281539A JPH05119075A (en) 1991-10-28 1991-10-28 Optical voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3281539A JPH05119075A (en) 1991-10-28 1991-10-28 Optical voltage sensor

Publications (1)

Publication Number Publication Date
JPH05119075A true JPH05119075A (en) 1993-05-14

Family

ID=17640587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3281539A Pending JPH05119075A (en) 1991-10-28 1991-10-28 Optical voltage sensor

Country Status (1)

Country Link
JP (1) JPH05119075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462811A1 (en) * 2003-03-28 2004-09-29 Abb Research Ltd. Electro-optic voltage sensor for high voltages
CN104111367A (en) * 2014-07-02 2014-10-22 中国西电电气股份有限公司 Ultra-high voltage direct current voltage transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462811A1 (en) * 2003-03-28 2004-09-29 Abb Research Ltd. Electro-optic voltage sensor for high voltages
US6876188B2 (en) 2003-03-28 2005-04-05 Abb Research Ltd Electro-optical voltage sensor for high voltages
CN104111367A (en) * 2014-07-02 2014-10-22 中国西电电气股份有限公司 Ultra-high voltage direct current voltage transformer

Similar Documents

Publication Publication Date Title
US4465969A (en) Voltage and electric field measuring device using light
EP0083196B1 (en) Voltage and electric field measuring device using light
US4560932A (en) Magneto-optical converter utilizing Faraday effect
JPH0123067B2 (en)
JPH05119075A (en) Optical voltage sensor
JPH05264607A (en) Photoelectric voltage sensor
JPS59107273A (en) Photocurrent and magnetic field sensor
JP2509692B2 (en) Optical measuring device
JP3235301B2 (en) Light voltage sensor
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JP2580443B2 (en) Optical voltage sensor
JP2580442B2 (en) Optical voltage sensor
JPS58146858A (en) Optical current and magnetic field measuring device
JPH04355323A (en) Optical fiber sensor
JP3301324B2 (en) Optical voltage / electric field sensor
Miyashita et al. Measurement of current, voltage and power using single quartz crystal
JPH09274056A (en) Current measuring device for optical fiber
JPS5935156A (en) Optical current transformer
JPS62272159A (en) Optical voltage sensor
JP2000121674A (en) Photo voltage sensor
JPS58146859A (en) Optical current and magnetic field measuring device
Yi et al. A novel bulk-glass optical current transducer having an adjustable multi-ring optical path
JPH0370167B2 (en)
JPS63120260A (en) Light detection type voltage sensor
JPS6110777A (en) Measuring device for current