JPS6285808A - Fiber strain sensor - Google Patents

Fiber strain sensor

Info

Publication number
JPS6285808A
JPS6285808A JP60194639A JP19463985A JPS6285808A JP S6285808 A JPS6285808 A JP S6285808A JP 60194639 A JP60194639 A JP 60194639A JP 19463985 A JP19463985 A JP 19463985A JP S6285808 A JPS6285808 A JP S6285808A
Authority
JP
Japan
Prior art keywords
polarization
fiber
strain
fibers
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60194639A
Other languages
Japanese (ja)
Other versions
JPH0370167B2 (en
Inventor
Takao Hirose
広瀬 隆雄
Yoshiyasu Matsumura
松村 吉康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DDK Ltd
Original Assignee
DDK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DDK Ltd filed Critical DDK Ltd
Priority to JP60194639A priority Critical patent/JPS6285808A/en
Priority to US06/900,506 priority patent/US4773753A/en
Priority to DE8686401918T priority patent/DE3679126D1/en
Priority to EP86401918A priority patent/EP0214907B1/en
Publication of JPS6285808A publication Critical patent/JPS6285808A/en
Publication of JPH0370167B2 publication Critical patent/JPH0370167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure strain with high accuracy by connecting two kinds of polarization plane maintaining fibers which differ in strain characteristics, but have the same temperature characteristics so that their axes of polarization shift by 90 deg.. CONSTITUTION:The polarization plane maintaining fibers 12 and 16 are connected 19 by welding, etc. At this connection point 19, the major axes of elliptic clads 14 and 18 cross each other at right angles so as to make a 90 deg. shift between the axes of polarization of the fibers. Consequently, when polarized light is propagated in the fibers 12 and 16, there are difference in the influence of delay time between an X-axial and a Y-axial component affected by temperature variation and strain. Therefore, the X-axial and Y-axial components have a phase difference as the polarized light is propagated in the fibers 12 and 16 and the plane of polarization obtained by mixing both components rotates. The rotation of the plane of polarization which is the result of the phase difference is detected in the intensity of light by passing the polarized light through an analyzer. Consequently, the strain is detected accurately without being affected by temperature variation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はファイバを用いたひずみセンサに関する。とく
に、偏光面保持ファイバにレーザ光を通してひずみを測
定するひずみセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a strain sensor using a fiber. In particular, it relates to a strain sensor that measures strain by passing a laser beam through a polarization-maintaining fiber.

[従来の技術] 偏光面保持ファイバを用いた温度センサがすでに開発さ
れており、この温度センサは、ひずみによって大きな影
響を受けることが明らかにされている。このような偏光
面保持ファイバを用いたびずみセンサの一例(たとえば
、昭和59年度電気関係学会 東北支部連合大会、文献
番号2F17)を第2図に示し、説明する。
[Prior Art] A temperature sensor using a polarization-maintaining fiber has already been developed, and it has been shown that this temperature sensor is significantly affected by strain. An example of a strain sensor using such a polarization-maintaining fiber (for example, 1985 Tohoku Branch Union Conference of Electrical Related Associations, Document No. 2F17) is shown in FIG. 2 and will be described.

°第2図において、10はひずみセンサとして用いられ
る偏光面保持ファイバ、21はガス・レーザヤ半導体レ
ーザであるレーザ装置、22はレーザ装置21の出力光
を偏光面45° (直交成分1:1)で偏光するための
偏光子、23は偏光子22を通過した光をファイバ10
に入射せしめるためのレンズ、24はファイバの出射光
に対して作゛用する検光子、25は検光子24を通過し
た光を集めるためのコリメータ、26はコリメータから
の光の強度を検出するための光電子増倍管、ホト・ダイ
オードやアバランシェ・ホト・ダイオードを含む光検出
器、27は光検出器26の出力を表示するためのブラウ
ン管ディスプレイや、レコーダである表示装置である。
° In Fig. 2, 10 is a polarization-maintaining fiber used as a strain sensor, 21 is a laser device that is a gas laser or semiconductor laser, and 22 is the output light of the laser device 21 with a polarization plane of 45° (orthogonal components 1:1). A polarizer 23 is used to polarize the light that has passed through the polarizer 22 through the fiber 10.
24 is an analyzer that acts on the light emitted from the fiber, 25 is a collimator for collecting the light that has passed through the analyzer 24, and 26 is for detecting the intensity of the light from the collimator. 27 is a display device such as a cathode ray tube display or a recorder for displaying the output of the photodetector 26.

偏光子22によって偏光面保持ファイバ10に入射され
る偏光のX軸成分とY軸成分は等しいものとなっている
が、ひずみ(偏光面保持ファイバ10の軸方向への張力
)によって偏光面保持ファイバ10を通過する偏光、の
X軸成分とY軸成分の通過時間(遅延時間)は変化し、
その変化分はX軸成分とY軸成分とでは異なった値を示
す。すなわち、偏光面保持ファイバ10の出射端におい
ては、偏光のX軸成分とY軸成分の位相のずれが変化す
ることになり、このX軸およびY軸成分を合成した光の
偏光面は、直線偏波から楕円偏波、円偏波に変ることか
ら、これを検光子24を通して光検出器26により検出
すると、光の強度の変化として1qられ、この強度変化
が表示装置27に表示される。
Although the X-axis and Y-axis components of the polarized light incident on the polarization-maintaining fiber 10 by the polarizer 22 are equal, the polarization-maintaining fiber 10 is distorted due to strain (tension in the axial direction of the polarization-maintaining fiber 10). The passage time (delay time) of the X-axis component and Y-axis component of the polarized light passing through 10 changes,
The amount of change shows different values for the X-axis component and the Y-axis component. That is, at the output end of the polarization-maintaining fiber 10, the phase shift between the X-axis component and the Y-axis component of the polarized light changes, and the polarization plane of the light that combines the X-axis and Y-axis components is a straight line. Since the polarized wave changes from polarized wave to elliptically polarized wave and then to circularly polarized wave, when this is detected by the photodetector 26 through the analyzer 24, it is detected as a change in the intensity of light 1q, and this intensity change is displayed on the display device 27.

[発明が解決しようとする問題点] ここで、偏光面保持ファイバ10の出射端における偏光
面の角度の変化は、偏光面保持ファイバ10の軸方向に
対する張力である、ひずみのみによってもたらされるも
のではなく、温度変化によってももたらされることが明
らかにされており、両者の効果を分離することができな
かった。
[Problems to be Solved by the Invention] Here, the change in the angle of the polarization plane at the output end of the polarization-maintaining fiber 10 is not caused only by strain, which is the tension in the axial direction of the polarization-maintaining fiber 10. However, it has been revealed that this effect is also brought about by temperature change, and it has not been possible to separate the two effects.

さらに、温度変化は、偏光面保持ファイバ10自身にも
膨張または収縮をもたらすものであり、また、偏光面保
持ファイバ10を保護するための被覆があればそれの膨
張または収縮するひずみが偏光面保持ファイバ10に加
えられるから、偏光面保持ファイバ10の出射光の偏光
面の回転はひずみのみならず、温度変化をも同時に検出
するものであり正確なひずみを測定することはできなか
った。
Furthermore, temperature changes cause the polarization-maintaining fiber 10 itself to expand or contract, and if there is a coating to protect the polarization-maintaining fiber 10, the strain caused by the expansion or contraction of the coating protects the polarization-maintaining fiber 10. Since the rotation of the polarization plane of the light emitted from the polarization-maintaining fiber 10 is applied to the fiber 10, not only the strain but also the temperature change can be detected at the same time, making it impossible to accurately measure the strain.

さらに、ファイバによるひずみセンサは、環境の劣悪な
場所に使用されることが予想され、このような場所では
周辺の温度変化も大きくひずみ測定の精度を一層劣化せ
しめるであろう。
Furthermore, fiber strain sensors are expected to be used in places with poor environments, and in such places, surrounding temperature changes will be large, further degrading the accuracy of strain measurement.

[問題点を解決するための手段] 本発明はこのような問題点を解決するためになされたも
ので、ひずみ特性が異なり温度特性が同じである2種の
偏光面保持ファイバをそのファイバの偏光軸を90’ず
らして接続し、これに偏光子を通して光を入射すると、
偏光のX軸成分およびY軸成分の位相のずれに及ぼす入
射端側の偏光面保持ファイバの影響と、出射端側の偏光
面保持ファイバの影響は反対の極性で作用する。すなわ
ち、入射端側の偏光面保持ファイバによって偏光面がた
とえば右まわりに回転すると、出射端側の偏光面保持フ
ァイバによって偏光面は左まわりに回転せしめられるこ
とになり、温度変化によって回転する右まわりおよび左
まわりの回転角が丁度打消し合うように2種の偏光面保
持ファイバを選択した。
[Means for Solving the Problems] The present invention has been made to solve these problems, and it uses two types of polarization-maintaining fibers that have different strain characteristics and the same temperature characteristics to adjust the polarization of the fibers. When connected with the axes shifted by 90' and incident light through a polarizer,
The influence of the polarization-maintaining fiber on the input end side and the influence of the polarization-maintaining fiber on the output end side on the phase shift of the X-axis component and the Y-axis component of polarized light act with opposite polarity. In other words, if the plane of polarization is rotated, for example, clockwise by the polarization-maintaining fiber at the input end, the plane of polarization will be rotated counterclockwise by the polarization-maintaining fiber at the output end. Two types of polarization-maintaining fibers were selected so that the angles of rotation and counterclockwise rotation exactly canceled each other out.

[作用] これによって、2種の偏光面保持フッ1イバを通った光
は、温度変化による偏光面の回転は打開され、ひずみに
よる偏光面の回転のみが1qられるから、精度の高い温
度測定が可能となった。
[Function] As a result, the rotation of the polarization plane due to temperature change is overcome for the light that has passed through the two types of polarization plane holding filters, and only the rotation of the polarization plane due to strain is reduced by 1q, allowing highly accurate temperature measurement. It has become possible.

[実施例] 本発明によるファイバひずみセンサを第1図に示し説明
する。
[Example] A fiber strain sensor according to the present invention is shown in FIG. 1 and will be described.

12は長ざLlの偏光面保持ファイバ(第1ファイバ)
、16は長さL2の偏光面保持ファイバ(第2ファイバ
)、であり、両ファイバは接続点19で融着により、あ
るいはコネクタにより接続されている。この接続点19
においては、たとえば4μmのコア径を有するコア13
とその周辺をとりまく楕円クラッド14を含む直径12
5μmのファイバ径を有する第1ファイバと、たとえば
4μmのコアを有するコア17とその周辺をとりまく楕
円クラッド18とを含む直径125μmのファイバ径を
有する第2ファイバとがその偏光軸を90’ずらすため
に、楕円クラッド14および18の長軸を直交せしめて
接続されている。偏光保持ファイバ中を偏光が通過する
ときに、温度変化やひずみがX軸成分およびY@酸成分
及ぼす遅延時間の影響は異なったものであるため、偏光
が偏光面保持ファイバ中を伝送するにしたがってX軸成
分とY軸成分との間に位相差を生じ、この両成分を合成
した偏光面は回転したしのとなる。この位相差の結果で
ある偏光面の回転は、検光子(第2図の24)を通過せ
しめることによって光の強弱として光検出器(第2図の
26)によって検出される。
12 is a polarization maintaining fiber (first fiber) with a length Ll
, 16 is a polarization maintaining fiber (second fiber) having a length L2, and both fibers are connected at a connection point 19 by fusion splicing or by a connector. This connection point 19
For example, a core 13 having a core diameter of 4 μm
and a diameter 12 including the elliptical cladding 14 surrounding it.
Because the first fiber having a fiber diameter of 5 μm and the second fiber having a fiber diameter of 125 μm including a core 17 having a core of 4 μm and an elliptical cladding 18 surrounding the core 17 have their polarization axes shifted by 90′. The elliptical claddings 14 and 18 are connected to each other with their long axes perpendicular to each other. As polarized light passes through a polarization-maintaining fiber, the delay time effects of temperature changes and strains on the X-axis component and the Y@acid component are different; A phase difference is generated between the X-axis component and the Y-axis component, and the plane of polarization obtained by combining these two components becomes a rotated edge. The rotation of the plane of polarization, which is a result of this phase difference, is detected by a photodetector (26 in FIG. 2) as the intensity of the light by passing it through an analyzer (24 in FIG. 2).

ここで、第1ファイバ12および第2ファイバ16の材
質は異なったもので構成されており、温度変化やひずみ
(第1ファイバ12および第2ファイバ16の軸方向へ
の張力〉が位相差の変動に及ぼす影響力は、両ファイバ
において異なっている。
Here, the first fiber 12 and the second fiber 16 are made of different materials, and changes in temperature and strain (tension in the axial direction of the first fiber 12 and the second fiber 16) cause changes in the phase difference. The influence on the fibers is different for both fibers.

そこで、第177・イバ12の位相差の変化分をΔΦ1
、位相差に及ぼす温度変化に対する温度係数をA1、ひ
ずみに対するひずみ係数を81、ひずみによる第1)1
イバ12の艮ざの変化分を八L1とし、同様にして第2
ファイバ16の位相差の変化分をΔΦ2、温度係数をA
2 、ひずみ係数を82、ひずみによる長さの変化分を
ΔL2とし、温度変化をΔTとするならば ΔΦ1=Δ1L1ΔT+B1ΔL1   (1)ΔΦ2
 =A2 L2ΔT十82八L2   (2>なる関係
が得られる。ここで、 A1L1=A2L2          (3’)とな
るように第1ファイバおよび第2ファイバを選ぶ。
Therefore, the change in the phase difference of the 177th fiber 12 is calculated by ΔΦ1
, the temperature coefficient for temperature change on the phase difference is A1, the distortion coefficient for strain is 81, and the first) 1 due to strain
Let the change in the sign of Iba 12 be 8L1, and do the same for the second
The change in the phase difference of the fiber 16 is ΔΦ2, and the temperature coefficient is A.
2. If the strain coefficient is 82, the change in length due to strain is ΔL2, and the temperature change is ΔT, then ΔΦ1 = Δ1L1ΔT + B1ΔL1 (1) ΔΦ2
= A2 L2ΔT1828L2 (2> A relationship is obtained. Here, the first fiber and the second fiber are selected so that A1L1=A2L2 (3').

すなわら、第1ファイバ12および第2ファイバ16の
温度変化に対して生ずる位相差の変化分が等しくなるよ
うにする。
In other words, the amount of change in phase difference that occurs with respect to temperature changes in the first fiber 12 and the second fiber 16 is made equal.

すると、第177・イバ12と第2ファイバ16とを直
列に通過した光のX軸およびYINIの両成分の位相差
の変化分Δのは、第1ファイバ12と第2ファイバ16
との偏光軸が90’ずれているために、 ΔΦ=ΔΦ1−ΔΦ2        (4)となる。
Then, the change Δ in the phase difference between the X-axis and YINI components of the light that has passed through the 177th fiber 12 and the second fiber 16 in series is the difference between the first fiber 12 and the second fiber 16.
Since the polarization axis is shifted by 90', ΔΦ=ΔΦ1−ΔΦ2 (4).

したがって(1)弐〜(4)式からΔΦ=B1ΔL1−
B2ΔL2    (5)が得られる。
Therefore, from equations (1)2 to (4), ΔΦ=B1ΔL1−
B2ΔL2 (5) is obtained.

この(5)式から明らかなように、位相差の変化分ΔΦ
には温度変化の影響は全く無く、ひずみによる位相差の
変化のみが得られることになる。
As is clear from this equation (5), the change in phase difference ΔΦ
There is no effect of temperature change on the graph, and only the change in phase difference due to strain can be obtained.

以上の説明から明らかなように従来のひずみセンサ゛と
して用いられていた第2図に示す偏光保持ファイバ10
に代えて、第1図に示し、(1)式〜(5)式を用いて
説明した特性を有する2種の偏光面保持ファイバを直列
に接続したファイバを用いるならば温度変化の影響なく
ひずみのみを精度よく測定することかできる。
As is clear from the above description, the polarization-maintaining fiber 10 shown in FIG. 2 has been used as a conventional strain sensor.
Instead, if we use a fiber made by connecting two types of polarization-maintaining fibers in series, which have the characteristics shown in Figure 1 and explained using equations (1) to (5), the strain will be reduced without being affected by temperature changes. It is possible to measure only with high accuracy.

第1図にJ3りる偏光面保持フ1イバ12.16には楕
円クラッドのものを例示して説明したが、パンダ型偏光
面保持ファイバなど、他の偏光面保持フッ・イバでも同
様の結果が得られることは以上の説明から明らかであろ
う。
In Fig. 1, the J3 polarization maintaining fiber 12.16 is explained using an elliptical clad as an example, but similar results can be obtained with other polarization maintaining fibers such as a panda-type polarization maintaining fiber. It is clear from the above explanation that this can be obtained.

[発明の効果1 以上の説明から明らかなように、本発明によれば、温度
変化の影響を受けることなくひずみを正確に測定するこ
とが可能となり、とくに環境の悪い温度変化の大きな場
所などでのひずみ計測に適したファイバひずみセンサを
提供するものであるから、その効果は極めて大きい。
[Advantageous Effects of the Invention 1] As is clear from the above explanation, according to the present invention, it is possible to accurately measure strain without being affected by temperature changes, especially in places with large temperature changes in poor environments. Since the present invention provides a fiber strain sensor suitable for strain measurement, its effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のファイバひずみセンサを示す図、第
2図は従来例を示す図でおる。 10.12.16・・・偏光面保持ファイバ13.17
・・・コア 14.18・・・楕円クラッド 19・・・接続点     21・・・レーザ装置22
・・・偏光子     23・・・レンズ24・・・検
光子     25・・・コリメータ26・・・光検出
器    27・・・表示装置。
FIG. 1 is a diagram showing a fiber strain sensor of the present invention, and FIG. 2 is a diagram showing a conventional example. 10.12.16...Polarization maintaining fiber 13.17
... Core 14.18 ... Elliptical cladding 19 ... Connection point 21 ... Laser device 22
...Polarizer 23...Lens 24...Analyzer 25...Collimator 26...Photodetector 27...Display device.

Claims (1)

【特許請求の範囲】 偏光面保持ファイバである第1ファイバと、前記第1フ
ァイバとは温度変化に対して生ずる偏光のX軸成分およ
びY軸成分の位相差の変化分が等しく、前記第1ファイ
バとはひずみに対して生ずる偏光のX軸成分およびY軸
成分の位相差の変化分が異なる偏光面保持ファイバであ
る第2ファイバとからなり、 前記第1ファイバと前記第2ファイバの偏光軸が90°
ずれて接続されたものであることを特徴とするファイバ
ひずみセンサ。
[Scope of Claims] The first fiber, which is a polarization plane-maintaining fiber, and the first fiber have the same amount of change in the phase difference between the X-axis component and the Y-axis component of polarized light caused by a temperature change, and The fiber consists of a second fiber, which is a polarization-maintaining fiber, in which the change in the phase difference between the X-axis component and the Y-axis component of polarized light that occurs in response to strain is different, and the polarization axes of the first fiber and the second fiber are different from each other. is 90°
A fiber strain sensor characterized in that the fiber strain sensor is connected in a staggered manner.
JP60194639A 1985-09-03 1985-09-03 Fiber strain sensor Granted JPS6285808A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60194639A JPS6285808A (en) 1985-09-03 1985-09-03 Fiber strain sensor
US06/900,506 US4773753A (en) 1985-09-03 1986-08-26 Fiber sensor
DE8686401918T DE3679126D1 (en) 1985-09-03 1986-09-01 FIBER OPTICAL SENSOR.
EP86401918A EP0214907B1 (en) 1985-09-03 1986-09-01 Fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60194639A JPS6285808A (en) 1985-09-03 1985-09-03 Fiber strain sensor

Publications (2)

Publication Number Publication Date
JPS6285808A true JPS6285808A (en) 1987-04-20
JPH0370167B2 JPH0370167B2 (en) 1991-11-06

Family

ID=16327858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60194639A Granted JPS6285808A (en) 1985-09-03 1985-09-03 Fiber strain sensor

Country Status (1)

Country Link
JP (1) JPS6285808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159728A (en) * 1986-12-24 1988-07-02 Nec Corp Optical fiber sensor
CN109211289A (en) * 2018-10-19 2019-01-15 华南师范大学 Spontaneous brillouin scattering optical fiber sensing method and device based on circularly polarized light interference

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159728A (en) * 1986-12-24 1988-07-02 Nec Corp Optical fiber sensor
CN109211289A (en) * 2018-10-19 2019-01-15 华南师范大学 Spontaneous brillouin scattering optical fiber sensing method and device based on circularly polarized light interference
CN109211289B (en) * 2018-10-19 2021-06-25 华南师范大学 Spontaneous Brillouin scattering optical fiber sensing method and device based on circularly polarized light interference

Also Published As

Publication number Publication date
JPH0370167B2 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
EP0262825B1 (en) Fiber optic rotation sensor utilizing high birefringence fiber and having reduced intensity type phase errors
US4773753A (en) Fiber sensor
JPS5918923A (en) Birefringence measuring device
US20020033951A1 (en) Dynamic angle measuring interferometer
Takada et al. Precise method for angular alignment of birefringent fibers based on an interferometric technique with a broadband source
JPS6285808A (en) Fiber strain sensor
JP2005517961A (en) Method for manufacturing sensor head of photoelectric current sensor
JPH02173518A (en) Optical fiber rotational angular velocity sensor
JPS6254133A (en) Fiber temperature sensor
JP3415972B2 (en) Optical fiber sensor and polarizer unit
JP2751599B2 (en) Hikaribaiyairo
JPS6147513A (en) Optical fiber sensor
JP3301324B2 (en) Optical voltage / electric field sensor
JPH05119075A (en) Optical voltage sensor
JPS60129676A (en) Magnetic field detecting apparatus
JP2000121674A (en) Photo voltage sensor
JPH02227620A (en) Optical measuring instrument
JPS6258102A (en) Twist detector for optical fiber
JPH0658227B2 (en) Light fiber gyro
JPH04106418A (en) Optical fiber gyroscope
JPH09274056A (en) Current measuring device for optical fiber
JPH05264607A (en) Photoelectric voltage sensor
JPS59122973A (en) Polarization plane maintaining type optical fiber type magnetic field sensor
JPH0486606A (en) Polarization maintaining optical fiber and optical fiber sensor and system thereof
JPH04106417A (en) Optical fiber gyroscope