JP3148579B2 - Optical fiber current / magnetic field sensor - Google Patents

Optical fiber current / magnetic field sensor

Info

Publication number
JP3148579B2
JP3148579B2 JP17213095A JP17213095A JP3148579B2 JP 3148579 B2 JP3148579 B2 JP 3148579B2 JP 17213095 A JP17213095 A JP 17213095A JP 17213095 A JP17213095 A JP 17213095A JP 3148579 B2 JP3148579 B2 JP 3148579B2
Authority
JP
Japan
Prior art keywords
optical
magneto
magnetic field
optical element
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17213095A
Other languages
Japanese (ja)
Other versions
JPH0921833A (en
Inventor
栄一 永尾
光 小川
政美 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17213095A priority Critical patent/JP3148579B2/en
Publication of JPH0921833A publication Critical patent/JPH0921833A/en
Application granted granted Critical
Publication of JP3148579B2 publication Critical patent/JP3148579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はファラデー効果と自然
旋光性を備えた磁気光学素子により電流・磁界を測定す
る光ファイバ電流・磁界センサ、とくに、温度の変化に
よる出力誤差を最小にすることに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber current / magnetic field sensor for measuring a current / magnetic field using a magneto-optical element having a Faraday effect and a natural optical rotation, and more particularly to minimizing an output error due to a change in temperature. .

【0002】[0002]

【従来の技術】図8は例えば、特公平−24665号公
報に開示された従来の光ファイバ電流・磁界センサを示
す構成図である。図において、1は光源で発光ダイオー
ド(LED)を用いる。2は光源1からの光を直接偏光
にかえる偏光子、3はファラデー効果と自然旋光性を備
えた磁気光学素子で酸化物結晶のBi12GeO20素子
(以下、BGO素子と略記する)を用いる。偏光子2か
らの直線偏光がBGO素子を透過すると、その偏光面は
自然旋光性により光路の長さに比例して回転し、ファラ
デー効果により光路の長さと光路に平行に作用する磁界
の強さに比例して回転する。4は磁気光学素子3での直
線偏光の偏光面の回転角に対応して光の強度変調を行う
検光子、5は検光子4からの直線偏光を光電変換してそ
の強度に対応した電気記号を検出する光受信機、10
a、10bはそれぞれ光源1と偏光子2、検光子4と光
受信機5を結ぶ第一の光ファイバ、第二の光ファイバで
ある。
2. Description of the Related Art FIG. 8 is a block diagram showing a conventional optical fiber current / magnetic field sensor disclosed in Japanese Patent Publication No. 24665/1992, for example. In the figure, reference numeral 1 denotes a light source using a light emitting diode (LED). Reference numeral 2 denotes a polarizer that directly converts light from the light source 1 into polarized light. Reference numeral 3 denotes a magneto-optical element having a Faraday effect and a natural optical rotation, and uses an oxide crystal Bi 12 GeO 20 element (hereinafter abbreviated as a BGO element). . When the linearly polarized light from the polarizer 2 passes through the BGO element, the plane of polarization rotates in proportion to the length of the optical path due to natural rotation, and the length of the optical path and the strength of the magnetic field acting in parallel to the optical path due to the Faraday effect. Rotate in proportion to. Reference numeral 4 denotes an analyzer that modulates the intensity of light in accordance with the rotation angle of the plane of polarization of the linearly polarized light in the magneto-optical element 3. Reference numeral 5 denotes an electric symbol corresponding to the intensity obtained by photoelectrically converting the linearly polarized light from the analyzer 4. Optical receiver for detecting
Reference numerals a and 10b denote a first optical fiber and a second optical fiber connecting the light source 1 and the polarizer 2, and the analyzer 4 and the optical receiver 5, respectively.

【0003】従来の光ファイバ電流・磁界センサは以上
のように構成されており、磁気光学素子3の光路の長さ
はその自然旋光性により直線偏光の偏光面の回路角が4
5゜の感度が最大になる値に選ばれている。このように
すれば、偏光子2と検光子4の各光軸を幾何学的に45
゜に配置しなくても相対的に45゜の角度をなしている
のと等価である。光源1を出射した光は光ファイバ10
aを伝搬し、偏光子2に入射して直線偏光に変えられ
る。偏光子2を出射した直線偏光は磁気光学素子3に入
射し、自然旋光性によって偏光面が45゜回転し、更
に、ファラデー効果によりその光路に平行に作用する磁
界の強さに比例して回転する。この偏光面の回転角Δψ
は磁界の強さをH、磁気光学素子3のヴェルデ定数を
V、磁気光学素子3の自然旋光能をθ、磁気光学素子3
の光路の長さをLとして式1の関係にある。
The conventional optical fiber current / magnetic field sensor is constructed as described above. The length of the optical path of the magneto-optical element 3 is such that the circuit angle of the plane of polarization of linearly polarized light is 4 due to its natural optical rotation.
The value at which the sensitivity of 5 ° is maximized is selected. In this way, each optical axis of the polarizer 2 and the analyzer 4 is geometrically set to 45.
It is equivalent to forming an angle of relatively 45 ° even if it is not arranged at ゜. The light emitted from the light source 1 is an optical fiber 10
a, and is incident on the polarizer 2 and converted into linearly polarized light. The linearly polarized light emitted from the polarizer 2 is incident on the magneto-optical element 3, and the plane of polarization is rotated by 45 ° due to natural optical rotation, and further rotated in proportion to the strength of a magnetic field acting in parallel to the optical path due to the Faraday effect. I do. Rotation angle Δψ of this polarization plane
Is H, the Verde constant of the magneto-optical element 3 is V, the natural optical rotation of the magneto-optical element 3 is θ, and the magneto-optical element 3 is
Where L is the length of the optical path of

【0004】[0004]

【数1】 (Equation 1)

【0005】BGO素子のヴェルデ定数はファラデー効
果を有する透明物質でよく知られた鉛ガラスのヴェルデ
定数の4〜5倍はあるので感度はよく、また、磁気光学
素子3の光路の長さをその自然旋光性による偏光面の回
転角が45゜、すなわち、式1のθLがπ/4になるよ
うに選んで感度を最大にしている。磁気光学素子3を出
射した直線偏光は検光子4に入射し、磁気光学素子3で
回転した偏光面の回転角に対応して光の強度変調を受け
る。検光子4を出射した直線偏光は光ファイバ10bを
伝搬し、光受信機5に入射して光電変換され、直線偏光
の強度、したがって、磁界の強さHに対応した電気信号
として検出される。これにより磁界の強さを測定するこ
とができ、また、その磁界が電流によるものであれば、
その電流の大きさを測定することができる。
The Verde constant of the BGO element is 4 to 5 times the Verde constant of lead glass, which is well known as a transparent material having a Faraday effect, so that the sensitivity is good. The sensitivity is maximized by selecting such that the rotation angle of the polarization plane due to natural optical rotation is 45 °, that is, θL in Expression 1 is π / 4. The linearly polarized light emitted from the magneto-optical element 3 enters the analyzer 4 and undergoes light intensity modulation corresponding to the rotation angle of the polarization plane rotated by the magneto-optical element 3. The linearly polarized light emitted from the analyzer 4 propagates through the optical fiber 10b, enters the optical receiver 5, is photoelectrically converted, and is detected as an electric signal corresponding to the intensity of the linearly polarized light, that is, the strength H of the magnetic field. This allows the strength of the magnetic field to be measured, and if the magnetic field is due to current,
The magnitude of the current can be measured.

【0006】[0006]

【発明が解決しようとする課題】従来の光ファイバ電流
・磁界センサは以上のように構成され、磁気光学素子3
の光路の長さをその自然旋光性により直線偏光の偏光面
の回転角が45゜の感度が最大になる値に選んで、偏光
子2と検光子4の各光軸が互いに45゜になるようにし
ているが、温度が変化すると、磁気光学素子3のヴェル
デ定数や自然旋光能の変化が大きく偏光面の回転角が変
化して出力誤差が大きくなると云う解決すべき課題があ
った。
The conventional optical fiber current / magnetic field sensor is constructed as described above.
Is selected so that the sensitivity is maximized when the rotation angle of the plane of polarization of linearly polarized light is 45 ° due to its natural optical rotation, and the optical axes of the polarizer 2 and the analyzer 4 become 45 ° to each other. However, there is a problem to be solved such that when the temperature changes, the Verdet constant and the natural optical rotation of the magneto-optical element 3 greatly change, and the rotation angle of the polarization plane changes to increase the output error.

【0007】この発明はこのような課題を解決するため
になされたものであって、磁気光学素子の自然旋光性と
ファラデー効果による直線偏光の偏光面の回転角を検光
子で光の強度に変調するときの感度に及ぼす温度の変化
の影響を小さくして出力誤差が最小になる光ファイバ電
流・磁界センサを得ることを第一の目的とし、磁気光学
素子にBGO素子を用いてその自然旋光性による直線偏
光の回転格が45゜の感度が最大となる光路の長さを光
源の光の波長との関係で最適化した光ファイバ電流・磁
界センサを得ることを第二の目的とする。また、磁気光
学素子にBGO素子を用いて自然旋光性による偏光面の
回転画が45゜の感度が最大となるときの出力誤差を最
小にするとともに、感度を高くすることができる光ファ
イバ電流・磁界センサを得ることを第三の目的とし、同
じく、磁気光学素子にBGO素子を用いて出力誤差を最
小にするとともに、感度を任意に高くすることができる
光ファイバ電流・磁界センサを得ることを第四の目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and modulates the rotation angle of the plane of polarization of linearly polarized light due to the natural optical rotation of a magneto-optical element and the Faraday effect to the intensity of light by an analyzer. The primary objective is to obtain an optical fiber current / magnetic field sensor that minimizes the output error by minimizing the effect of temperature changes on the sensitivity when performing the operation. It is a second object of the present invention to obtain an optical fiber current / magnetic field sensor in which the length of the optical path at which the sensitivity is maximum when the rotation angle of the linearly polarized light is 45 ° is optimized in relation to the wavelength of the light from the light source. Also, by using a BGO element as the magneto-optical element, it is possible to minimize the output error when the sensitivity of the rotation plane of the polarization plane due to the natural optical rotation becomes 45 °, and to increase the sensitivity. A third object of the present invention is to obtain a magnetic field sensor. Similarly, it is intended to obtain an optical fiber current / magnetic field sensor capable of minimizing an output error and arbitrarily increasing sensitivity by using a BGO element as a magneto-optical element. The fourth purpose.

【0008】[0008]

【課題を解決するための手段】この発明に係る光ファイ
バ電流・磁界センサは光源の光を第一の光ファイバで伝
送し偏光子に入射して直線偏光にかえたうえ、自然旋光
性とファラデー効果とを備えた磁気光学素子に入射し、
直線偏光の偏光面をその自然旋光性により45゜、更
に、そのファラデー効果により所定角度回転させた直線
偏光を検光子に入射して磁気光学素子での偏光面の回転
角に対応した光の強度変調を行い、出射する直線偏光を
第二の光ファイバで伝送し光受信機に入射して光電変換
により直線偏光の強度に対応した電気信号を検出し、磁
気光学素子の光路に平行に作用する磁界の強さを測定す
るものにおいて、磁気光学素子の自然旋光能とヴェルデ
定数の各温度係数が同符号のときは偏光子と検光子の各
光軸を互いに垂直にし、異符号のときは偏光子と検光子
の各光軸を互いに平行にするものである。
An optical fiber current / magnetic field sensor according to the present invention transmits light from a light source through a first optical fiber, enters a polarizer, converts the light into linearly polarized light, and has a natural optical rotation and Faraday Incident on the magneto-optical element with the effect,
The intensity of light corresponding to the angle of rotation of the plane of polarization of the magneto-optical element is incident on the analyzer by rotating the plane of polarization of the linearly polarized light by 45 ° by its natural optical rotation and further by rotating the plane of polarization by a predetermined angle by the Faraday effect. Performs modulation, transmits the emitted linearly polarized light through the second optical fiber, enters the optical receiver, detects an electrical signal corresponding to the intensity of the linearly polarized light by photoelectric conversion, and acts in parallel with the optical path of the magneto-optical element. When measuring the strength of a magnetic field, the optical axes of the polarizer and analyzer are perpendicular to each other when the natural optical rotation of the magneto-optical element and the temperature coefficients of the Verde constant are the same sign, and the polarization is used when the sign is different. The optical axes of the detector and the analyzer are made parallel to each other.

【0009】また、前記と同じ光ファイバ電流・磁界セ
ンサにおいて、磁気光学素子に酸化物結晶のBGO素子
を用いて偏光子と検光子の各光軸を互いに平行にする。
In the same optical fiber current / magnetic field sensor as described above, the optical axes of the polarizer and the analyzer are made parallel to each other by using an oxide crystal BGO element as the magneto-optical element.

【0010】さらに、前記と同じ光ファイバ電流・磁界
センサにおいて、光源に光の波長が800nmと900
nmとの間にある発光ダイオードを用い、磁気光学素子
にBGO素子を用いて光源の光の波長λ(nm)と磁気光
学素子の光路の長さL(mm)とがL=0.0092λ−
3.42なる関係にあるものにする。
In the same optical fiber current / magnetic field sensor as described above, the light source has a light wavelength of 800 nm and 900 nm.
The light wavelength of the light source λ (nm) and the length L (mm) of the optical path of the magneto-optical element are L = 0.0092λ−
3.42.

【0011】つぎに、前記と同じ光ファイバ電流・磁界
センサにおいて、光路の長さが同じ右旋性のBGO素子
と左旋性のBGO素子を奇数個組み合せて磁気光学素子
を構成し、磁気光学素子の自然旋光性による直線偏光の
偏光面の回転角を45゜にする。
Next, in the same optical fiber current / magnetic field sensor as described above, a magneto-optical element is formed by combining an odd number of dextrorotatory BGO elements and levorotatory BGO elements having the same optical path length. The rotation angle of the plane of polarization of the linearly polarized light due to the natural optical rotation of 45 ° is set to 45 °.

【0012】そして、前記と同じ光ファイバ電流・磁界
センサにおいて、光路の長さが異なる右旋性のBGO素
子と左旋性のBGO素子を1個ずつ組み合せて磁気光学
素子を構成し、磁気光学素子の自然旋光性による直線偏
光の偏光面の回転角を45゜にする。
In the same optical fiber current / magnetic field sensor as described above, a magneto-optical element is formed by combining one dextrorotatory BGO element and one levorotatory BGO element having different optical path lengths. The rotation angle of the plane of polarization of the linearly polarized light due to the natural optical rotation of 45 ° is set to 45 °.

【0013】[0013]

【作用】この発明においては、磁気光学素子の自然旋光
能とヴェルデ定数の各温度係数が同符号のときは偏光子
と検光子の各光軸を互いに垂直にし、異符号のときはそ
の各光軸を互いに平行にするので、磁気光学素子の自然
旋光性とファラデー効果による直線偏光の偏光面の回転
角を検光子で光の強度に変調するときの感度に及ぼす温
度の変化の影響が小さくなる。
In the present invention, the optical axes of the polarizer and the analyzer are made perpendicular to each other when the natural optical rotation power and the temperature coefficient of the Verde constant of the magneto-optical element have the same sign. Since the axes are parallel to each other, the effect of temperature change on the sensitivity when the angle of rotation of the plane of polarization of linearly polarized light due to the natural optical rotation of the magneto-optical element and the Faraday effect is modulated by the analyzer to the light intensity is reduced. .

【0014】また、磁気光学素子に酸化物結晶のBGO
素子を用いて偏光子と検光子の各光軸を互いに平行にす
るので、磁気光学素子の自然旋光性とファラデー効果に
よる直線偏光の偏光面の回転角を検光子で光の強度に変
調するときの感度に及ぼす温度の変化の影響が小さくな
る。
Further, an oxide crystal BGO is used for the magneto-optical element.
Since the optical axes of the polarizer and analyzer are parallel to each other using the element, the angle of rotation of the plane of polarization of linearly polarized light due to the natural optical rotation of the magneto-optical element and the Faraday effect is modulated by the analyzer to the light intensity. The effect of temperature change on the sensitivity of the device is reduced.

【0015】さらに、光源に光の波長が800nmと9
00nmとの間にある発光ダイオードを用い、磁気光学
素子にBGO素子を用いて光源の光の波長λ(nm)と磁
気光学素子の光路の長さL(mm)とがL=0.0092
λ−3.42なる関係にあるので、感度が最大となる磁
気光学素子の光路の長さと光源の光の波長との関係が最
適化される。
Further, the light source has a light wavelength of 800 nm and 9 nm.
Using a light emitting diode between 00 nm and a BGO element for the magneto-optical element, the wavelength λ (nm) of light from the light source and the length L (mm) of the optical path of the magneto-optical element are L = 0.0092.
Since the relationship is λ-3.42, the relationship between the optical path length of the magneto-optical element and the wavelength of the light from the light source that maximizes the sensitivity is optimized.

【0016】つぎに、光路の長さが同じ右旋性のBGO
素子と左旋性のBGO素子を奇数個組み合せて磁気光学
素子を構成し、磁気光学素子の自然旋光性による直線偏
光の偏光面の回転角を45゜にするので、感度に及ぼす
温度の変化の影響が小さくなり、感度が高くなる。
Next, dextrorotatory BGO with the same optical path length
An odd number of BGO elements and BGO elements with left-handed rotation are combined to form a magneto-optical element, and the rotation angle of the plane of polarization of linearly polarized light due to the natural optical rotation of the magneto-optical element is set to 45 °. And the sensitivity increases.

【0017】そして、光路の長さが異なる右旋性のBG
O素子と左旋性のBGO素子を1個ずつ組み合せて磁気
光学素子を構成し、磁気光学素子の自然旋光性による直
線偏光の偏光面の回転角を45゜にするので、感度に及
ぼす温度の変化の影響が小さくなり、感度が任意に高く
なる。
Then, dextrorotatory BG having different optical path lengths
The O-element and the left-handed BGO element are combined one by one to form a magneto-optical element, and the rotation angle of the plane of polarization of linearly polarized light due to the natural optical rotation of the magneto-optical element is set to 45 °, so that the change in temperature that affects the sensitivity And the sensitivity is arbitrarily increased.

【0018】[0018]

【実施例】【Example】

実施例1.図1はこの発明の実施例を示す構成図であ
る。図1において、1、5、10a、10bは従来の技
術で図8について説明したものと同じものである。12
は光源1からの光を直線偏光にかえる偏光子、13はフ
ァラデー効果と自然旋光性とを備えた磁気光学素子でそ
の光路の長さは自然旋光による偏光面の回転角が45゜
の感度が最大になる値になっている。14は磁気光学素
子13を出射した直線偏光の偏光面の回転角に対応して
光の強度変調を行う検光子である。
Embodiment 1 FIG. FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, 1, 5, 10a, and 10b are the same as those described with reference to FIG. 12
Is a polarizer that converts the light from the light source 1 into linearly polarized light. 13 is a magneto-optical element having a Faraday effect and a natural optical rotation. The optical path length is such that the rotation angle of the polarization plane due to the natural optical rotation is 45 °. It is the maximum value. Reference numeral 14 denotes an analyzer that modulates the intensity of light in accordance with the rotation angle of the plane of polarization of linearly polarized light emitted from the magneto-optical element 13.

【0019】この実施例では磁気光学素子13のヴェル
デ定数と自然旋光能の各温度係数が同符号の場合には偏
光子12と検光子14の各光軸を互いに垂直にし、異符
号の場合にはその各光軸を互いに平行にする。このよう
に配置することにより磁気光学素子13のヴェルデ定数
と自然旋光能の各温度係数が互いに打ち消し合い、温度
の変化に対する出力誤差が最小になる。
In this embodiment, when the Verdet constant of the magneto-optical element 13 and each temperature coefficient of the natural optical rotation have the same sign, the optical axes of the polarizer 12 and the analyzer 14 are perpendicular to each other. Make their optical axes parallel to each other. With this arrangement, the Verdet constant of the magneto-optical element 13 and the temperature coefficients of the natural optical rotation cancel each other, and the output error with respect to a change in temperature is minimized.

【0020】次に、その理由について説明する。光源1
を出射した光は光ファイバ10a、を伝搬し、偏光子1
2に入射して直線偏光に変えられる。偏光子12を出射
した直線偏光は磁気光学素子13に入射し、自然旋光性
によって偏光面が45゜回転し、更に、ファラデー効果
により、その光路に平行に作用する磁界の強さに比例し
て回転する。磁気光学素子13を出射した直線偏光は検
光子14に入射し磁気光学素子13での偏光面の回転角
に対応して光の強度変調を受ける。検光子14を出射し
た直線偏光は光ファイバ10bを伝搬し、光受信機5に
入射して光電変換され、直線偏光の強度、したがって、
磁界の強さに対応した電気信号として検出される。これ
により磁界の強さを測定することができる。
Next, the reason will be described. Light source 1
Is transmitted through the optical fiber 10a, and the polarizer 1
2 and is converted into linearly polarized light. The linearly polarized light emitted from the polarizer 12 is incident on the magneto-optical element 13, the polarization plane is rotated by 45 ° due to natural optical rotation, and furthermore, due to the Faraday effect, in proportion to the strength of the magnetic field acting in parallel to the optical path. Rotate. The linearly polarized light emitted from the magneto-optical element 13 enters the analyzer 14 and undergoes light intensity modulation corresponding to the rotation angle of the plane of polarization of the magneto-optical element 13. The linearly polarized light emitted from the analyzer 14 propagates through the optical fiber 10b, enters the optical receiver 5, and is photoelectrically converted.
It is detected as an electric signal corresponding to the strength of the magnetic field. Thereby, the strength of the magnetic field can be measured.

【0021】ところで、偏光子12と検光子14の各光
軸が互いに垂直である場合、検光子14で強度変調した
直線偏光の強度の電界ベクトル成分Ex、Eyは磁気光
学素子13から検光子14に入射する直線偏光の強度を
1とし、磁界の強さをH、磁気光学素子13のヴェルデ
定数をV、その自然旋光能をθ、その光路の長さをLと
してジョーンズベクトルを用いて式2で表される。
When the optical axes of the polarizer 12 and the analyzer 14 are perpendicular to each other, the electric field vector components Ex and Ey of the intensity of the linearly polarized light modulated by the analyzer 14 are transmitted from the magneto-optical element 13 to the analyzer 14. The intensity of the magnetic field is H, the intensity of the magnetic field is H, the Verdet constant of the magneto-optical element 13 is V, its natural optical rotation is θ, and the length of its optical path is L. It is represented by

【0022】[0022]

【数2】 (Equation 2)

【0023】直線偏光の強度Iは式3で求められる。The intensity I of the linearly polarized light is obtained by equation (3).

【0024】[0024]

【数3】 (Equation 3)

【0025】式3でVHLが微小であれば、式3は近似
的に式4となる。
If VHL is very small in Equation 3, Equation 3 becomes approximately Equation 4.

【0026】[0026]

【数4】 (Equation 4)

【0027】式4で(1−COS2θL)/2は磁界の
影響を受けない成分であり、また、VHLsin2θL
は磁界の影響を受ける成分である。前者をIdc、後者
をIacで表し、磁気光学素子13の光路に平行に作用
する磁界を交番磁界として検光子14で光の強度変調を
行うときの感度ηをη=Iac/Idcで定義すると式
5が得られる。
In the equation (4), (1-COS2θL) / 2 is a component which is not affected by the magnetic field, and VHL sin2θL
Is a component affected by the magnetic field. The former is represented by Idc, the latter by Iac, and the sensitivity η when the light intensity is modulated by the analyzer 14 with the magnetic field acting parallel to the optical path of the magneto-optical element 13 as an alternating magnetic field is defined by η = Iac / Idc. 5 is obtained.

【0028】[0028]

【数5】 (Equation 5)

【0029】次に、偏光子12と検光子14の各光軸が
互いに平行である場合、同様に計算して検光子14で光
の強度変調を行うときの感度ηは式6となる。
Next, when the optical axes of the polarizer 12 and the analyzer 14 are parallel to each other, the sensitivity η when the light intensity is modulated by the analyzer 14 is calculated by the same equation.

【0030】[0030]

【数6】 なお、式5と式6でHは交番磁界の強さの実効値を表
す。
(Equation 6) In Equations 5 and 6, H represents the effective value of the intensity of the alternating magnetic field.

【0031】磁気光学素子13の自然旋光性による偏光
面の回転角は45゜であるから式5と式6でθL=45
゜とおくと、式7が得られる。
Since the rotation angle of the polarization plane due to the natural optical rotation of the magneto-optical element 13 is 45 °, θL = 45 in equations (5) and (6).
゜, Equation 7 is obtained.

【0032】[0032]

【数7】 (Equation 7)

【0033】次に、温度の変化が検光子14で光の強度
変調するときの感度ηに及ぼす影響について説明する。
磁気光学素子14の温度特性としてヴェルデ定数、自然
旋光能、光路の長さについて考えられるが、光路の長さ
の温度特性はヴェルデ定数や自然旋光能のそれに比べ、
無視できる程度であるので、ここでは考慮しない。磁気
光学素子14のヴェルデ定数と自然旋光能の各温度特性
は温度をt、温度tにおけるヴェルデ定数の値をV
(t)、温度tにおける自然旋光能の値をθ(t)、使
用中心温度におけるヴェルデ定数の値をVo、使用中心
温度における自然旋光能の値をθo、ヴェルデ定数の温
度係数をα、自然旋光のの温度係数をβ、使用中心温度
と温度との温度差をΔtとして、それぞれ式8、式9で
表される。
Next, the effect of the change in temperature on the sensitivity η when the light intensity is modulated by the analyzer 14 will be described.
The temperature characteristic of the magneto-optical element 14 can be considered with respect to the Verde constant, the natural optical rotation, and the length of the optical path.
Since it is negligible, it is not considered here. The temperature characteristics of the Verdet constant and spontaneous optical rotation of the magneto-optical element 14 are represented by temperature t, and the value of the Verdet constant at the temperature t by
(T), the value of the natural optical rotation at the temperature t is θ (t), the value of the Verdet constant at the operating center temperature is Vo, the value of the natural optical rotation at the operating center temperature is θo, the temperature coefficient of the Verdet constant is α, The temperature coefficient of the optical rotation is β, and the temperature difference between the operating center temperature and the temperature is Δt.

【0034】[0034]

【数8】 (Equation 8)

【0035】[0035]

【数9】 (Equation 9)

【0036】偏光子12と検光子14の各光軸が互いに
垂直である場合に温度tにおいて検光子14で光の強度
変調するときの感度η(t)は式5、式8、式9により
近似的に式10となる。
When the optical axes of the polarizer 12 and the analyzer 14 are perpendicular to each other, the sensitivity η (t) when the light intensity is modulated by the analyzer 14 at the temperature t is given by the following equations (5), (8) and (9). Equation 10 is approximately obtained.

【0037】[0037]

【数10】 (Equation 10)

【0038】更に、θoL=45゜であるから式10は
式11になる。
Further, since θoL = 45 °, Expression 10 becomes Expression 11.

【0039】[0039]

【数11】 [Equation 11]

【0040】式11より感度η(t)の温度係数はα−
(π/2)βであり、これにより出力誤差を生じる。
From equation 11, the temperature coefficient of sensitivity η (t) is α−
(Π / 2) β, which causes an output error.

【0041】また、偏光子12と検光子14の各光軸が
互いに平行である場合、同様に計算して感度7(t)の
温度係数はα+(π/2)βとなる。
When the optical axes of the polarizer 12 and the analyzer 14 are parallel to each other, the temperature coefficient of the sensitivity 7 (t) is α + (π / 2) β, similarly calculated.

【0042】これらの結果から検光子14で光の強度変
調するときの感度の温度係数は偏光子12と検光子14
の各光軸が互いに垂直であっても、また、平行であって
もヴェルデ定数と自然旋光能の各温度係数だけでなく、
自然旋光性による偏光面の回転角θoLにも影響される
ことが判る。また、偏光子12と検光子14の各光軸が
互いに垂直である場合の感度の温度係数α−(π/2)
βと、その各光軸が互いに平行である場合の感度の温度
係数α+(π/2)βとから、偏光子12と検光子14
の各光軸が互いに垂直であるか平行であるかによって自
然旋光能の温度係数の符号が逆になることも判る。
From these results, the temperature coefficient of sensitivity when the light intensity is modulated by the analyzer 14 is determined by the polarizer 12 and the analyzer 14.
Even if the optical axes are perpendicular to each other and parallel, not only the temperature coefficient of the Verdet constant and the natural optical rotation,
It can be seen that it is also affected by the rotation angle θoL of the polarization plane due to natural optical rotation. The temperature coefficient of sensitivity α- (π / 2) when the optical axes of the polarizer 12 and the analyzer 14 are perpendicular to each other.
From β and the temperature coefficient of sensitivity α + (π / 2) β when the optical axes are parallel to each other, the polarizer 12 and the analyzer 14
It can also be seen that the sign of the temperature coefficient of natural optical rotation is reversed depending on whether the optical axes are perpendicular or parallel to each other.

【0043】磁気光学素子13にどのような酸化物結晶
を用いるかによってヴェルデ定数の温度係数αと自然旋
光能の温度係数βのそれぞれの値と正負の符号が決まる
が、αとβが同符号であれば、偏光子12と検光子14
の各光軸が互いに垂直である場合に感度の温度係数が小
さくなって出力誤差は最小となり、αとβが異符号であ
れば、偏光子12と検光子14の各光軸が互いに平行で
ある場合に感度の温度係数が小さくなって出力誤差は最
小となる。
The value and the sign of the temperature coefficient α of the Verdet constant and the temperature coefficient β of the natural optical rotation power are determined depending on what kind of oxide crystal is used for the magneto-optical element 13, and α and β have the same sign. Then, the polarizer 12 and the analyzer 14
When the optical axes are perpendicular to each other, the temperature coefficient of sensitivity decreases and the output error is minimized. If α and β have different signs, the optical axes of the polarizer 12 and the analyzer 14 are parallel to each other. In some cases, the temperature coefficient of sensitivity is reduced and the output error is minimized.

【0044】実施例2.実施例2は実施例1の磁気光学
素子13にBGO素子を用いたものであるので、その構
成については図1と同じである。図2は温度とBGO素
子のヴェルデ定数の変化率との関係を示す温度特性図、
図3は光の波長とBGO素子の自然旋光能との関係を示
す分散特性図、図4は光ファイバ電流・磁界センサの周
囲温度を−20℃から+60℃まで変化させたときの温
度と出力誤差と測定中の経過時間との関係を示す特性曲
線図であり、破線は温度、実線は誤差を示す。図5は光
の波長とBGO素子の自然旋光性による偏光面の回転角
が45゜になる光路の長さとの関係を示す特性図であ
る。
Embodiment 2 FIG. The second embodiment uses a BGO element for the magneto-optical element 13 of the first embodiment, and thus has the same configuration as that of FIG. FIG. 2 is a temperature characteristic diagram showing the relationship between the temperature and the rate of change of the Verde constant of the BGO element;
FIG. 3 is a dispersion characteristic diagram showing the relationship between the wavelength of light and the natural optical rotation of the BGO element. FIG. 4 is a graph showing the temperature and output when the ambient temperature of the optical fiber current / magnetic field sensor is changed from -20 ° C. to + 60 ° C. FIG. 4 is a characteristic curve diagram showing a relationship between an error and an elapsed time during measurement, in which a broken line indicates temperature and a solid line indicates error. FIG. 5 is a characteristic diagram showing the relationship between the wavelength of light and the length of the optical path where the rotation angle of the polarization plane due to the natural optical rotation of the BGO element is 45 °.

【0045】実施例2では磁気光学素子13に酸化物結
晶のBGO素子を用い、偏光子12と検光子14の各光
軸が互いに平行になっている。BGO素子の自然旋光能
の温度係数βは例えば、電気学会センサ技術研究会資料
「光ファイバ電圧センサの高精度化」(資料番号ST−
92−19,1992年12月10日)に記載されてお
り、β=−250ppm/℃である。また、BGO素子
のヴェルデ定数の温度係数αは図2に基づく計算により
α=165ppm/℃となる。このようにBGO素子の
場合、αとβが異符号であるので、実施例1で説明した
とおり偏光子12と検光子14の各光軸が互いに平行で
ある場合に感度の温度係数が小さくなって出力誤差が最
小になる。この場合の温度係数α+(π/2)βを計算
すると−228ppm/℃となる。ちなみに、偏光子1
2と検光子14の各光軸が互いに垂直である場合の感度
の温度係数α−(π/2)βを計算すると558ppm
/℃となって出力誤差が大きくなる。
In the second embodiment, an oxide crystal BGO element is used for the magneto-optical element 13, and the optical axes of the polarizer 12 and the analyzer 14 are parallel to each other. The temperature coefficient β of the natural rotatory power of the BGO element can be calculated, for example, by referring to the IEICE Technical Committee on Sensor Technology, “Improving the accuracy of optical fiber voltage sensors” (Document number ST-
92-19, December 10, 1992), and β = −250 ppm / ° C. The temperature coefficient α of the Verde constant of the BGO element is α = 165 ppm / ° C. by the calculation based on FIG. As described above, in the case of the BGO element, α and β have different signs, so that the temperature coefficient of sensitivity decreases when the optical axes of the polarizer 12 and the analyzer 14 are parallel to each other as described in the first embodiment. Output error is minimized. When the temperature coefficient α + (π / 2) β in this case is calculated, it is -228 ppm / ° C. By the way, polarizer 1
When the temperature coefficient α- (π / 2) β of the sensitivity when the optical axes of the sample 2 and the analyzer 14 are perpendicular to each other is calculated, 558 ppm
/ ° C and the output error increases.

【0046】磁気光学素子13にBGO素子を用い、偏
光子12と検光子14の各光軸を互いに平行にした光フ
ァイバ電流・磁界センサを用いて、その周囲温度を−2
0℃から+60℃まで変化させたときの出力誤差を実際
に測定した。図4はその結果を示しており、温度の範囲
80℃に対して出力誤差は±1.04%であり、出力誤
差の温度係数は−260ppm/℃となって計算による
値の−228ppm/℃に近いことが判った。
Using a BGO element as the magneto-optical element 13 and an optical fiber current / magnetic field sensor in which the optical axes of the polarizer 12 and the analyzer 14 are parallel to each other, the ambient temperature is reduced by -2.
The output error when changing from 0 ° C. to + 60 ° C. was actually measured. FIG. 4 shows the result. The output error is ± 1.04% for a temperature range of 80 ° C., and the temperature coefficient of the output error is −260 ppm / ° C., which is a calculated value of −228 ppm / ° C. It turned out to be close.

【0047】実施例3.実施例2では磁気光学素子13
に酸化物結晶のBGO素子を用いたが、その自然旋光性
による直線偏光の偏光面の回転角が45゜になる光路の
長さは光源1の光の波長とともに変化する。この出願の
発明者らは光源1に光の中心波長が800nmから90
0nmの発光ダイオードを用いてこの関係を実験により
確認し図5に示す結果を得た。この実施例3は光源1の
光の波長が800nmと900nmとの間にあるとき、
BGO素子の自然旋光性による直線偏光の偏光面の回転
角が45゜になる光路の長さとその光の波長との関係を
最適化するものである。図5からBGO素子の光路の長
さL(mm)と光の波長λ(mm)とは式12の関係に
ある。
Embodiment 3 FIG. In the second embodiment, the magneto-optical element 13
A BGO element made of an oxide crystal is used as the light source, but the length of the optical path where the rotation angle of the plane of polarization of the linearly polarized light due to its natural optical rotation becomes 45 ° changes with the wavelength of the light of the light source 1. The inventors of the present application have made the light source 1 have a light whose central wavelength is
This relationship was confirmed by experiments using a light emitting diode of 0 nm, and the results shown in FIG. 5 were obtained. In the third embodiment, when the wavelength of light of the light source 1 is between 800 nm and 900 nm,
The purpose of the present invention is to optimize the relationship between the length of an optical path where the rotation angle of the plane of polarization of linearly polarized light due to the natural optical rotation of the BGO element is 45 ° and the wavelength of the light. From FIG. 5, the length L (mm) of the optical path of the BGO element and the wavelength λ (mm) of the light have the relationship of Expression 12.

【0048】[0048]

【数12】 (Equation 12)

【0049】したがって、例えば、光の波長が850n
mであれば、BGO素子の自然旋光性による直線偏光の
偏光面の回転角が45゜になる光路の長さは4.4mm
になる。
Therefore, for example, if the wavelength of light is 850n
m, the length of the optical path where the rotation angle of the plane of polarization of the linearly polarized light due to the natural optical rotation of the BGO element is 45 ° is 4.4 mm.
become.

【0050】図6はこの発明の実施例4を示す構成図で
ある。図6において、1、5、10a、10b、12、
14は実施例1で図1について説明したものと同じもの
である。23はファラデー効果と自然旋光性とを備えた
磁気光学素子で2個の右旋性のBGO素子23aと1個
の左旋性のBGO素子23bとからなり、光路の長さは
すべて同じである。
FIG. 6 is a block diagram showing a fourth embodiment of the present invention. In FIG. 6, 1, 5, 10a, 10b, 12,
14 is the same as that described with reference to FIG. Reference numeral 23 denotes a magneto-optical element having a Faraday effect and a natural optical rotation, comprising two right-rotating BGO elements 23a and one left-rotating BGO element 23b, all having the same optical path length.

【0051】磁気光学素子23の光路の長さと感度とは
対応関係にあり、光路の長さが大きくなれば感度は向上
する。実施例1の説明で明らかなように磁気光学素子2
3の自然旋光性による直線偏光の偏光面の回転角が45
゜の奇数倍であるときも感度が大きくなるが(式6を参
照)、偏光面の回転角は感度の温度係数に影響するので
それが45゜の奇数倍になれば、感度の温度係数も大き
くなって出力誤差が大きくなる。この実施例4は磁気光
学素子23を2個の右旋性のBGO素子23aと1個の
左旋性のBGO素子23bの組み合わせで構成し、それ
らの自然旋光性による直線偏光の偏光面の回転角を45
゜にして感度の温度係数を小さく誤差を最小にして感度
を高くするものである。
There is a correspondence between the optical path length of the magneto-optical element 23 and the sensitivity, and the sensitivity increases as the optical path length increases. As is clear from the description of the first embodiment, the magneto-optical element 2
3. The rotation angle of the plane of polarization of linearly polarized light due to the natural optical rotation of 3 is 45.
The sensitivity also increases when it is an odd multiple of ゜ (see Equation 6). However, since the rotation angle of the polarization plane affects the temperature coefficient of sensitivity, if it becomes an odd multiple of 45 °, the temperature coefficient of sensitivity also increases. The output error increases and the output error increases. In the fourth embodiment, the magneto-optical element 23 is composed of a combination of two dextrorotatory BGO elements 23a and one levorotatory BGO element 23b, and the rotation angle of the plane of polarization of linearly polarized light due to their natural optical rotation. 45
The temperature coefficient of sensitivity is set to be small, and the error is minimized to increase the sensitivity.

【0052】実施例4では磁気光学素子23が2個の右
旋性のBGO素子23aと1個の左旋性のBGO素子2
3bの組み合わせからなり、光路の長さはそれぞれ同じ
であるので、磁気光学素子23の自然旋光性についての
光路の長さは1個の右旋性のBGO素子23aの光路の
長さとなり、ファラデー効果についての光路の長さは2
個の右旋性のBGO素子23aと1個の左旋性のBGO
素子23bの各光路の長さの和、すなわち、1個の右旋
性(左旋性)のBGO素子23a(23b)の光路の長
さの3倍となる。したがって、自然旋光性による偏光面
の回転角は45゜となり、偏光子12と検光子14の各
光軸が互いに平行である場合に感度の温度係数は小さく
なって温度の変化に対する出力誤差は最小になり、ファ
ラデー効果による偏光面の回転角は大きくなって感度が
高くなる。
In the fourth embodiment, the magneto-optical element 23 is composed of two dextrorotatory BGO elements 23a and one levorotatory BGO element 2a.
3b, and the lengths of the optical paths are the same. Therefore, the length of the optical path for the natural optical rotation of the magneto-optical element 23 is the length of the optical path of one dextrorotatory BGO element 23a. The optical path length for the effect is 2
Dextrorotatory BGO elements 23a and one dextrorotatory BGO
The sum of the lengths of the respective optical paths of the element 23b, that is, three times the length of the optical path of a single right-handed (left-handed) BGO element 23a (23b). Accordingly, the rotation angle of the polarization plane due to natural optical rotation is 45 °, and when the optical axes of the polarizer 12 and the analyzer 14 are parallel to each other, the temperature coefficient of sensitivity is small and the output error with respect to a change in temperature is minimized. Then, the rotation angle of the polarization plane due to the Faraday effect increases, and the sensitivity increases.

【0053】実施例3では磁気光学素子13にBGO素
子を用いて光源1の光の波長が800nmと900nm
との間にあるとき、BGO素子の自然旋光性による直線
偏光の偏光面の回転角が45゜になる光路の長さと光の
波長との関係を最適化することについて説明したが、こ
の実施例4でも右旋性(左旋性)のBGO素子23a
(23b)の自然旋光性による直線偏光の偏光面の回転
角が45゜になる光路の長さと光の波長との関係を最適
化すれば、2個の右旋性のBGO素子23aと1個の左
旋性のBGO素子23bの組み合わせからなる磁気光学
素子23も最適化されたものとなる。
In the third embodiment, the light wavelength of the light source 1 is 800 nm and 900 nm by using a BGO element for the magneto-optical element 13.
In the description above, the optimization of the relationship between the optical path length and the light wavelength at which the rotation angle of the plane of polarization of linearly polarized light due to the natural optical rotation of the BGO element becomes 45 ° is described. BGO element 23a with dextrorotatory (levorotary) even with 4
By optimizing the relationship between the optical path length and the light wavelength at which the rotation angle of the plane of polarization of the linearly polarized light due to the natural optical rotation of (23b) becomes 45 °, two dextrorotatory BGO elements 23a and one The magneto-optical element 23 composed of the combination of the left-handed BGO element 23b is also optimized.

【0054】図7はこの発明の実施例5を示す構成図で
ある。図7において、1、5、10a、10b、12、
14は実施例1で説明したものと同じものである。33
はファラデー効果と自然旋光性とを備えた磁気光学素子
で光路の長さが異なる右旋性のBGO素子33aと左旋
性のBGO素子33bを1個ずつ組み合わせて構成した
ものである。
FIG. 7 is a block diagram showing a fifth embodiment of the present invention. In FIG. 7, 1, 5, 10a, 10b, 12,
14 is the same as that described in the first embodiment. 33
Is a magneto-optical element having a Faraday effect and a natural optical rotation, and is configured by combining one right-handed BGO element 33a and one left-handed BGO element 33b having different optical path lengths.

【0055】この実施例5は磁気光学素子33を光路の
長さが異なる右旋性のBGO素子33aと左旋性のBG
O素子33bを1個ずつ組み合わせて構成し、それらの
自然旋光性による直線偏光の偏光面の回転角を45゜に
して感度の温度係数を小さく出力誤差を最小にして、感
度を任意に高くするものである。
In the fifth embodiment, the magneto-optical element 33 is composed of a dextrorotatory BGO element 33a having a different optical path length and a levorotatory BG element.
O elements 33b are combined one by one, the rotation angle of the plane of polarization of linearly polarized light due to their natural optical rotation is set to 45 °, the temperature coefficient of sensitivity is reduced, the output error is minimized, and the sensitivity is arbitrarily increased. Things.

【0056】実施例4では磁気光学素子23のファラデ
ー効果についての光路の長さは2個の右旋性のBGO素
子23aと1個の左旋性のBGO素子23bの各光路の
長さの和、すなわち、1個の右旋性(左旋性)のBGO
素子23a(23b)の光路の長さの3倍となったが、
磁気光学素子23を右旋性のBGO素子23aと左旋性
のBGO素子23bの奇数個の組み合わせで構成すれ
ば、そのファラデー効果についての光路の長さは1個の
右旋性(左旋性)のBGO素子23a(23b)の光路
長さの奇数倍になって感度は段階的に高くなる。ところ
が、この実施例5では磁気光学素子33を光路の長さが
異なる右旋性のBGO素子33aと左旋性のBGO素子
33bを1個ずつ組み合わせて構成するので、そのファ
ラデー効果についての光路の長さを任意に選ぶことがで
き、したがって、感度も任意に高くすることができる。
In the fourth embodiment, the optical path length for the Faraday effect of the magneto-optical element 23 is the sum of the optical path lengths of two right-handed BGO elements 23a and one left-handed BGO element 23b. That is, one dextrorotatory (levorotary) BGO
The length of the optical path of the element 23a (23b) is three times as long as
If the magneto-optical element 23 is composed of an odd number of combinations of the right-handed BGO element 23a and the left-handed BGO element 23b, the optical path length for the Faraday effect is one right-handed (left-handed). The sensitivity is increased stepwise by being an odd multiple of the optical path length of the BGO element 23a (23b). However, in the fifth embodiment, since the magneto-optical element 33 is configured by combining one dextrorotatory BGO element 33a and one dextrorotatory BGO element 33b having different optical path lengths, the optical path length for the Faraday effect is increased. The sensitivity can be arbitrarily selected, and thus the sensitivity can be arbitrarily increased.

【0057】また、この実施例5では磁気光学素子33
の自然旋光性についての光路の長さは右旋性のBGO素
子33aの光路の長さをL1(mm)、左旋性のBGO
素子33bのそれをL2(mm)としてL1−L2(m
m)である。実施例3での説明によれば、例えば、光源
1の光の波長が850(nm)であれば、磁気光学素子
33の自然旋光性による直線偏光の偏光面の回転角が4
5゜になる光路の長さL1−L2は4.4(mm)で最適
化される。したがって、右旋性のBGO素子33aと左
旋性のBGO素子33bの各光路の長さの差を4.4
(mm)にすれば、それぞれの光路の長さを任意に選ぶ
ことができ、磁気光学素子33のファラデー効果につい
ての光路の長さL1+L2が大きくなって感度は任意に高
くなる。なお、感度の温度係数は実施例2で説明したも
のとまったく同じで、偏光子12と検光子14の各光軸
が互いに平行である場合に小さくなり、出力誤差が最小
になる。
In the fifth embodiment, the magneto-optical element 33
The length of the optical path for the natural rotation is L 1 (mm), and the length of the optical path of the BGO element 33a is dextrorotatory.
L 1 -L 2 its element 33b as L 2 (mm) (m
m). According to the description in the third embodiment, for example, if the wavelength of the light from the light source 1 is 850 (nm), the rotation angle of the polarization plane of the linearly polarized light due to the natural optical rotation of the magneto-optical element 33 is 4.
The length L 1 -L 2 of the optical path which becomes 5 ° is optimized at 4.4 (mm). Therefore, the difference between the lengths of the respective optical paths of the right-handed BGO element 33a and the left-handed BGO element 33b is 4.4.
(Mm), the length of each optical path can be arbitrarily selected, and the length L 1 + L 2 of the optical path for the Faraday effect of the magneto-optical element 33 increases, and the sensitivity increases arbitrarily. The temperature coefficient of sensitivity is exactly the same as that described in the second embodiment, and becomes smaller when the optical axes of the polarizer 12 and the analyzer 14 are parallel to each other, and the output error is minimized.

【0058】[0058]

【発明の効果】以上説明したとおりこの発明によれば、
光源の光を第一の光ファイバで伝送し偏光子に入射して
直線偏光にかえたうえ、自然旋光性とファラデー効果と
を備えた磁気光学素子に入射し、直線偏光の偏光面をそ
の自然旋光性により45゜、更に、そのファラデー効果
により所定角度回転させた直線偏光を検光子に入射して
磁気光学素子での偏光面の回転角に対応した光の強度変
調を行い、出射する直線偏光を第二の光ファイバで伝送
し光受信機に入射して光電変換により直線偏光の強度に
対応した電気信号を検出し、磁気光学素子の光路に平行
に作用する磁界の強さを測定する光ファイバ電流・磁界
センサにおいて、磁気光学素子の自然旋光能とヴェルデ
定数の各温度係数が同符号のときは偏光子と検光子の各
光軸を互いに垂直にし、異符号のときは偏光子と検光子
の各光軸を互いに平行にするので、磁気光学素子の自然
旋光性とファラデー効果による直線偏光の偏光面の回転
角を検光子で光の強度に変調するときの感度に及ぼす温
度の変化の影響が小さくなり、出力誤差が最小になる。
As described above, according to the present invention,
The light from the light source is transmitted through the first optical fiber, enters the polarizer, changes to linearly polarized light, and then enters the magneto-optical element having natural optical rotation and the Faraday effect. The linearly polarized light is rotated by 45 ° by the optical rotation, and furthermore, the linearly polarized light is rotated by a predetermined angle by the Faraday effect, enters the analyzer, modulates the intensity of light corresponding to the rotation angle of the polarization plane in the magneto-optical element, and emits the linearly polarized light. Is transmitted through a second optical fiber, is incident on an optical receiver, detects an electrical signal corresponding to the intensity of linearly polarized light by photoelectric conversion, and measures the intensity of a magnetic field acting in parallel to the optical path of the magneto-optical element. In the fiber current / magnetic field sensor, when the natural optical rotation of the magneto-optical element and the temperature coefficient of the Verde constant have the same sign, the optical axes of the polarizer and the analyzer are perpendicular to each other. The optical axes of the photons The effect of temperature changes on sensitivity when the angle of rotation of the plane of polarization of linearly polarized light due to the natural optical rotation of the magneto-optical element and the Faraday effect is modulated by the analyzer to light intensity is reduced. Is minimized.

【0059】また、同じ光ファイバ電流・磁界センサに
おいて、磁気光学素子に酸化物結晶のBGO素子を用い
て偏光子と検光子の各光軸を互いに平行にするので、同
じく感度に及ぼす温度の変化の影響が小さくなり、出力
誤差が最小になる。
Further, in the same optical fiber current / magnetic field sensor, the optical axes of the polarizer and the analyzer are made parallel to each other by using an oxide crystal BGO element as the magneto-optical element. And the output error is minimized.

【0060】さらに、同じ光ファイバ電流・磁界センサ
において、光源に光の波長が800nmと900nmと
の間にある発光ダイオードを用い、磁気光学素子にBG
O素子を用いて光源の光の波長λ(nm)と磁気光学素子
の光路の長さL(mm)とがL=0.0092λ−3.42
なる関係にあるものにするので、感度が最大となる磁気
光学素子の光路の長さと光源の光の波長との関係が最適
化される。
Further, in the same optical fiber current / magnetic field sensor, a light emitting diode whose light wavelength is between 800 nm and 900 nm is used as a light source, and a BG is used as a magneto-optical element.
Using the O element, the wavelength λ (nm) of the light from the light source and the length L (mm) of the optical path of the magneto-optical element are L = 0.0092λ-3.42.
The relationship between the optical path length of the magneto-optical element and the wavelength of light from the light source that maximizes the sensitivity is optimized.

【0061】つぎに、同じ光ファイバ電流・磁界センサ
において、光路の長さが同じの右旋性のBGO素子と左
旋性のBGO素子を奇数個組み合せて磁気光学素子を構
成し、磁気光学素子の自然旋光性による直線偏光の偏光
面の回転角を45゜にするので、感度に及ぼす温度の変
化の影響が小さくなり出力誤差が最小になるとともに、
感度が高くなる。
Next, in the same optical fiber current / magnetic field sensor, an odd number of dextrorotatory BGO elements and levorotatory BGO elements having the same optical path length are combined to form a magneto-optical element. Since the rotation angle of the plane of polarization of linearly polarized light due to natural optical rotation is 45 °, the effect of temperature change on sensitivity is reduced, and output error is minimized.
Sensitivity increases.

【0062】そして、同じ光ファイバ電流・磁界センサ
において、光路の長さが異なる右旋性のBGO素子と左
旋性のBGO素子を1個ずつ組み合せて磁気光学素子を
構成し、磁気光学素子の自然旋光性による直線偏光の偏
光面の回転角を45゜にするので、感度に及ぼす温度の
変化の影響が小さくなり出力誤差が最小になるととも
に、感度が任意に高くなる。
Then, in the same optical fiber current / magnetic field sensor, a dextrorotatory BGO element and a dextrorotatory BGO element having different optical path lengths are combined one by one to form a magneto-optical element. Since the rotation angle of the plane of polarization of the linearly polarized light due to the optical rotation is set to 45 °, the influence of the temperature change on the sensitivity is reduced, the output error is minimized, and the sensitivity is arbitrarily increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】 温度とヴェルデ定数の変化率との関係を示す
温度特性図である。
FIG. 2 is a temperature characteristic diagram showing a relationship between a temperature and a rate of change of a Verde constant.

【図3】 光の波長と自然旋光能との関係を示す分散特
性図である。
FIG. 3 is a dispersion characteristic diagram showing the relationship between the wavelength of light and the natural optical rotation.

【図4】 温度と出力誤差と経過時間との関係を示す特
性曲線図である。
FIG. 4 is a characteristic curve diagram showing a relationship between temperature, output error, and elapsed time.

【図5】 光の波長と自然旋光性による偏光面の回転角
が45゜になる光路の長さとの関係を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing a relationship between the wavelength of light and the length of an optical path at which a rotation angle of a polarization plane due to natural optical rotation becomes 45 °.

【図6】 この発明の実施例4を示す構成図である。FIG. 6 is a configuration diagram showing a fourth embodiment of the present invention.

【図7】 この発明の実施例5を示す構成図である。FIG. 7 is a configuration diagram showing a fifth embodiment of the present invention.

【図8】 従来の光ファイバ電流・磁界センサを示す構
成図である。
FIG. 8 is a configuration diagram showing a conventional optical fiber current / magnetic field sensor.

【符号の説明】[Explanation of symbols]

1:光源、5:光受信機、10a:第一の光ファイバ、
10b:第二の光ファイバ、12:偏光子、13:磁気
光学素子、14:検光子、23:磁気光学素子、23
a:右旋性のBGO素子、23b:左旋性のBGO素
子、33:磁気光学素子、33a:右旋性のBGO素
子、33b:左旋性のBGO素子。
1: light source, 5: optical receiver, 10a: first optical fiber,
10b: second optical fiber, 12: polarizer, 13: magneto-optical element, 14: analyzer, 23: magneto-optical element, 23
a: right-handed BGO element, 23b: left-handed BGO element, 33: magneto-optical element, 33a: right-handed BGO element, 33b: left-handed BGO element.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−107273(JP,A) 特開 昭63−182573(JP,A) 特開 昭61−243380(JP,A) 特開 平2−38880(JP,A) 特開 平3−37584(JP,A) 特開 昭61−250574(JP,A) 特開 昭61−250573(JP,A) 特開 平1−312483(JP,A) 特開 昭61−250572(JP,A) 特開 昭58−140716(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 15/24 G01R 33/032 G02F 1/09 505 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-107273 (JP, A) JP-A-63-182573 (JP, A) JP-A-61-243380 (JP, A) JP-A-2- 38880 (JP, A) JP-A-3-37584 (JP, A) JP-A-61-250574 (JP, A) JP-A-61-250573 (JP, A) JP-A-1-312483 (JP, A) JP-A-61-250572 (JP, A) JP-A-58-140716 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 15/24 G01R 33/032 G02F 1/09 505

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源の光を第一の光ファイバで伝送し偏
光子に入射して直線偏光にかえたうえ、自然旋光性とフ
ァラデー効果とを備えた磁気光学素子に入射し、直線偏
光の偏光面を前記自然旋光性により45゜、更に、前記
ファラデー効果により所定角度回転させた直線偏光を検
光子に入射して前記磁気光学素子での偏光面の回転角に
対応した光の強度変調を行い、出射する直線偏光を第二
の光ファイバで伝送し光受信機に入射して光電変換によ
り直線偏光の強度に対応した電気信号を検出し、前記磁
気光学素子の光路に平行に作用する磁界の強さを測定す
る光ファイバ電流・磁界センサにおいて、前記磁気光学
素子の自然旋光能とヴェルデ定数の各温度係数が同符号
のときは前記偏光子と前記検光子の各光軸を互いに垂直
にし、異符号のときは前記偏光子と前記検光子の各光軸
を互いに平行にすることを特徴とする光ファイバ電流・
磁界センサ。
1. A light from a light source is transmitted through a first optical fiber, is incident on a polarizer, is changed to linearly polarized light, and is incident on a magneto-optical element having natural optical rotation and a Faraday effect. The polarization plane is rotated by 45 ° by the natural optical rotation, and linearly polarized light rotated by a predetermined angle by the Faraday effect is incident on the analyzer to modulate the intensity of light corresponding to the rotation angle of the polarization plane in the magneto-optical element. Then, the emitted linearly polarized light is transmitted through the second optical fiber, is incident on the optical receiver, detects an electric signal corresponding to the intensity of the linearly polarized light by photoelectric conversion, and a magnetic field acting in parallel with the optical path of the magneto-optical element. In the optical fiber current / magnetic field sensor for measuring the strength of the optical fiber, the natural optical rotation of the magneto-optical element and the respective temperature coefficients of the Verdet constant have the same sign, and the optical axes of the polarizer and the analyzer are perpendicular to each other. , For different signs Is an optical fiber current, wherein the optical axes of the polarizer and the analyzer are parallel to each other.
Magnetic field sensor.
【請求項2】 磁気光学素子に酸化物結晶のBi12Ge
20素子を用いて偏光子と検光子の各光軸を互いに平行
にしたことを特徴とする請求項1に記載の光ファイバ電
流・磁界センサ。
2. An oxide crystal of Bi 12 Ge is used for a magneto-optical element.
Optical fiber current and the magnetic field sensor according to claim 1, characterized in that the parallel to the optical axes of the polarizer and analyzer using O 20 device.
【請求項3】 光源に光の波長が800nmと900n
mとの間にある発光ダイオードを用い、磁気光学素子に
Bi12GeO20素子を用いて前記光源の光の波長λ(n
m)と前記磁気光学素子の光路の長さL(mm)とが L=0.0092λ−3.42 なる関係にあることを特徴とする請求項2に記載の光フ
ァイバ電流・磁界センサ。
3. The light source has light wavelengths of 800 nm and 900 n.
m, and a light wavelength λ (n) of the light source using a Bi 12 GeO 20 element as a magneto-optical element.
3. The optical fiber current / magnetic field sensor according to claim 2, wherein m) and a length L (mm) of an optical path of the magneto-optical element have a relationship of L = 0.0092λ-3.42.
【請求項4】 光路の長さが同じ右旋性のBi12GeO
20素子と左旋性のBi12GeO20素子を奇数個組み合せ
て磁気光学素子を構成し、前記磁気光学素子の自然旋光
性による直線偏光の偏光面の回転角を45゜にすること
を特徴とする請求項2または請求項3のいずれかに記載
の光ファイバ電流・磁界センサ。
4. A dextrorotatory Bi 12 GeO having the same optical path length.
A magneto-optical element is formed by combining an odd number of Bi 12 GeO 20 elements with 20 elements of levorotation, and the rotation angle of the plane of polarization of linearly polarized light by the natural optical rotation of the magneto-optical element is set to 45 °. The optical fiber current / magnetic field sensor according to claim 2.
【請求項5】 光路の長さが異なる右旋性のBi12Ge
20素子と左旋性のBi12GeO20を1個ずつ組み合せ
て磁気光学素子を構成し、前記磁気光学素子の自然旋光
性による直線偏光の偏光面の回転角を45゜にすること
を特徴とする請求項2または請求項3のいずれかに記載
の光ファイバ電流・磁界センサ。
5. A dextrorotatory Bi 12 Ge having different optical path lengths.
The O 20 device and levorotatory Bi 12 GeO 20 combined one by one to constitute the magneto-optical element, and characterized in that 45 ° rotation angle of the polarization plane of linearly polarized light by the natural optical activity of the magneto-optical element The optical fiber current / magnetic field sensor according to claim 2 or 3, wherein
JP17213095A 1995-07-07 1995-07-07 Optical fiber current / magnetic field sensor Expired - Fee Related JP3148579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17213095A JP3148579B2 (en) 1995-07-07 1995-07-07 Optical fiber current / magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17213095A JP3148579B2 (en) 1995-07-07 1995-07-07 Optical fiber current / magnetic field sensor

Publications (2)

Publication Number Publication Date
JPH0921833A JPH0921833A (en) 1997-01-21
JP3148579B2 true JP3148579B2 (en) 2001-03-19

Family

ID=15936129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17213095A Expired - Fee Related JP3148579B2 (en) 1995-07-07 1995-07-07 Optical fiber current / magnetic field sensor

Country Status (1)

Country Link
JP (1) JP3148579B2 (en)

Also Published As

Publication number Publication date
JPH0921833A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
US5053617A (en) Instrument for concurrently optically measuring thermal and electric quantities
JPS58129372A (en) Magnetic field-light converter
US6630819B2 (en) Magneto-optic current sensor
US4608535A (en) Magnetic field and current measuring device using a Faraday cell with a thin electrically conductive film substantially covering the Faraday cell
JP3014445B2 (en) Fiber optic device for measuring current strength.
JP3148579B2 (en) Optical fiber current / magnetic field sensor
US4804930A (en) Molecular electro-optical transistor and switch
CA1258313A (en) Molecular electro-optical transistor and switch
JP4092142B2 (en) Photovoltage measuring device, electric power or electric energy measuring device, and electrical equipment protection system
JPH0445813B2 (en)
JPS59107273A (en) Photocurrent and magnetic field sensor
US6411077B1 (en) Optical-voltage sensor
WO2022210313A1 (en) Current measurement device
JPH01127984A (en) Magnetic field sensor
JP3148614B2 (en) Optical fiber current / magnetic field sensor
JP4053677B2 (en) Photocurrent / voltage measuring device
JPH01237477A (en) Optical fiber sensor
US5072112A (en) Method for realizing a primary photometric standard of optical radiation using a silicon photodiode
JP3159823B2 (en) Optical electric field measuring device
JP2580443B2 (en) Optical voltage sensor
JP3235301B2 (en) Light voltage sensor
JPH0695049A (en) Magneto-optical field sensor
Duffield et al. Adaptation of a Recording Spectropolarimeter to Measure Circular Dichroism
JPS5935156A (en) Optical current transformer
JPS58206975A (en) Voltage-current detecting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees