JPS5935156A - Optical current transformer - Google Patents

Optical current transformer

Info

Publication number
JPS5935156A
JPS5935156A JP57144724A JP14472482A JPS5935156A JP S5935156 A JPS5935156 A JP S5935156A JP 57144724 A JP57144724 A JP 57144724A JP 14472482 A JP14472482 A JP 14472482A JP S5935156 A JPS5935156 A JP S5935156A
Authority
JP
Japan
Prior art keywords
optical rotatory
optical
magnetic field
light
magnetical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57144724A
Other languages
Japanese (ja)
Inventor
Genji Takahashi
高橋 源治
Tadashi Sato
忠 佐藤
Yoshiaki Inui
乾 芳彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57144724A priority Critical patent/JPS5935156A/en
Priority to US06/472,834 priority patent/US4564754A/en
Priority to DE8383102230T priority patent/DE3364239D1/en
Priority to EP83102230A priority patent/EP0088419B1/en
Publication of JPS5935156A publication Critical patent/JPS5935156A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect

Abstract

PURPOSE:To enable measurement in a wide range from a low magnetic field to a high magnetic field, by arranging a plurality of a magnetical optical rotatory bodies comprising different materials in parallel to make it possible to use one magnetical optical rotatory body corresponding to a measuring range. CONSTITUTION:A magnetical optical rotatory body 5 having a light path provided to the interior thereof and formed of lead glass and a magnetical optical rotatory body 13 formed of quartz glass are arranged in parallel so as to cross a current flowing through a primary conductor 12. Linear polarized light is projected to the optical rotatory body 5 from a light source 1 through a polarizer 4. This linear polarized light is emitted from an emitting surface after going round the primary conductor 12 to be separated into its spectral components by an analyser 6 and received by a light receiver 11 to be converted to an electric signal which is, in turn, converted to a rotary angle signal Va by an operator 14 to be inputted to an OR circuit 15. Similar operation is performed with respect to the side of the optical rotatory body 13. In this case, a max. value of the rotary angle signals Va, Vb is outputted from the circuit 15. The output from the circuit 15 is shown by the solid line of the drawing and the measurement of a current from a low magnetic field to a high magnetic field is enabled.

Description

【発明の詳細な説明】 本発明は光変流器に係り、特に、高電圧導体に流れる電
流を測定するに好適な光変流器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical current transformer, and more particularly to an optical current transformer suitable for measuring a current flowing through a high voltage conductor.

周知の如く、電流による磁界中に置かれた鉛ガラス等の
透明物質中を直線偏光が通過すると、直線偏光の偏光面
は、次の式で示される角度θだけ回転する。
As is well known, when linearly polarized light passes through a transparent material such as lead glass placed in a magnetic field caused by an electric current, the plane of polarization of the linearly polarized light rotates by an angle θ expressed by the following equation.

θ=VHL  ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・ (1)ただし、■はヴエル
デ定数、Hは光の進行方向の磁界の強さ、Lは透明物質
を通過する光の光路長である。
θ=VHL ・・・・・・・・・・・・・・・・・・
(1) where ■ is Weerde's constant, H is the strength of the magnetic field in the direction in which the light travels, and L is the optical path length of the light passing through the transparent material.

この現象をファラデー効果、ファラデー効果を示す物質
を磁気的旋光体といい、上記(1)式の角度θを周知の
方法で検出し、磁界の強さHを検出することで、磁気的
旋光体近傍に流れる電流を測定する光変流器が一般的に
知られている(8.3aito、他4 : The L
a5er Current ’pransformer
 forBHy power Transmissio
n Lines+IEEEJournal of Qu
antum Electronics VOI、QE−
2、No、 8、Aug 1966 )。
This phenomenon is called the Faraday effect, and a substance that exhibits the Faraday effect is called a magnetic optical rotator.By detecting the angle θ in equation (1) above using a well-known method and detecting the magnetic field strength H, the magnetic optical rotator can be Optical current transformers that measure the current flowing nearby are generally known (8.3aito, et al. 4: The L
a5er Current 'transformer
forBHy power Transmission
n Lines+IEEE Journal of Qu
antum Electronics VOI, QE-
2, No. 8, Aug. 1966).

この光変流器の一例を第1図に示す。発光ダイオード、
レーザダイオードおよびレーザ等の1つで構成された光
源1で発光された光線の一部は、光フアイバ2内を伝播
し、集光レンズ3で集光され、高分子フィルム、蒸着膜
および偏光プリズム等の周知の偏光子4で直線偏光にさ
れた後、磁気的旋光体5に入射される。磁気的旋光体5
は、中央部に1次導体12が貫通される貫通孔を備えた
略四角形状の平板で構成されており、磁気的旋光体5に
入射される入射光aは、各角部で2回全反射されて1欠
溝体12を一周して射出光すとなり、検光子6、集光レ
ンズ7.8および光ファイバ9.10を介して受光器1
1に受光される。この磁気的旋光体5によれば、入射光
aが各角部で2回全反射(合計6回)されるため直線偏
光が楕円偏光に変化し、角変θの量が低下して出力感度
が低下しないようにされている(斉藤他3;レーザによ
る電力用電流電圧測定装置に関する基礎的研究;東京大
学生産技術研究報告。VOl、 28、No、 5、M
arclt 1980 )。
An example of this optical current transformer is shown in FIG. light emitting diode,
A part of the light emitted by a light source 1 composed of one of a laser diode, a laser, etc. propagates through an optical fiber 2, is focused by a condensing lens 3, and then passes through a polymer film, a vapor-deposited film, and a polarizing prism. The light is made into linearly polarized light by a well-known polarizer 4 such as Etc., and then enters a magnetic optical rotator 5 . Magnetic rotator 5
is composed of a substantially rectangular flat plate with a through hole in the center through which the primary conductor 12 is passed, and the incident light a incident on the magnetic optical rotator 5 is fully focused twice at each corner. The light is reflected and goes around the one-groove body 12 and exits, and is transmitted to the light receiver 1 via the analyzer 6, the condensing lens 7.8 and the optical fiber 9.10.
The light is received at 1. According to this magnetic optical rotator 5, since the incident light a is totally reflected twice at each corner (six times in total), linearly polarized light changes to elliptically polarized light, and the amount of angular change θ decreases, resulting in output sensitivity. (Saito et al. 3; Basic research on laser-based power current and voltage measurement devices; University of Tokyo Production Technology Research Report. VOl, 28, No. 5, M
arclt 1980).

ここで、直線偏光の偏光面のファラデー効果による回転
は光路に対して平行な磁界の強さと光路長に比例し、磁
気的旋光体5に入射した直線偏光は1欠溝体12を一周
して射出するため、ファラデー効果による回転角度θは
、次の(2)式で表わされ、光路と鎖交している1次導
体の電流■にのみ比例する。
Here, the rotation of the plane of polarization of linearly polarized light due to the Faraday effect is proportional to the strength of the magnetic field parallel to the optical path and the length of the optical path, and the linearly polarized light incident on the magnetic optical rotator 5 goes around the single groove member 12. For emission, the rotation angle θ due to the Faraday effect is expressed by the following equation (2), and is proportional only to the current ■ of the primary conductor interlinked with the optical path.

θ=VVH(lt=VI・・・・・・・・・・・・・・
・・・・(2)ただし、tは光路長である。
θ=VVH(lt=VI・・・・・・・・・・・・・
...(2) However, t is the optical path length.

なお、1欠溝体12の近傍に存在する他の導体に流れる
電流は、上記光路に沿っての積分で零となるため、影響
を無視することができる。
Note that the influence of the current flowing in other conductors near the one-groove body 12 can be ignored because it becomes zero when integrated along the optical path.

上記のように磁気的旋光体を用いた光変流器は、他の導
体に流れる電流に影響されることなく特定の導体に流れ
る電流を測定できるという非常に優れた特徴を有してお
り、磁気的旋光体としては、鉛ガラス、重フリントガラ
ス、磁性ガラスおよび石英ガラス等が用いられている。
As mentioned above, an optical current transformer using a magnetic optical rotator has the very excellent feature of being able to measure the current flowing in a specific conductor without being affected by the current flowing in other conductors. As the magnetic optical rotator, lead glass, heavy flint glass, magnetic glass, quartz glass, etc. are used.

しかし、材質が異るとファラデー効果による回転量が異
り、単一材質の磁気的旋光体を光変流器として用いる場
合には、測定範囲に限界が生じる。例えば、鉛ガラスの
ファラデー効果による回転角度は、波長633nmの光
の場合で0.12分/ATであるが、同一形状および同
一大きさの石英ガラスの場合には、0、012分/AT
と々り鉛ガラスの1/10になる。
However, the amount of rotation due to the Faraday effect differs depending on the material, and when a magnetic optical rotator made of a single material is used as an optical current transformer, there is a limit to the measurement range. For example, the rotation angle due to the Faraday effect of lead glass is 0.12 min/AT for light with a wavelength of 633 nm, but for silica glass of the same shape and size, it is 0.012 min/AT.
It becomes 1/10 of Totori lead glass.

すなわち、鉛ガラスの場合には回転角度が大きいので低
磁界の測定には適しているが、高磁界においては回転角
度が飽和してしまって正磁な測定ができない。一方、石
英ガラスの場合には回転角度が小さいので高磁界の測定
には適するが、低磁界の測定には感度が悪すぎて精度が
低下してし貰う。
That is, in the case of lead glass, the rotation angle is large, so it is suitable for measurements in low magnetic fields, but in high magnetic fields, the rotation angle becomes saturated, making it impossible to measure positive magnetism. On the other hand, in the case of quartz glass, the rotation angle is small, so it is suitable for measuring high magnetic fields, but the sensitivity is too low for measuring low magnetic fields, resulting in a decrease in accuracy.

このように、従来の磁気的旋光体を用いた光変調器では
、広範囲を連続的に測定できない、という問題点がある
As described above, the conventional optical modulator using a magnetic optical rotator has a problem in that it cannot continuously measure a wide range.

本発明は上記問題点を解消すべく成されたもので、高精
度で広範囲な電流測定を可能にした光変流器を提供する
ことを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide an optical current transformer that makes it possible to measure current over a wide range with high precision.

本発明の構成は、従来の磁気的旋光体を用いた光変流器
において、磁気的旋光体の材質を異ならせて複数個並列
に配置したものである。この結果、測定範囲に応じて1
個の磁気的旋光体が使用でき、低磁界から高磁界にわた
って広範囲な測定が可能となる。
The configuration of the present invention is such that, in a conventional optical current transformer using a magnetic optical rotator, a plurality of magnetic optical rotators made of different materials are arranged in parallel. As a result, 1
A wide range of measurements from low to high magnetic fields is possible.

以下、図面を参照して本発明の実施例を詳細に説明する
。第2図に本発明の一実施例を示す。なお、第2図にお
いて第1図と対応する部分には、同一符号を付して説明
を省略する。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 2 shows an embodiment of the present invention. Note that in FIG. 2, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and explanations thereof will be omitted.

図に示すように、1欠溝体12に流れる電流と鎖交する
ように内部に光路を備えかつ鉛ガラスで形成された第1
の磁気的旋光体5と、1欠溝体12に流れる電流と鎖交
するように内部に光路を備えかつ石英ガラスで形成され
た第2の磁気的旋光体13とが並列に配置されている。
As shown in the figure, the first groove body 12 is made of lead glass and has an optical path therein so as to interlink with the current flowing through the groove body 12.
A second magnetic optical rotator 5 and a second magnetic optical rotator 13 made of silica glass and provided with an internal optical path so as to be interlinked with the current flowing through the first grooved body 12 are arranged in parallel. .

第1の磁気的旋光体5には、光源1から光ファイバ2、
集光レンズ3および偏光子4を介して直線偏光が入射さ
れる。入射された直線偏光は、平板状の第1の磁気的旋
光体5の各角部で2回全反射され、1欠溝体12を一周
した後射出面から射出され、ローションプリズム、ウォ
ラストンプリズムおよび偏光ビームスプリッタ等で構成
された検光子6で分光され、集光レンズ7.8および光
ファイバ9.10を介してフォトダイオード等の受光器
11に受光されて電気信号に変換される。
The first magnetic optical rotator 5 includes an optical fiber 2 from the light source 1,
Linearly polarized light is incident through a condenser lens 3 and a polarizer 4 . The incident linearly polarized light is totally reflected twice at each corner of the flat first magnetic optical rotation body 5, goes around the one-groove body 12, and then exits from the exit surface and passes through the Rochon prism and the Wollaston prism. The light is separated by an analyzer 6 composed of a polarizing beam splitter, etc., and is received by a light receiver 11 such as a photodiode via a condenser lens 7.8 and an optical fiber 9.10, and converted into an electric signal.

この電気信号は、演算器14で回転角度信号V。This electrical signal is converted into a rotation angle signal V by the calculator 14.

に変換され、オア回路15に入力される。and is input to the OR circuit 15.

前述と同様に、第2の磁気的旋光体13には、光源1′
から光ファイバ2′、集光レンズ3および偏光子4′を
介して直線偏光が入射される。入射された直線偏光は、
前述と同様に第2の磁気的旋光体13の各角部で2回全
反射され、1欠溝体12を一周した後射出面から射出さ
れ、検光子6′で分光てれ、集光レンズ7′、8′およ
び光ファイバ9’、10”e介して受光器11′に受光
されて電気信号に変換される。この電気信号は、演算器
14′で回転角度信号vbに変換され、オア回路15に
入力される。
As described above, the second magnetic optical rotator 13 includes a light source 1′.
Linearly polarized light is incident from the optical fiber 2', the condensing lens 3, and the polarizer 4'. The incident linearly polarized light is
Similarly to the above, it is totally reflected twice at each corner of the second magnetic optical rotator 13, goes around the one-groove member 12, and then exits from the exit surface, is deflected by the analyzer 6', and then passes through the condenser lens. 7', 8' and optical fibers 9', 10"e, the light is received by the light receiver 11' and converted into an electrical signal. This electrical signal is converted into a rotation angle signal vb by the calculator 14', and the OR The signal is input to the circuit 15.

そして、回転角度信号v、、v、の最大値がオア回路1
5から出力される。オア回路15から出力される信号は
、第3図に示す実線のようになり、低磁界から高磁界に
かけて電流測定が可能となる。
Then, the maximum value of the rotation angle signals v, , v, is the OR circuit 1
Output from 5. The signal output from the OR circuit 15 is as shown by the solid line in FIG. 3, and current measurement is possible from a low magnetic field to a high magnetic field.

以上説明したように本発明によれば、他の電流に影響さ
れることなく電流の測定範囲を拡大して、しかも精度の
良い測定ができる、という優れた効果が得られる。
As explained above, according to the present invention, the excellent effect of expanding the current measurement range without being affected by other currents and enabling highly accurate measurement can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の光変流器を示す概略図、第2図は、本
発明の一実施例を示す概略図、第3図は、光変流器の出
力を示す線図である。 1・・・光源、4・・・偏光子、6・・・検光子、5.
13・・・情(区 出力 ≠Z口 エ−j;JV
FIG. 1 is a schematic diagram showing a conventional optical current transformer, FIG. 2 is a schematic diagram showing an embodiment of the present invention, and FIG. 3 is a diagram showing the output of the optical current transformer. 1... Light source, 4... Polarizer, 6... Analyzer, 5.
13... emotion (ward output ≠ Z mouth e-j; JV

Claims (1)

【特許請求の範囲】[Claims] 1、光源と、被測定電流と鎖交するように内部に光路を
形成した磁気的旋光体と、前記光源と前記磁気的旋光体
の入射面との間に配置された偏光子と、前記磁気的旋光
体の射出面側に配置された検出子とを備え、前記磁気的
旋光体を通過した直線偏光の偏光面の回転角度に基づい
て前記電流の大きさを検出する光変流器において、前記
磁気的旋光体の材質を異ならせて複数個並列に配置した
ことを特徴とする光変流器。
1. A light source, a magnetic optical rotator having an optical path formed therein so as to interlink with the current to be measured, a polarizer disposed between the light source and the incident surface of the magnetic optical rotator, and the magnetic and a detector disposed on the exit surface side of the magnetic optical rotator, and detects the magnitude of the current based on the rotation angle of the polarization plane of the linearly polarized light that has passed through the magnetic optical rotator, An optical current transformer characterized in that a plurality of magnetic optical rotators made of different materials are arranged in parallel.
JP57144724A 1982-03-08 1982-08-23 Optical current transformer Pending JPS5935156A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57144724A JPS5935156A (en) 1982-08-23 1982-08-23 Optical current transformer
US06/472,834 US4564754A (en) 1982-03-08 1983-03-07 Method and apparatus for optically measuring a current
DE8383102230T DE3364239D1 (en) 1982-03-08 1983-03-07 Apparatus for optically measuring a current
EP83102230A EP0088419B1 (en) 1982-03-08 1983-03-07 Apparatus for optically measuring a current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57144724A JPS5935156A (en) 1982-08-23 1982-08-23 Optical current transformer

Publications (1)

Publication Number Publication Date
JPS5935156A true JPS5935156A (en) 1984-02-25

Family

ID=15368838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57144724A Pending JPS5935156A (en) 1982-03-08 1982-08-23 Optical current transformer

Country Status (1)

Country Link
JP (1) JPS5935156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146377A (en) * 1986-12-08 1988-06-18 松下電器産業株式会社 Cooker
JPH0329286A (en) * 1989-06-26 1991-02-07 Osamu Miyake Far infrared ray radiator
US5488291A (en) * 1993-10-21 1996-01-30 Fuji Electric Co., Ltd. Optical current transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146377A (en) * 1986-12-08 1988-06-18 松下電器産業株式会社 Cooker
JPH0329286A (en) * 1989-06-26 1991-02-07 Osamu Miyake Far infrared ray radiator
US5488291A (en) * 1993-10-21 1996-01-30 Fuji Electric Co., Ltd. Optical current transformer

Similar Documents

Publication Publication Date Title
US6301400B1 (en) Fiber optic current sensor having rotation immunity
Pan et al. Optical AC Voltage Sensor Based on Two $\hbox {Bi} _ {4}\hbox {Ge} _ {3}\hbox {O} _ {12} $ Crystals
JPS58129372A (en) Magnetic field-light converter
RU2086988C1 (en) Fiber-optic device for measurement of current strength
JPS5935156A (en) Optical current transformer
US3778619A (en) Input connections for differential amplifiers
WO1994000768A1 (en) Optical current sensor
WO1989009413A1 (en) Electro-optic probe
SU1264084A1 (en) Current measuring method
KR100659564B1 (en) Optical Current Sensor
JPS5937461A (en) Optical current transformer
JPS5938663A (en) Current measuring apparatus using optical fiber
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
SU1262392A1 (en) Magnetooptical method for measuring current and device for effecting same
JP2580443B2 (en) Optical voltage sensor
GB2345129A (en) Optical Sensor Using Polarised Light
JPH0552917A (en) Magneto-optical sensor
JPS5811867A (en) Voltage and temperature detector using light
SU1272258A1 (en) Method and apparatus for measuring high voltage
JPH02143173A (en) Optical dc transformer
SU1310733A1 (en) Optronic device for measuring currents or voltages
RU2429498C2 (en) Fibre optic measuring device (versions)
Hamasaki et al. Optical fiber sensor for the measurement of electric field intensity and voltage (OPSEF)
JPH09274056A (en) Current measuring device for optical fiber
JPS6126875A (en) Measuring device for magnetic field