JPH0370167B2 - - Google Patents

Info

Publication number
JPH0370167B2
JPH0370167B2 JP60194639A JP19463985A JPH0370167B2 JP H0370167 B2 JPH0370167 B2 JP H0370167B2 JP 60194639 A JP60194639 A JP 60194639A JP 19463985 A JP19463985 A JP 19463985A JP H0370167 B2 JPH0370167 B2 JP H0370167B2
Authority
JP
Japan
Prior art keywords
fiber
polarization
strain
maintaining
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60194639A
Other languages
Japanese (ja)
Other versions
JPS6285808A (en
Inventor
Takao Hirose
Yoshasu Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DDK Ltd
Original Assignee
DDK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DDK Ltd filed Critical DDK Ltd
Priority to JP60194639A priority Critical patent/JPS6285808A/en
Priority to US06/900,506 priority patent/US4773753A/en
Priority to DE8686401918T priority patent/DE3679126D1/en
Priority to EP86401918A priority patent/EP0214907B1/en
Publication of JPS6285808A publication Critical patent/JPS6285808A/en
Publication of JPH0370167B2 publication Critical patent/JPH0370167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフアイバを用いたひずみセンサに関す
る。とくに、偏光面保持フアイバにレーザ光を通
してひずみを測定するひずみセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a strain sensor using fiber. In particular, it relates to a strain sensor that measures strain by passing a laser beam through a polarization-maintaining fiber.

[従来の技術] 偏光面保持フアイバを用いた温度センサがすで
に開発されており、この温度センサは、ひずみに
よつて大きな影響を受けることが明らかにされて
いる。このような偏光面保持フアイバを用いたひ
ずみセンサの一例(たとえば、昭和59年度電気関
係学会東北支部連合大会、文献番号2F17)を第
2図に示し、説明する。
[Prior Art] Temperature sensors using polarization-maintaining fibers have already been developed, and it has been shown that these temperature sensors are significantly affected by strain. An example of a strain sensor using such a polarization-maintaining fiber (for example, 1985 Tohoku Branch Federation Conference of Electrical Related Societies, Document No. 2F17) is shown in FIG. 2 and will be described.

第2図において、10はひずみセンサとして用
いられる偏光面保持フアイバ、21はガス・レー
ザや半導体レーザであるレーザ装置、22はレー
ザ装置21の出力光を偏光面45゜(直交成分1:
1)で偏光するための偏光子、23は偏光子22
を通過した光をフアイバ10に入射せしめるため
のレンズ、24はフアイバの出射光に対して作用
する検光子、25は検光子24を通過した光を集
めるためにコリメータ、26はコリメータからの
光の強度を検出するための光電子増倍管、ホト・
ダイオードやアバランシエ・ホト・ダイオードを
含む光検出器、27は光検出器26の出力を表示
するためのブラウン管デイスプレイや、レコーダ
である表示装置である。
In FIG. 2, 10 is a polarization-maintaining fiber used as a strain sensor, 21 is a laser device such as a gas laser or a semiconductor laser, and 22 is an output light of the laser device 21 with a polarization plane of 45° (orthogonal component 1:
1) is a polarizer for polarizing light, 23 is a polarizer 22
24 is an analyzer that acts on the light emitted from the fiber, 25 is a collimator for collecting the light that has passed through the analyzer 24, and 26 is a lens for the light from the collimator. Photomultiplier tube, photomultiplier tube for detecting intensity
A photodetector 27 includes a diode or an avalanche photodiode, and 27 is a display device such as a cathode ray tube display or a recorder for displaying the output of the photodetector 26.

偏光子22によつて偏光面保持フアイバ10に
入射される偏光のX軸成分とX軸成分は等しいも
のとなつているが、ひずみ(偏光面保持フアイバ
10の軸方向への張力)によつて偏光面保持フア
イバ10を通過する偏光のX軸成分とY軸成分の
通過時間(遅延時間)は変化し、その変化分はX
軸成分とY軸成分とでは異なつた値を示す。すな
わち、偏光面保持フアイバ10の出射端において
は、偏光のX軸成分とY軸成分の位相のずれが変
化することになり、このX軸およびY軸成分を合
成した光の偏光面は、直線偏波から楕円偏波、円
偏波に変ることから、これを検光子24を通して
光検出器26により検出すると、光の強度の変化
として得られ、この強度変化が表示装置27に表
示される。
Although the X-axis component and the X-axis component of the polarized light incident on the polarization-maintaining fiber 10 by the polarizer 22 are equal, due to strain (tension in the axial direction of the polarization-maintaining fiber 10), The transit time (delay time) of the X-axis component and Y-axis component of the polarized light passing through the polarization-maintaining fiber 10 changes, and the amount of change is
The axis component and the Y-axis component show different values. That is, at the output end of the polarization-maintaining fiber 10, the phase shift between the X-axis component and the Y-axis component of the polarized light changes, and the polarization plane of the light that combines the X-axis and Y-axis components is a straight line. Since the polarized waves change from polarized waves to elliptically polarized waves and circularly polarized waves, when this is detected by the photodetector 26 through the analyzer 24, it is obtained as a change in the intensity of the light, and this intensity change is displayed on the display device 27.

[発明が解決しようとする問題顛] ここで、偏光面保持フアイバ10の出射端にお
ける偏光面の角度の変化は、偏光面保持フアイバ
10の軸方向に対する張力である、ひずみのみに
よつてもたらされるものではなく、温度変化によ
つてももたらされることが明らかにされており、
両者の効果を分離することができなかつた。
[Problem to be Solved by the Invention] Here, the change in the angle of the polarization plane at the output end of the polarization-maintaining fiber 10 is brought about only by strain, which is tension in the axial direction of the polarization-maintaining fiber 10. It has been shown that this phenomenon is caused by temperature changes as well as by temperature changes.
It was not possible to separate the effects of the two.

さらに、温度変化は、偏光面保持フアイバ10
自身にも膨脹または収縮をもたらすものであり、
また、偏光面保持フアイバ10を保護するための
被覆があればそれの膨脹または収縮するひずみが
偏光面保持フアイバ10に加えられるから、偏光
面保持フアイバ10の出射光の偏光面の回転はひ
ずみのみならず、温度変化をも同時に検出するも
のであり正確なひずみを測定することはできなか
つた。
Additionally, temperature changes can affect the polarization maintaining fiber 10.
It causes expansion or contraction of itself,
Furthermore, if there is a coating for protecting the polarization-maintaining fiber 10, the strain caused by its expansion or contraction is applied to the polarization-maintaining fiber 10, so the rotation of the polarization plane of the light emitted from the polarization-maintaining fiber 10 is caused only by the strain. However, since it also detects temperature changes at the same time, it is not possible to accurately measure strain.

さらに、フアイバによるひずみセンサは、環境
の劣悪な場所に使用されることが予想され、この
ような場所では周辺の温度変化も大きくひずみ測
定の精度を一層劣化せしめるであろう。
Furthermore, fiber strain sensors are expected to be used in places with poor environments, and in such places, surrounding temperature changes will be large, further degrading the accuracy of strain measurement.

[問題点を解決するための手段] 本発明はこのような問題点を解決するためにな
されたもので、ひずみ特性が異なり温度特性が同
じである2種の偏光面保持フアイバをそのフアイ
バの偏光軸を90゜ずらして接続し、これに偏光子
を通して光を入射すると、偏光のX軸成分および
Y軸成分の位相のずれに及ぼす入射端側の偏光面
保持フアイバの影響と、出射端側の偏光面保持フ
アイバの影響は反対の極性で作用する。すなわ
ち、入射端側の偏光面保持フアイバによつて偏光
面がたとえば右まわりに回転すると、出射端側の
偏光面保持フアイバによつて偏光面は左まわりに
回転せしめられることになり、温度変化によつて
回転する右まわりおよび左まわりの回転角が丁度
打消し合うように2種の偏光面保持フアイバを選
択した。
[Means for Solving the Problems] The present invention has been made to solve these problems, and it uses two types of polarization-maintaining fibers that have different strain characteristics and the same temperature characteristics to adjust the polarization of the fibers. If the axes are shifted by 90 degrees and light is incident on this through a polarizer, the effect of the polarization maintaining fiber on the input end side on the phase shift of the X-axis component and Y-axis component of polarized light, and the influence of the polarization plane-maintaining fiber on the output end side. The influence of polarization maintaining fibers operates with opposite polarity. In other words, if the plane of polarization is rotated clockwise by the polarization-maintaining fiber at the input end, the plane of polarization will be rotated counterclockwise by the polarization-maintaining fiber at the output end, which is less sensitive to temperature changes. Therefore, two types of polarization-maintaining fibers were selected so that the clockwise and counterclockwise rotation angles exactly cancel each other out.

[作 用] これによつて、2種の偏光面保持フアイバを通
つた光は、温度変化による偏光面の回転は打消さ
れ、ひずみによる偏光面の回転のみが得られるか
ら、精度の高いひずみ測定が可能となつた。
[Function] As a result, the rotation of the polarization plane due to temperature change is canceled out for the light that passes through the two types of polarization plane maintaining fibers, and only the rotation of the polarization plane due to strain is obtained, allowing highly accurate strain measurement. became possible.

[実施例] 本発明によるフアイバひずみセンサを第1図に
示し説明する。
[Example] A fiber strain sensor according to the present invention is shown in FIG. 1 and will be described.

12は長さL1の偏光面保持フアイバ(第1フ
アイバ)、16は長さL2の偏光面保持フアイバ
(第2フアイバ)、であり、両フアイバは接続点1
9で融着により、あるいはコネクタにより接続さ
れている。この接続点19においては、たとえば
4μmのコア径を有するコア13とその周辺をとり
まく楕円クラツド14を含む直径125μmのフアイ
バ径を有する第1フアイバと、たとえば4μmのコ
アを有するコア17とその周辺をとりまく楕円ク
ラツド18とを含む直径125μmのフアイバ径を有
する第2フアイバとがその偏光軸を90゜ずらすた
めに、楕円クラツド14および18の長軸を直交
せしめて接続されている。偏光保持フアイバ中を
偏光が通過するときに、温度変化やひずみがX軸
成分およびY軸成分に及ぼす遅延時間の影響は異
なつたものであるため、偏光が偏光面保持フアイ
バ中を伝送するにしたがつてX軸成分とY軸成分
とを間に位相差を生じ、この両成分を合成した偏
光面は回転したものとなる。この位相差の結果で
ある偏光面の回転は、検光子(第2図の24)を
通過せしめることによつて光の強弱として光検出
器(第2図の26)によつて検出される。
12 is a polarization-maintaining fiber (first fiber) with length L 1 , 16 is a polarization-maintaining fiber (second fiber) with length L 2 , and both fibers are connected to connection point 1.
At 9, they are connected by fusion bonding or by connectors. At this connection point 19, for example,
A first fiber having a diameter of 125 μm including a core 13 having a core diameter of 4 μm and an elliptical cladding 14 surrounding it; and a diameter including a core 17 having a core diameter of 4 μm and an elliptical cladding 18 surrounding it. A second fiber having a fiber diameter of 125 .mu.m is connected with the long axes of the elliptical claddings 14 and 18 orthogonal in order to shift their polarization axes by 90 DEG. As polarized light passes through a polarization-maintaining fiber, temperature changes and strains have different delay time effects on the X-axis and Y-axis components. As a result, a phase difference occurs between the X-axis component and the Y-axis component, and the plane of polarization obtained by combining these two components becomes rotated. The rotation of the plane of polarization, which is a result of this phase difference, is detected by a photodetector (26 in FIG. 2) as the intensity of the light when the light passes through an analyzer (24 in FIG. 2).

ここで、第1フアイバ12および第2フアイバ
16の材質は異なつてもので構成されており、温
度変化やひずみ(第1フアイバ12および第2フ
アイバ16の軸方向への張力)が位相差の変動に
及ぼす影響力は、両フアイバにおいて異なつてい
る。
Here, the first fiber 12 and the second fiber 16 are made of different materials, and temperature changes and strain (tension in the axial direction of the first fiber 12 and the second fiber 16) can cause changes in the phase difference. The influence on the two fibers is different.

そこで、第1フアイバ12の位相差の変化分を
Δφ、位相差に及ぼす温度変化に対する温度係数
をA1、ひずみに対するひずみ係数をB1、ひずみ
による第1フアイバ12の長さの変化分をΔL1
し、同様にして第2フアイバ16の位相差の変化
分をΔφ2、温度係数をA2、ひずみ係数をB2、ひ
ずみによる長さの変化分をΔL2とし、温度変化を
ΔTとするならば Δφ1=A1L1ΔT+B1ΔL1 (1) Δφ2=A2L2ΔT+B2ΔL2 (2) なる関係が得られる。
Therefore, Δφ is the change in the phase difference of the first fiber 12, A 1 is the temperature coefficient for temperature change that affects the phase difference, B 1 is the strain coefficient for strain, and ΔL is the change in the length of the first fiber 12 due to strain. 1 , and similarly, the change in phase difference of the second fiber 16 is Δφ 2 , the temperature coefficient is A 2 , the strain coefficient is B 2 , the change in length due to strain is ΔL 2 , and the temperature change is ΔT Then, the following relationships are obtained: Δφ 1 =A 1 L 1 ΔT+B 1 ΔL 1 (1) Δφ 2 =A 2 L 2 ΔT+B 2 ΔL 2 (2).

A1L1=A2L2 (3) となるように第1フアイバおよび第2フアイバを
選ぶ。
The first fiber and the second fiber are selected so that A 1 L 1 =A 2 L 2 (3).

すなわち、第1フアイバ12および第2フアイ
バ16の温度変化に対して生ずる位相差の変化分
が等しくなるようにする。
That is, the amount of change in the phase difference caused by the temperature change of the first fiber 12 and the second fiber 16 is made equal.

すると、第1フアイバ12と第2フアイバ16
とを直列に通過した光のX軸およびY軸の両成分
の位相差の変化分Δφは、第1フアイバ12と第
2フアイバ16との偏光軸が90゜ずれているため
に、 Δφ=Δφ1−Δφ2 (4) となる。したがつて(1)式〜(4)式から Δφ=B1ΔL1−B2ΔL2 (5) が得られる。
Then, the first fiber 12 and the second fiber 16
Since the polarization axes of the first fiber 12 and the second fiber 16 are shifted by 90 degrees, the amount of change Δφ in the phase difference between both the X-axis and Y-axis components of the light that has passed in series is Δφ=Δφ 1 −Δφ 2 (4). Therefore, from equations (1) to (4), Δφ=B 1 ΔL 1 −B 2 ΔL 2 (5) can be obtained.

この(5)式から明らかなように、位相差の変化分
Δφには温度変化の影響は全く無く、ひずみによ
る位相差の変化のみが得られることになる。
As is clear from equation (5), the change in phase difference Δφ is not affected by temperature change at all, and only the change in phase difference due to strain is obtained.

以上の説明から明らかなように従来のひずみセ
ンサとして用いられていた第2図に示す偏光面保
持フアイバ10に代えて、第1図に示し、(1)式〜
(5)式を用いて説明した特性を有する2種の偏光面
保持フアイバを直列に接続したフアイバを用いる
ならば温度変化の影響なくひずみのなさを精度よ
く測定することができる。
As is clear from the above description, instead of the polarization-maintaining fiber 10 shown in FIG. 2 used as a conventional strain sensor, the polarization plane maintaining fiber 10 shown in FIG.
If a fiber in which two types of polarization-maintaining fibers having the characteristics explained using equation (5) are connected in series, the absence of distortion can be accurately measured without being affected by temperature changes.

第1図における偏光面保持フアイバ12,16
には楕円クラツドのものを例示して説明したが、
パンダ型偏光面保持フアイバなど、他の偏光面保
持フアイバでも同様の結果が得られることは以上
の説明から明らかであろう。
Polarization maintaining fibers 12, 16 in FIG.
The explanation was given using an example of an elliptic cladding.
It will be apparent from the above description that similar results can be obtained with other polarization maintaining fibers, such as panda-type polarization maintaining fibers.

[発明の効果] 以上の説明から明らかなように、本発明によれ
ば、温度変化の影響を受けることなくひずみを正
確に測定することが可能となり、とくに環境の悪
い温度変化の大きな場所などでのひずみ計測に適
したフアイバひずみセンサを提供するものである
から、その効果は極めて大きい。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, it is possible to accurately measure strain without being affected by temperature changes, especially in places with large temperature changes in poor environments. Since the present invention provides a fiber strain sensor suitable for strain measurement, its effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のフアイバひずみセンサを示
す図、第2図は従来例を示す図である。 10,12,16…偏光面保持フアイバ、1
3,17…コア、14,18…楕円クラツド、1
9…接続点、21…レーザ装置、22…偏光子、
23…レンズ、24…検光子、25…コリメー
タ、26…光検出器、27…表示装置。
FIG. 1 is a diagram showing a fiber strain sensor of the present invention, and FIG. 2 is a diagram showing a conventional example. 10, 12, 16...Polarization plane maintaining fiber, 1
3, 17... Core, 14, 18... Elliptical cladding, 1
9... Connection point, 21... Laser device, 22... Polarizer,
23...Lens, 24...Analyzer, 25...Collimator, 26...Photodetector, 27...Display device.

Claims (1)

【特許請求の範囲】 1 偏向面保持フアイバである第1フアイバと、 前記第1フアイバとは温度変化に対して生ずる
偏光のX軸成分およびY軸成分の位相差の変化分
が等しく、前記第1フアイバとはひずみに対して
生ずる偏光のX軸成分およびY軸成分の位相差の
変化分が異なる偏光面保持フアイバである第2フ
アイバとからなり、 前記第1フアイバと前記第2フアイバの偏光軸
が90°ずれて接続されたものであることを特徴と
するフアイバひずみセンサ。
[Scope of Claims] 1. A first fiber that is a polarization plane holding fiber and the first fiber have the same amount of change in phase difference between the X-axis component and the Y-axis component of polarized light caused by temperature change, and The first fiber consists of a second fiber, which is a polarization plane-maintaining fiber, which differs in the amount of change in phase difference between the X-axis component and the Y-axis component of polarized light caused by strain, and the polarization of the first fiber and the second fiber is different from each other. A fiber strain sensor characterized by being connected with its axes shifted by 90°.
JP60194639A 1985-09-03 1985-09-03 Fiber strain sensor Granted JPS6285808A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60194639A JPS6285808A (en) 1985-09-03 1985-09-03 Fiber strain sensor
US06/900,506 US4773753A (en) 1985-09-03 1986-08-26 Fiber sensor
DE8686401918T DE3679126D1 (en) 1985-09-03 1986-09-01 FIBER OPTICAL SENSOR.
EP86401918A EP0214907B1 (en) 1985-09-03 1986-09-01 Fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60194639A JPS6285808A (en) 1985-09-03 1985-09-03 Fiber strain sensor

Publications (2)

Publication Number Publication Date
JPS6285808A JPS6285808A (en) 1987-04-20
JPH0370167B2 true JPH0370167B2 (en) 1991-11-06

Family

ID=16327858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60194639A Granted JPS6285808A (en) 1985-09-03 1985-09-03 Fiber strain sensor

Country Status (1)

Country Link
JP (1) JPS6285808A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071208B2 (en) * 1986-12-24 1995-01-11 日本電気株式会社 Optical fiber pressure sensor
CN109211289B (en) * 2018-10-19 2021-06-25 华南师范大学 Spontaneous Brillouin scattering optical fiber sensing method and device based on circularly polarized light interference

Also Published As

Publication number Publication date
JPS6285808A (en) 1987-04-20

Similar Documents

Publication Publication Date Title
US5715058A (en) Method and device for the optical determination of a physical quantity
US6301400B1 (en) Fiber optic current sensor having rotation immunity
US5298964A (en) Optical stress sensing system with directional measurement capabilities
US4773753A (en) Fiber sensor
EP0262825A2 (en) Fiber optic rotation sensor utilizing high birefringence fiber and having reduced intensity type phase errors
JPS5918923A (en) Birefringence measuring device
US6462539B2 (en) Magnetic sensor with faraday element
KR101978444B1 (en) Optical fiber Sagnac interferometer using a polarizing beam splitter
JP2007057324A (en) Fiber optic measuring system
US4922095A (en) Method and apparatus for sensing disturbance using fiber-optic polarization rotation
US5053694A (en) Device for measuring an electric field
US4283144A (en) Method of fiber interferometry zero fringe shift referencing using passive optical couplers
JPH0422203B2 (en)
JPH0370167B2 (en)
JP2005517961A (en) Method for manufacturing sensor head of photoelectric current sensor
CN101929861B (en) Stabilised solid-state gyrolaser
JPH0421130B2 (en)
JP4467842B2 (en) Optical applied measuring equipment
JP2751599B2 (en) Hikaribaiyairo
JP3415972B2 (en) Optical fiber sensor and polarizer unit
JPS60129633A (en) Optical fiber sensor
JPS59634A (en) Temperature measuring method using optical fiber preserving polarized wave surface
JPH032401B2 (en)
JPS59119334A (en) Pressure sensor
JPH0639341Y2 (en) Optical electric field detector