JPH0695049A - Magneto-optical field sensor - Google Patents

Magneto-optical field sensor

Info

Publication number
JPH0695049A
JPH0695049A JP4242231A JP24223192A JPH0695049A JP H0695049 A JPH0695049 A JP H0695049A JP 4242231 A JP4242231 A JP 4242231A JP 24223192 A JP24223192 A JP 24223192A JP H0695049 A JPH0695049 A JP H0695049A
Authority
JP
Japan
Prior art keywords
optical
magneto
sensor
magnetic field
polarizing glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4242231A
Other languages
Japanese (ja)
Inventor
Nobuo Nakamura
宣夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4242231A priority Critical patent/JPH0695049A/en
Publication of JPH0695049A publication Critical patent/JPH0695049A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To eliminate the deterioration in the characteristics of sensor output at the time of a high temp. and to enable current measurement with a good sensitivity regardless of temp. conditions for use by constituting two polarizers provided on the incident side and exit side of a magneto-optical element of polarizing glass plates. CONSTITUTION:Optical fibers 1 and 7 consist respectively of multimode fibers and lenses 2 and 6 consist of convex lenses. The polarizers 3 and 5 consist of the polarizing glass plate The magneto-optical element 4 consists of (YbTb)3 Fe5O12 and is constituted of total reflection prisms 8 and 9 to be used for bending the propagation direction of light at a right angle. The exit light passes the polarizer 3, the magneto-optical element 4 and the polarizer 5 and is then made incident on the photodetecting side optical fiber 7. The performance assurance temp. of the polarizing glass plates is as high as about 400 deg.C and the magneto-optical sensor operates well at the temp. at which the sensor is used as a current sensor or below. The thickness of the polarizing glass plates is as thin as <=1mum and since optical parts, such as half wavelength plates, are not needed and, therefore, the number of the parts decreases and the sensor is additionally miniaturized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学素子のファラ
デー効果を利用して磁界強度を測定する光磁界センサに
関し、特に電力供給用の送配電線の周囲に発生する磁界
を測定することにより、その電流の大きさを検知するた
めの光磁界センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field sensor for measuring magnetic field strength by utilizing the Faraday effect of a magneto-optical element, and more particularly by measuring a magnetic field generated around a power transmission / distribution line. , An optical magnetic field sensor for detecting the magnitude of the current.

【0002】[0002]

【従来の技術】磁気光学素子のファラデー効果を利用し
て磁界強度を測定する光磁界センサは、小型で絶縁性に
優れていると共に電磁ノイズを受けにくいという特長を
有しているため、発電所から消費者までの電力輸送経路
である変電所,送電線及び配電線等に流れる電流の大き
さを測定してこれら経路における異常を発見するための
電流センサに用いられ始めている。
2. Description of the Related Art An optical magnetic field sensor that measures the magnetic field strength by utilizing the Faraday effect of a magneto-optical element is small in size, has excellent insulating properties, and is resistant to electromagnetic noise. It has begun to be used as a current sensor to detect anomalies in substations, power transmission lines, distribution lines, etc., which are electric power transmission routes from a consumer to a consumer, and detect abnormalities in these routes.

【0003】図2は光磁界センサの基本構成を示してい
るが、図において、レーザダイオード又は発光ダイオー
ド等の図示されない光源を発した光は、光ファイバ1内
を伝搬してその出射端1aから出射し、レンズ2及び偏
光子3を介して直線偏光となって磁気光学素子4へ入射
する。そして、磁気光学素子4を通過するときに被測定
磁界(以下、単に「磁界」という)の強さに応じて旋光
作用を受け、偏光子5を通過して上記磁界の強さに対応
する強度となり、更にレンズ6によって光ファイバ7の
入射端7aに集光せしめられる。光ファイバ7に入射し
た光は該ファイバ内を伝搬し、図示されない光検出器ま
で導かれて光電変換されるようになっている。ここに、
上記偏光子3と偏光子5としては、通常、偏光ビームス
プリッタが用いられ、これらのものはその入射面が光軸
に対して45度の傾きをもって配置される。また、この
場合、測定磁界と光の進路は平行となる。
FIG. 2 shows the basic structure of an optical magnetic field sensor. In the figure, light emitted from a light source (not shown) such as a laser diode or a light emitting diode propagates in the optical fiber 1 and is emitted from its emission end 1a. The light exits and becomes linearly polarized light through the lens 2 and the polarizer 3 and enters the magneto-optical element 4. Then, when passing through the magneto-optical element 4, it receives an optical rotation effect according to the strength of the magnetic field to be measured (hereinafter, simply referred to as “magnetic field”), passes through the polarizer 5, and has an intensity corresponding to the strength of the magnetic field. Then, the light is further focused by the lens 6 on the incident end 7a of the optical fiber 7. The light incident on the optical fiber 7 propagates in the fiber, is guided to a photodetector (not shown), and is photoelectrically converted. here,
Polarizing beam splitters are usually used as the polarizer 3 and the polarizer 5, and the incident surfaces of these are arranged with an inclination of 45 degrees with respect to the optical axis. In this case, the measurement magnetic field and the optical path are parallel.

【0004】また、図3は光磁界センサの実製作上の構
成を示している。これは、上述した基本構成において、
偏光子3,5として偏光ビームスプリッタを用いると共
に、これら二つの偏光ビームスプリッタを同一平面内に
配置するため半波長板10と光の進行方向を変換するた
めの全半反射プリズム8,9とを夫々光路中に配置して
なるものである。
Further, FIG. 3 shows an actual manufacturing structure of the optical magnetic field sensor. This is based on the basic configuration described above.
A polarization beam splitter is used as the polarizers 3 and 5, and a half-wave plate 10 for arranging these two polarization beam splitters in the same plane and a total semi-reflection prisms 8 and 9 for converting the traveling direction of light are used. Each of them is arranged in the optical path.

【0005】[0005]

【発明が解決しようとする課題】然し乍ら、かかる構成
よりなる光磁界センサを電流センサとして用いる場合、
電流センサがその耐環境特性として+100℃近くまで
達する使用温度でも良好に作動することが要求されるの
に対し、上記偏光ビームスプリッタの性能保証温度の上
限は+80℃に過ぎないため、耐環境性に劣るという問
題があった。また、上述したように偏光子として偏光ビ
ームスプリッタを用いる場合、偏光ビームスプリッタが
立法体であるという構造上の制約、及び半波長板等の他
の光学部品を必要とするという光学上の特性からセンサ
の小型化が困難であるという問題があった。
However, when the optical magnetic field sensor having such a structure is used as a current sensor,
The current sensor is required to operate well even at operating temperatures reaching up to + 100 ° C as the environment resistance characteristic, whereas the upper limit of the performance guarantee temperature of the above polarization beam splitter is only + 80 ° C, and therefore the environment resistance is high. There was a problem that it was inferior to. Further, when the polarization beam splitter is used as the polarizer as described above, due to the structural restriction that the polarization beam splitter is a cubic body and the optical characteristic that another optical component such as a half-wave plate is required. There is a problem that it is difficult to miniaturize the sensor.

【0006】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、耐環境性に優れ且つ小型の光磁界センサを提供
しようとするものである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a small-sized optical magnetic field sensor having excellent environment resistance. Is.

【0007】[0007]

【課題を解決するための手段】本発明による光磁界セン
サは、光源側光ファイバの出射端直後に設けたレンズか
ら出射した光が、偏光子,磁気光学素子及び偏光子を通
過した後、受光側光ファイバの入射端直前に設けたレン
ズにより上記受光側光ファイバへ入射するようにした光
磁界センサにおいて、上記二つの偏光子が偏光ガラス板
であることを特徴としてなるものである。
In the optical magnetic field sensor according to the present invention, the light emitted from the lens provided immediately after the emission end of the optical fiber on the light source side is received after passing through the polarizer, the magneto-optical element and the polarizer. In the optical magnetic field sensor in which the light is incident on the light receiving side optical fiber by a lens provided immediately before the incident end of the side optical fiber, the two polarizers are polarizing glass plates.

【0008】[0008]

【作用】偏光ガラス板の性能保証温度は約400℃と高
く、光磁界センサが電流センサとして使用される温度環
境下で良好に動作する。また、偏光ビームスプリッタの
厚みが約3mmであるのに対し、偏光ガラス板の厚みは
1mm以下と十分薄く、而も偏光ガラス板は半波長板等
の光学部品を必要としないため部品点数が減り、センサ
をより小型にすることができる。
The performance guarantee temperature of the polarizing glass plate is as high as about 400 ° C., and it works well under the temperature environment where the optical magnetic field sensor is used as a current sensor. In addition, the thickness of the polarizing beam splitter is about 3 mm, whereas the thickness of the polarizing glass plate is sufficiently thin as 1 mm or less, and since the polarizing glass plate does not require an optical component such as a half-wave plate, the number of components is reduced. , The sensor can be made smaller.

【0009】[0009]

【実施例】以下、図1に基づき、図2及び図3に示した
従来例と同一部材には同一符号を用いて本発明の好適な
一実施例を説明する。本発明の光磁界センサは図2に示
した基本構成を有しているが、図1はそれを更に具体化
したものである。即ち、光ファイバ1及び光ファイバ7
は夫々マルチモードファイバにより、レンズ2及びレン
ズ6は夫々凸レンズにより、偏光子3及び偏光子5は夫
々偏光ガラス板により、磁気光学素子4は(YbTb)
3 Fe 5 12により、そして光の進行方向を直角に曲げ
るための全反射プリズム8及び全反射プリズム9により
構成される。更に図において、11は波長0.85μm
の光を発生する発光ダイオードでなる光源、12はSi
フォトダイオードでなる光検出器である。
EXAMPLES Below, based on FIG. 1, shown in FIG. 2 and FIG.
The same reference numerals are used for the same members as in the conventional example, and
An example will be described. The optical magnetic field sensor of the present invention is shown in FIG.
Although it has the basic configuration described above, Fig. 1 further embodies it.
It was done. That is, the optical fiber 1 and the optical fiber 7
The lens 2 and lens are
S 6 are convex lenses, and the polarizers 3 and 5 are
Magneto-optical element 4 (YbTb)
3Fe FiveO12And bend the direction of light at a right angle
By the total reflection prism 8 and the total reflection prism 9 for
Composed. Further, in the figure, 11 is a wavelength of 0.85 μm
, A light source composed of a light emitting diode for generating
It is a photodetector consisting of a photodiode.

【0010】本発明の光磁界センサは上記のように構成
されており、次にこの光磁界センサに対して行った具体
的な試験及び結果について、比較例として同様の試験を
図3に示した従来の光磁界センサに対して行ったときの
結果と共に説明する。尚、従来の光磁界センサに対する
試験では、光源及び光検出器は図1に示したものと同一
のものを使用した。
The optical magnetic field sensor of the present invention is constructed as described above. Next, with respect to concrete tests and results performed on this optical magnetic field sensor, a similar test is shown in FIG. 3 as a comparative example. A description will be given together with the results obtained when the conventional optical magnetic field sensor is used. In the test on the conventional optical magnetic field sensor, the same light source and photodetector as shown in FIG. 1 were used.

【0011】先ず、光磁界センサに50Hz,40Oe
の交流磁界を印加した状態で温度を−30℃〜+80℃
の範囲で変化させ、このときのセンサ出力の感度を測定
した。その結果、本発明による光磁界センサも従来の光
磁界センサも共に感度の変動は±1%以内となり、両者
が良好な特性を示し、特性の差は認められなかった。
First, the optical magnetic field sensor is set to 50 Hz, 40 Oe.
-30 ℃ ~ + 80 ℃ under the condition that AC magnetic field is applied
The sensitivity of the sensor output at this time was measured. As a result, in both the optical magnetic field sensor according to the present invention and the conventional optical magnetic field sensor, the variation in sensitivity was within ± 1%, both showed good characteristics, and no difference in characteristics was observed.

【0012】次に、光磁界センサを+120℃の温度で
2000時間高温放置した後、特性劣化が顕著に現れる
挿入損失の測定を行った。その結果、従来の光磁界セン
サでは試験前の挿入損失が9dBであったものが、試験
後では12dBまで増大した。これは、偏光ビームスプ
リッタの劣化によるものである。これに対し本発明によ
る光磁界センサでは、試験の前後で挿入損失の増大は認
められず、9dB一定であった。
Next, after the optical magnetic field sensor was left to stand at a high temperature of + 120 ° C. for 2000 hours at high temperature, the insertion loss in which the characteristic deterioration was remarkable was measured. As a result, the conventional optical magnetic field sensor had an insertion loss of 9 dB before the test, but increased to 12 dB after the test. This is due to deterioration of the polarization beam splitter. On the other hand, in the optical magnetic field sensor according to the present invention, an increase in insertion loss was not observed before and after the test and was constant at 9 dB.

【0013】[0013]

【発明の効果】上述したように本発明による光磁界セン
サは、偏光子に偏光ガラス板を用いているので、高温使
用時におけるセンサ出力の特性劣化が無く、使用温度条
件に関わらず良好な感度で電流計測を行うことが必要な
電流センサとして好適である。また、センサを構成する
部品点数が少なくて済み、センサをより小型にすること
ができる。
As described above, since the optical magnetic field sensor according to the present invention uses the polarizing glass plate as the polarizer, there is no deterioration in the characteristics of the sensor output at the time of high temperature use, and good sensitivity is obtained regardless of the operating temperature conditions. It is suitable as a current sensor that requires current measurement in. Further, the number of parts constituting the sensor is small, and the sensor can be made smaller.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光磁界センサの一実施例の構成を
示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of an optical magnetic field sensor according to the present invention.

【図2】従来の光磁界センサの基本構成を示す図であ
る。
FIG. 2 is a diagram showing a basic configuration of a conventional optical magnetic field sensor.

【図3】従来の光磁界センサの実製作上の構成を示す図
である。
FIG. 3 is a diagram showing a configuration in actual manufacture of a conventional optical magnetic field sensor.

【符号の説明】[Explanation of symbols]

1,7・・・光ファイバ 2,6・・・レンズ 3,5・・・偏光子 4 ・・・磁気光学素子 8,9・・・全反射プリズム 10 ・・・半波長板 11 ・・・発光ダイオード 12 ・・・フォトダイオード 1, 7 ... Optical fiber 2, 6 ... Lens 3, 5 ... Polarizer 4 ... Magneto-optical element 8, 9 ... Total reflection prism 10 ... Half-wave plate 11 ... Light emitting diode 12 ... Photodiode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源側光ファイバの出射端直後に設けた
レンズから出射した光が、偏光子,磁気光学素子及び偏
光子を通過した後、受光側光ファイバの入射端直前に設
けたレンズにより上記受光側光ファイバへ入射するよう
にした光磁界センサにおいて、上記二つの偏光子が偏光
ガラス板であることを特徴とする光磁界センサ。
1. Light emitted from a lens provided immediately after the exit end of the light source side optical fiber is passed through a polarizer, a magneto-optical element, and a polarizer, and then by a lens provided immediately before the entrance end of the light receiving side optical fiber. In the optical magnetic field sensor which is made incident on the light receiving side optical fiber, the two polarizers are polarizing glass plates.
JP4242231A 1992-09-10 1992-09-10 Magneto-optical field sensor Pending JPH0695049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4242231A JPH0695049A (en) 1992-09-10 1992-09-10 Magneto-optical field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4242231A JPH0695049A (en) 1992-09-10 1992-09-10 Magneto-optical field sensor

Publications (1)

Publication Number Publication Date
JPH0695049A true JPH0695049A (en) 1994-04-08

Family

ID=17086188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4242231A Pending JPH0695049A (en) 1992-09-10 1992-09-10 Magneto-optical field sensor

Country Status (1)

Country Link
JP (1) JPH0695049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443639A (en) * 2012-08-29 2013-12-11 北京恒信创光电技术有限公司 Current measurement system, optical current transformer and fixing device thereof, light signal sampler and method thereof
CN103823106A (en) * 2012-08-29 2014-05-28 北京恒信创光电技术有限公司 Optical current transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443639A (en) * 2012-08-29 2013-12-11 北京恒信创光电技术有限公司 Current measurement system, optical current transformer and fixing device thereof, light signal sampler and method thereof
WO2014032243A1 (en) * 2012-08-29 2014-03-06 北京恒信创光电技术有限公司 Current measurement system, optical current transformer and fixing device, and optical signal sampler and method therefor
CN103823106A (en) * 2012-08-29 2014-05-28 北京恒信创光电技术有限公司 Optical current transformer

Similar Documents

Publication Publication Date Title
US7176671B2 (en) Current measuring device
US4584470A (en) Single-polarization fiber optics magnetic sensor
US9588150B2 (en) Electric current measuring apparatus
JPH0475470B2 (en)
JPH10505422A (en) AC current measuring method and apparatus with temperature compensation
JPH10504396A (en) Method and apparatus for measuring current from at least two measurement ranges
JP2001041983A (en) Photo-voltage sensor
JPS62198768A (en) Optical fiber type voltage sensor
JPH0695049A (en) Magneto-optical field sensor
US5933238A (en) Optical current measurement device and method of manufacturing it
JP2007003728A (en) Device for detecting difference in intensity of light
JPS6235627B2 (en)
WO2022210313A1 (en) Current measurement device
JP2010014579A (en) Optical sensor and measuring system using the same
JP3235301B2 (en) Light voltage sensor
KR20000049227A (en) Apparatus with a retracing optical circuit for the measurement of physical quantities having high rejection of environmental noise
JPS60263866A (en) Optical electric field sensor
JPH09274056A (en) Current measuring device for optical fiber
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JPS62198769A (en) Optical fiber type voltage sensor
SU1404956A1 (en) Device for measuring instensity of variable electric fields
JPS5940277A (en) Polarization surface preserving optical fiber type magnetic field sensor
JPH06186256A (en) Circumferentially turning photocurrent transformer sensor
JPS59107271A (en) Optical fiber applied sensor
JPH08285898A (en) Optical fiber type sensor