JP2782071B2 - Optical rotator - Google Patents

Optical rotator

Info

Publication number
JP2782071B2
JP2782071B2 JP63301358A JP30135888A JP2782071B2 JP 2782071 B2 JP2782071 B2 JP 2782071B2 JP 63301358 A JP63301358 A JP 63301358A JP 30135888 A JP30135888 A JP 30135888A JP 2782071 B2 JP2782071 B2 JP 2782071B2
Authority
JP
Japan
Prior art keywords
phase plate
optical
rotator
polarized light
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63301358A
Other languages
Japanese (ja)
Other versions
JPH02146517A (en
Inventor
信久 浅沼
康恭 五十嵐
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP63301358A priority Critical patent/JP2782071B2/en
Publication of JPH02146517A publication Critical patent/JPH02146517A/en
Application granted granted Critical
Publication of JP2782071B2 publication Critical patent/JP2782071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は旋光子に関し、殊にファラデー回転素子の温
度変動によるファラデー回転角変動を補正することの出
来る旋光子に関する。
Description: TECHNICAL FIELD The present invention relates to an optical rotator, and more particularly to an optical rotator capable of correcting a Faraday rotation angle variation due to a temperature variation of a Faraday rotation element.

(従来技術) ファラデー回転素子はそれに印加される磁場の強弱に
より旋光能が変化する特性を有し、この特性を利用して
近年は電力計用の計器用変成器、所謂光CT等に用いられ
ている。
(Prior art) The Faraday rotator has a characteristic that the optical rotation changes according to the strength of the magnetic field applied thereto, and this characteristic is used recently in a transformer for an instrument for a power meter, so-called optical CT. ing.

第6図はファラデー回転素子を用いた光CTの概略構成
を示した図であって、光源1より出射した光へ偏光子2
に入射し直線偏光を得る。ここで例えばX軸に平行な方
位角を有す直線偏光を次段のファラデー回転素子に照射
すると該ファラデー回転素子を出射する直線偏光の振動
方向はそれに加わる磁界に応じて変動するため、該出射
光を偏光ビームスプリッタに入射させX軸方向成分、Y
軸方向成分に分離し、各々を受光器5、6にて受光しそ
の受光量からどの程度直線偏光が回転したか、即ちどの
程度ファラデー回転素子に磁場が印加されたかを求める
ことが出来る。
FIG. 6 is a diagram showing a schematic configuration of an optical CT using a Faraday rotator, in which a light emitted from a light source 1 is applied to a polarizer 2;
To obtain linearly polarized light. Here, for example, when linearly polarized light having an azimuth parallel to the X axis is irradiated on the next-stage Faraday rotator, the oscillation direction of the linearly polarized light exiting the Faraday rotator fluctuates according to the magnetic field applied thereto. The incident light is made incident on the polarizing beam splitter, and the X-axis component, Y
The light is separated into axial components, each of which is received by the light receivers 5 and 6, and how much the linearly polarized light is rotated, that is, how much the magnetic field is applied to the Faraday rotator can be determined from the received light amount.

しかしながら、ファラデー回転素子の旋光能は温度依
存生を有すため同じ強さの磁場中にあっても周囲温度の
変化にともなって旋光角が変動し測定誤差を生じ、該測
定誤差を少なくするために温度変化による旋光角の変化
量が小さい材質のものをファラデー回転素子として選定
する必要がある。
However, the optical rotation power of the Faraday rotation element has a temperature dependence, so that even in a magnetic field of the same strength, the rotation angle varies with the change of the ambient temperature, causing a measurement error, and reducing the measurement error. In addition, it is necessary to select a material having a small change in the optical rotation angle due to a temperature change as the Faraday rotation element.

しかし一般にそのような材質を用いたファラデー回転
素子はベルデ常数が小さく所望の旋光能を得るには該フ
ァラデー回転素子を大型化しなくてはならないという欠
点があった。
However, in general, a Faraday rotation element using such a material has a drawback that the Faraday rotation element has to be large in order to have a small Verde constant and obtain a desired optical rotation.

(発明の目的) 本発明は上述した欠点に鑑みなされたものであって、
ベルデ常数の高い小型のファラデー回転素子を用い、例
えば小型の変成器等を構成する際に温度変化にその検出
値が影響されることのないようにするために旋光角の温
度による変化率を任意に設定することが出来る旋光子を
提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned drawbacks,
Using a small Faraday rotator with a high Verde constant, the rate of change of the optical rotation angle with temperature can be set to an arbitrary value so that the detected value is not affected by temperature changes when configuring a small transformer, for example. It is an object of the present invention to provide a rotator that can be set to.

(発明の概要) この目的を達成するために本発明の旋光子は、入射直
線偏光を所望の方位及び楕円率の楕円偏光とする第1の
位相板と該第1の位相板を透過した光を直線偏光にする
第2の位相板とを組み合わると共に、該第1の位相板の
温度変化に対する回転角変化量を所望の旋光角補正量の
2倍となるように前記第1位相板の板厚を設定し、旋光
角の温度に対する変化率を任意に設定するよう構成す
る。
(Summary of the Invention) In order to achieve this object, an optical rotator of the present invention comprises a first phase plate that converts incident linearly polarized light into elliptically polarized light having a desired azimuth and ellipticity, and light transmitted through the first phase plate. Is combined with a second phase plate for converting the first phase plate into a linearly polarized light, and the first phase plate is rotated such that the amount of change in the rotation angle with respect to the temperature change of the first phase plate is twice the desired amount of optical rotation angle correction. The plate thickness is set, and the rate of change of the optical rotation angle with respect to the temperature is set arbitrarily.

(実施例) 以下、図面に示した実施例に基づいて本発明を詳細に
説明する。
(Examples) Hereinafter, the present invention will be described in detail based on examples shown in the drawings.

先ず、本発明の理解を助けるため本発明の説明に先立
ってファラデー回転素子の各種特性について少しく説明
する。
First, various characteristics of the Faraday rotator will be briefly described prior to the description of the present invention to facilitate understanding of the present invention.

例えば第7図に示すごとき状態のファラデー回転素子
の旋光角θは で表すことが出来る。
For example, the optical rotation angle θ of the Faraday rotator in the state shown in FIG. Can be represented by

即ち、ベルデ定数、等価鎖交数及び導体に流れる電流
が大きいほど旋光角θは大きくなり高度の検出能を得る
ことが出来る。従って、ファラデー回転素子を電流変成
器として小電流検出用且つ小型化して用いる場合ベルデ
定数Vは大きいものが要求される。該ベルデ定数は希土
類を含む強磁性体が特に大きいが、これは温度特性を有
しているため温度によって旋光角が変動し正しい検出を
行うことは困難であるという欠点のあったこと前述の通
りである。
That is, the greater the Verdet constant, the number of equivalent interlinkage, and the current flowing through the conductor, the larger the optical rotation angle θ and the higher the detectability. Therefore, when the Faraday rotator is used as a current transformer for detecting a small current and being miniaturized, a large Verdet constant V is required. The Verdet constant is particularly large in a ferromagnetic material containing a rare earth element. However, since it has a temperature characteristic, the angle of rotation varies depending on the temperature, and it is difficult to perform a correct detection. It is.

第8図はファラデー回転素子の温度−旋光度の変化の
一例を示す図であって同図に示すごとく25℃で磁界を加
えない時の旋光角は45degであり70℃の温度に対して1.5
degの旋光角の変化があるとすれば該ファラデー回転素
子の温度−旋光度特性△θ/△Tは △θF/△T=(45deg−46.5de)g/(25℃−90℃) =(−1.5deg/−70℃ =0.0214deg/℃ ……… となる。従って該ファラデー回転素子の温度特性補正用
に △θC/△T=−0.0214deg/℃ ……… の特性を有す光学部品を前記ファラデー回転素子の前段
若しくは後段に配置すればよい。
FIG. 8 is a diagram showing an example of a change in the temperature-rotation degree of the Faraday rotation element. As shown in FIG. 8, the rotation angle at 25 ° C. when no magnetic field is applied is 45 deg.
If there is a change in the optical rotation angle of deg, the temperature-optical rotation characteristic Δθ / ΔT of the Faraday rotator is ΔθF / ΔT = (45deg−46.5de) g / (25 ° C.−90 ° C.) = ( −1.5 deg / −70 ° C. = 0.0214 deg / ° C. Therefore, an optical component having the following characteristics for correcting the temperature characteristics of the Faraday rotating element: ΔθC / ΔT = −0.0214 deg / ° C. May be arranged before or after the Faraday rotation element.

第1図は本発明の原理を示す図である。同図に於て11
は光学軸が入射直線偏光に対し45deg回転した第1位相
板、12はその光学軸が前記第1位相板に入射した直線偏
光に対し平行な第2位相板である。
FIG. 1 is a diagram showing the principle of the present invention. In the figure, 11
Is a first phase plate whose optical axis is rotated by 45 degrees with respect to the incident linearly polarized light, and 12 is a second phase plate whose optical axis is parallel to the linearly polarized light incident on the first phase plate.

第1位相板11に入射した直線偏光は位相差θを生じ次
段の第2位相板12に入射することにより再び直線偏光と
なる。この状態をポアンカレ球にて表示すると第2図に
示す如く、先づS点にある直線偏光は第1位相板に入射
することによりS2軸を中心に90deg回転し円偏光とな
り、次段の第2位相板にてS1軸を中心に90deg回転する
ことにより再び直線偏光に戻る。
The linearly polarized light that has entered the first phase plate 11 produces a phase difference θ, and enters the next-stage second phase plate 12 to become linearly polarized light again. When displaying the status at the Poincare sphere as shown in Figure 2, previously Dzu S linearly polarized light in a point becomes 90deg rotated circularly polarized light about the S 2 axis by entering the first phase plate, the next stage returns to linearly polarized light by 90deg rotates around the S 1 axis in the second phase plate.

即ち、2枚の位相板を組み合わせることにより旋光子
を構成し、それに補正用の温度特性をもたせればよく、
その為に温度変化にともなうS2軸回りの回転角の変化量
を所望の値に設定し、更にS1軸を中心に90deg回転させ
所望の温度特性を有す旋光子を構成すればよい。
That is, an optical rotator may be formed by combining two phase plates, and it may have a temperature characteristic for correction.
Therefore the amount of change in the rotation angle of the S 2 axis due to temperature changes is set to a desired value, it may be configured to polarization rotator that having a desired temperature characteristic is further 90deg rotated about the S 1 axis.

この方法に基づき前述したファラデー回転素子の温度
特性補正用光学部品を構成するには70℃の温度変化に対
して1.5degの旋光角の変化を伴うよう位相板の材質、光
学軸方位、切断角度、長さ及び位相波長等を選定すれば
よく、以下、数式を用いて各種パラメータの設定方法を
説明する。
Based on this method, the above-mentioned optical component for compensating the temperature characteristic of the Faraday rotator is constituted by the phase plate material, the optical axis azimuth, and the cutting angle so that a change in the optical rotation angle of 1.5 deg with a temperature change of 70 ° C. , Length, phase wavelength, and the like may be selected. Hereinafter, a method of setting various parameters using mathematical expressions will be described.

ここでは説明を簡単にするため位相板としてはYカッ
ト水晶板を用い、使用波長780nm、光の入射角0deg、使
用温度範囲を25℃〜90℃として説明する。但し、水晶特
有の円複屈折性は無視するものとする。
Here, for simplicity of description, a Y-cut quartz plate is used as a phase plate, the wavelength used is 780 nm, the incident angle of light is 0 deg, and the operating temperature range is 25 ° C. to 90 ° C. However, the circular birefringence characteristic of quartz is neglected.

水晶における複屈折率は no(λ)=1.53152+4369/λ+1.378・104 =1.53152+4369/7802+1378・104/7804 =1.538738 ……… ne(λ)=1.54022+4505/λ+1.521・104 =1.547666 ……… であり、また温度変化に伴う複屈折率は no′(λ.T)=no(△no/△T)△T =no+(−0.547・10-5)△T =1.538738−0.547・10-5・△T ……… ne′(λ.T)=ne+(−0.651・10-5)△T =1.54766−0.651・10-5・△T……… (但し△T=T−25℃) で表すことができる。Birefringence in the lens is n o (λ) = 1.53152 + 4369 / λ 2 +1.378 · 10 4 / λ 4 = 1.53152 + 4369/780 2 +1378 · 10 4/780 4 = 1.538738 ......... n e (λ) = 1.54022 + 4505 / λ 2 +1.521 · 10 4 / λ 4 = 1.547666 is ........., also birefringence due to temperature changes is n o '(λ.T) = n o (△ n o / △ T) △ T = n o + (- 0.547 · 10 -5) △ T = 1.538738-0.547 · 10 -5 · △ T ......... n e '(λ.T) = n e + (- 0.651 · 10 -5) ΔT = 1.54766−0.651 · 10 −5 · ΔT (where ΔT = T−25 ° C.)

一方、水晶における線膨張係数1/l(△l/△T)は 1/l(△l/△T)=(13cosγ+7sinγ)・10-6/℃ =(13cos0+7sin0)・10-6/℃ =13・10-6/℃ ……… と成り、また位相板に光が入射することによりその偏光
方向が回転する角度Γは Γ=360/λ・l・△n・(1+1/l(△l/△T)△T) /cosγ (△n=ne′+no′) ……… で表すことができる。ここで例えば回転角Γを90degと
仮定した場合の25℃における板厚1は l=90・780・10-6/360・8.928・10-3 =0.0218366mm ……… =21.8366μm と求まり、この板厚の水晶板を用いた場合70℃の温度変
化に対してどの程度回転角Γが変動するか第8式を用い
て試長すると第1表に示した如き結果を得る。
On the other hand, the linear expansion coefficient 1 / l (△ l / △ T) of quartz is 1 / l (△ l / △ T) = (13 cosγ + 7 sin γ) · 10 −6 / ° C. = (13 cos 0 + 7 sin 0) · 10 −6 / ° C. = 13・ 10 -6 / ℃ ……… The angle Γ at which the polarization direction rotates when light is incident on the phase plate is Γ = 360 / λλlln ・ (1 + 1 / l (△ l / △ T) △ T) / cosγ ( Δn = n e ′ + n o ′)... Here, for example, assuming that the rotation angle Γ is 90 deg, the plate thickness 1 at 25 ° C. is obtained as 1 = 90 · 780 · 10 −6 /360·8.928·10 −3 = 0.0218366 mm... = 21.8366 μm. When the thickness of the quartz plate is used and the rotation angle?

即ち、回転角を90deg与える板厚21.8366μmの位相板
では70℃の温度変化に対して回転角が0.65deg変化し、
前述した如きファラデー回転素子の温度変化に基づく回
転角の変動を補正するには 1.5deg×2=0.65×a =3deg/0.65 =4.61 ……… 式からも明らかな如く前記板厚の4.61倍の位相板を
選定すればよい。従って、位相板の選定板厚は 21.8366×4.6154=100.784μm となる。
That is, in a phase plate with a plate thickness of 21.8366 μm that gives a rotation angle of 90 degrees, the rotation angle changes by 0.65 degrees with respect to a temperature change of 70 ° C.
1.5 deg × 2 = 0.65 × a = 3 deg / 0.65 = 4.61 To correct the fluctuation of the rotation angle based on the temperature change of the Faraday rotation element as described above, it is 4.61 times the plate thickness as is clear from the equation. What is necessary is just to select a phase plate. Therefore, the selected thickness of the phase plate is 21.8366 × 4.6154 = 100.784 μm.

第2表は板厚100.784μmの位相板を用いた場合の温
度変化に対する回転角Γを第8式を用いて算出したもの
であり、同表からも明らかな如く70℃の温度変化に対し
回転角Γは3.01deg変化する。
Table 2 shows the rotation angle に 対 す る with respect to the temperature change when a phase plate having a thickness of 100.784 μm is used, using Equation 8, and as is clear from the table, the rotation angle に 対 し with respect to the temperature change of 70 ° C. The angle 3.0 changes by 3.01deg.

この板厚100.784μmの位相板を第1位相板、前記板
厚21.8366μmの位相板を第2位相板とし前記第1図に
示した如き構成をとると、その特性は第3図に示す如き
ものとなる。
If the phase plate having a thickness of 100.784 μm is the first phase plate, and the phase plate having the thickness of 21.8366 μm is the second phase plate, and the configuration shown in FIG. 1 is adopted, the characteristics are as shown in FIG. It will be a kimono.

同図(a)は25℃における特性をポアンカレ球上に図
式表示したものであって、S点にある直線偏光は第1位
相板に入射しS2軸を中心に415.38deg回転しP点に移動
する。次に第2位相板に入射するとS1軸を中心に90deg
回転するため27.69degの傾きを持つ直線偏光となる。ま
た温度が70℃変化した場合には同図(b)に示す如くS
点にある直線偏光は第1位相板に入射しS2軸を中心に41
2.37deg回転しP′に移動する。次に第2位相板に入射
するとS1軸を中心に89.35deg回転するため26.19degの傾
きを持つほぼ直線偏光となる。
FIG. 5A is a diagram showing the characteristics at 25 ° C. on a Poincare sphere, in which the linearly polarized light at the point S enters the first phase plate, rotates 415.38 degrees around the S 2 axis, and rotates at the point P. Moving. Then 90deg about the S 1 axis when entering the second phase plate
Due to rotation, it becomes linearly polarized light having an inclination of 27.69 deg. When the temperature changes by 70 ° C., as shown in FIG.
41 about the S 2 axis incident on the first phase plate linearly polarized light in a point
2.37 ° rotation and move to P '. Next substantially linearly polarized light having an inclination of 26.19deg for 89.35deg rotates around the S 1 axis when incident on the second phase plate.

即ち、第1、2位相板の総合的な特性は第4図に示す
如くS点にある光を25℃の時には27.69degの傾きを持つ
直線偏光にし、95℃の時には26.19degの傾きを持つほぼ
直線偏光にするものであり、いわゆる旋光子としての機
能を持つ。
That is, as shown in FIG. 4, the overall characteristics of the first and second phase plates are such that the light at point S is linearly polarized light having a gradient of 27.69 deg at 25 ° C. and has a gradient of 26.19 deg at 95 ° C. It is made to be almost linearly polarized light and has a function as a so-called optical rotator.

このように構成した第1、第2位相板を前述した特性
を有すファラデー回転素子の温度特性を補正するために
第5図に示す如き構成にすると該ファラデー回転素子に
て生ずる温度変化に伴う旋光度の変化を第1、第2位相
板にて生ずる温度変化に伴う回転角の変化とが逆特性と
なり打ち消し合うため光学系全体としての温度−旋光度
特性は一定となることが分かる。
When the first and second phase plates having the above-mentioned structure are configured as shown in FIG. 5 to correct the temperature characteristics of the Faraday rotator having the above-described characteristics, the first and second phase plates are accompanied by a temperature change occurring in the Faraday rotator. It can be seen that the change in the optical rotation is opposite to the change in the rotation angle due to the temperature change occurring in the first and second phase plates, and the rotation is canceled out, so that the temperature-optical rotation characteristic of the entire optical system is constant.

即ち、第1位相板の温度変化△Tにおける回転角変化
量△Γがファラデー回転素子が生ずる旋光変化度△θF
の2倍となるように該第1位相板の板厚1を設定すれば
よい。
That is, the temperature change of the first phase plate {the rotation angle change amount at T} is equal to the optical rotation change degree ΔθF generated by the Faraday rotation element.
The thickness 1 of the first phase plate may be set so as to be twice the thickness of the first phase plate.

尚、本発明の実施例では2枚の位相板を組み合わせる
ことにより構成した旋光子の25℃における旋光角を27.6
9degとしたがこれに限るものでなく、光の入射角度及び
位相板の切断角度等を適宜選定することにより所望の旋
光能を得ることができ、例えば25℃に於て磁界を加えな
いときのファラデー回転素子の出力が45deg×n(n=
整数)の偏光方向となるように光学系全体を調整すれば
PBSにて出力を分割する際に夫々の分光出力の光量が1:1
若しくは1:0となるため検出精度が高く容易に測定する
ことが可能な電流変成器を構成することができる。
In the embodiment of the present invention, the optical rotation angle at 25 ° C. of the optical rotator constituted by combining two phase plates is set to 27.6.
Although it was set to 9 deg, the present invention is not limited to this, and a desired optical rotation can be obtained by appropriately selecting the incident angle of light and the cutting angle of the phase plate, for example, when a magnetic field is not applied at 25 ° C. The output of the Faraday rotator is 45deg × n (n =
If the whole optical system is adjusted so that the polarization direction is (integer)
When splitting the output with PBS, the light intensity of each spectral output is 1: 1
Alternatively, since the ratio is 1: 0, it is possible to configure a current transformer that has high detection accuracy and can easily measure.

上述したようにファラデー回転素子の25℃且つ無磁界
の際の出力を45×nの偏光方向を有す直線偏光とするた
めには、第1位相板における回転角Γを Γ=n×180+90 とし、且つ温度変化に伴う回転角の変動△Γを所望の値
となるように板厚1を選定すればよく、例えば本実施例
では第1位相板における回転角Γを4degとなるよう板厚
109.183μmを選定すれば第3表に示す如く25℃に於て4
50deg、95℃に於て446.74degとなり70℃の温度変化に対
して1.63degの変化を有す旋光子を構成することができ
ファラデー回転素子の温度−旋光度特性をほぼ一定にす
ることができる。
As described above, in order to set the output of the Faraday rotator at 25 ° C. and in the absence of a magnetic field to linearly polarized light having a polarization direction of 45 × n, the rotation angle に お け る in the first phase plate is given by Γ = nx180 + 90. The thickness 1 may be selected so that the rotation angle variation △ Γ due to the temperature change becomes a desired value. For example, in this embodiment, the plate thickness is set so that the rotation angle に お け る of the first phase plate becomes 4 degrees.
If 109.183 μm is selected, as shown in Table 3, 4
It is 446.74deg at 50deg and 95degC, and it can be composed of a rotator having a change of 1.63deg with respect to the temperature change of 70degC, and the temperature-rotation characteristic of the Faraday rotator can be made almost constant. .

また、本発明の実施例では2枚の位相板を独立したも
のを用いて説明したがこれに限るものではなく張り合わ
せた一体型のものを用いても良いことは明らかである。
In the embodiment of the present invention, the two phase plates have been described as being independent. However, the present invention is not limited to this.

(発明の効果) 本発明は上述した如く構成し且つ機能するものである
から温度変化に伴う旋光度の変化量を任意に設定するこ
とができ、例えばファラデー回転素子等の補正用光学部
品として本発明による旋光子を用いれば温度変化に影響
されることなく小型の電流変成器を構成することができ
る。
(Effects of the Invention) Since the present invention is configured and functions as described above, it is possible to arbitrarily set the amount of change in optical rotation with temperature change. For example, the present invention can be used as a correction optical component such as a Faraday rotation element. By using the optical rotator according to the present invention, a small current transformer can be configured without being affected by a temperature change.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理を説明する図、第2図は本発明の
原理をポアンカレ球上にて図式表示した図、第3図及び
第4図は本発明の旋光子の機能をポアンカレ球上に図式
表示した図、第5図は本発明の旋光子をファラデー回転
素子の温度特性補正用に用いた一実施例を示す図、第6
図は従来用いられていたファラデー回転素子を用いた電
流変成器の一実施例を示す図、第7図はファラデー回転
素子の特性を説明する図、第8図はファラデー回転素子
の温度−旋光度特性の一例を示す図である。 1……光源、2……偏光子、 3、7……ファラデー回転素子、 4……偏光ビームスプリッタ、5、6……受光器、11…
…第1位相板、 12……第2位相板。
FIG. 1 is a diagram illustrating the principle of the present invention, FIG. 2 is a diagram schematically illustrating the principle of the present invention on a Poincare sphere, and FIGS. 3 and 4 are diagrams illustrating the function of the optical rotator of the present invention on a Poincare sphere. FIG. 5 is a diagram schematically shown above, and FIG. 5 is a diagram showing an embodiment in which the optical rotator of the present invention is used for correcting the temperature characteristics of the Faraday rotator.
FIG. 1 is a diagram showing an embodiment of a current transformer using a conventional Faraday rotator, FIG. 7 is a diagram for explaining characteristics of the Faraday rotator, and FIG. 8 is a temperature-rotation degree of the Faraday rotator. It is a figure showing an example of a characteristic. DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Polarizer, 3 ... 7 Faraday rotation element, 4 ... Polarization beam splitter, 5, 6 ... Receiver, 11 ...
... First phase plate, 12... Second phase plate.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02B 27/28 G02B 5/30 G01R 15/22──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G02B 27/28 G02B 5/30 G01R 15/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ファラデー回転素子の前段もしくは後段に
配置する旋光子であって、入射直線偏光を所望の方位及
び楕円率の楕円偏光とする第1の位相板と、該第1の位
相板を透過した光を直線偏光にする第2の位相板とを組
み合わせると共に、前記ファラデー回転素子の温度変動
による旋光角の変化を打ち消すように前記第1及び第2
の位相板の板厚を設定したことを特徴とする旋光子。
An optical rotator disposed before or after a Faraday rotator, comprising: a first phase plate for converting incident linearly polarized light into elliptically polarized light having a desired azimuth and ellipticity; and a first phase plate. The first and second phase plates are combined with a second phase plate that converts the transmitted light into linearly polarized light, and the first and second phase plates are rotated so as to cancel a change in the optical rotation angle due to a temperature change of the Faraday rotator.
The optical rotator wherein the thickness of the phase plate is set.
JP63301358A 1988-11-29 1988-11-29 Optical rotator Expired - Lifetime JP2782071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63301358A JP2782071B2 (en) 1988-11-29 1988-11-29 Optical rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63301358A JP2782071B2 (en) 1988-11-29 1988-11-29 Optical rotator

Publications (2)

Publication Number Publication Date
JPH02146517A JPH02146517A (en) 1990-06-05
JP2782071B2 true JP2782071B2 (en) 1998-07-30

Family

ID=17895908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63301358A Expired - Lifetime JP2782071B2 (en) 1988-11-29 1988-11-29 Optical rotator

Country Status (1)

Country Link
JP (1) JP2782071B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761959B1 (en) 1997-04-15 1999-05-21 Oreal PACKAGING AND APPLICATION ASSEMBLY OF A FLUID PRODUCT

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151301A (en) * 1984-08-22 1986-03-13 深水 清則 Wood-chopping machine

Also Published As

Publication number Publication date
JPH02146517A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
Short et al. Imperfect quarter-waveplate compensation in Sagnac interferometer-type current sensors
US3807866A (en) Ring laser gyroscope having a constant output beat-frequency
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
JPS58129372A (en) Magnetic field-light converter
JPS5811869A (en) Fiber optics device for measuring intensity of current i by utilizing faraday effect
JP2521395B2 (en) Optical voltage / electric field sensor
Kiepenheuer Photoelectric Measurements of Solar Magnetic Fields.
Collett Measurement of the four Stokes polarization parameters with a single circular polarizer
US4403190A (en) Magnetic resonance gyroscope with spectral control
JP2782071B2 (en) Optical rotator
EP0579537A1 (en) Magnetometer with polarized light and servo-controlled radio frequency field
US6535654B1 (en) Method for fabrication of an all fiber polarization retardation device
JPH02173518A (en) Optical fiber rotational angular velocity sensor
Maxwell et al. Liquid crystal polarimetry for metastability exchange optical pumping of 3He
JPS59107273A (en) Photocurrent and magnetic field sensor
JPH06221993A (en) Method and apparatus for measuring extinction ratio of polarizer
JPH0115808B2 (en)
JP3348257B2 (en) Optical isolator device
JP2831429B2 (en) High sensitivity optical frequency discriminator
West Using KD* P modulators for polarization measurements of the Sun
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JPH01113626A (en) Measuring method for optical wavelength
JPH08320456A (en) Rotating device for orientation of polarization
Rogers A vibration-insensitive optical-fibre current sensor
JPH08220149A (en) Photovoltaic sensor