JPS62198769A - Optical fiber type voltage sensor - Google Patents

Optical fiber type voltage sensor

Info

Publication number
JPS62198769A
JPS62198769A JP61042215A JP4221586A JPS62198769A JP S62198769 A JPS62198769 A JP S62198769A JP 61042215 A JP61042215 A JP 61042215A JP 4221586 A JP4221586 A JP 4221586A JP S62198769 A JPS62198769 A JP S62198769A
Authority
JP
Japan
Prior art keywords
optical fiber
light
output
input
birefringent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61042215A
Other languages
Japanese (ja)
Other versions
JPH0782036B2 (en
Inventor
Satoshi Ishizuka
石塚 訓
Osamu Kamata
修 鎌田
Sumiko Morizaki
森崎 澄子
Kazuo Toda
戸田 和郎
Onori Ishikawa
石河 大典
Koichi Kanayama
光一 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61042215A priority Critical patent/JPH0782036B2/en
Publication of JPS62198769A publication Critical patent/JPS62198769A/en
Publication of JPH0782036B2 publication Critical patent/JPH0782036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To greatly improve optical loss by providing an optical fiber for output at specific distance from an optical fiber for input where linear polarized light is incident. CONSTITUTION:The polarization plane maintaining type optical fiber 9 for input and the multimode type optical fiber 10 for output are arranged on one end surface of a self-convergence type rod lens 2 via one birefringent material 3, and a Pockels material 5, a 1/8-wavelength plate 6, and a reflection plate 7 are arranged on the other end surface of the lens 2. The optical fiber 9 is arranged right above the optical axis of the lens 2 and the optical fiber 10, on the other hand, is arranged at distance of ordinary-extraordinary light separation width in the ordinary-extraordinary light separating direction of the birefringent material. The linear polarized light is incident on the optical fiber 9 from a semiconductor laser 12 and shifted in phase corresponding to a voltage applied from an electrode 4 before returning the optical fiber 10 by being reflected by the reflecting plate 7, so that ordinary light and extraordinary light are polarized and separated. The extraordinary light has its phase shift converted into intensity variation by the birefringent material 3 and is converged on the optical fiber 10 and propagated therein, thereby obtaining variation in the quantity of light proportional to the level of the voltage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ポッケルス効果を用いた光ファイバ型電圧七
ンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical fiber type voltage sensor using the Pockels effect.

従来の技術 BSO、L i NbO3,Zn S等ノi! 気光学
結晶ノホッケルス効果を利用して高圧送電線などの電圧
を光学的に測定する光ファイバ型電圧センサは、絶縁性
や電磁誘導ノイズの点ですぐれており、抵抗分圧法やコ
ンデンサ分圧法などによる電気的測定法に比較して多く
の長所を有しているため、近年、積極的に開発が行なわ
れている。
Conventional technologies such as BSO, Li NbO3, Zn S, etc. Optical fiber voltage sensors, which optically measure the voltage of high-voltage power transmission lines using the optical crystal Nohockels effect, have excellent insulation properties and electromagnetic induction noise, and can be used using resistor voltage division methods, capacitor voltage division methods, etc. Since it has many advantages over electrical measurement methods, it has been actively developed in recent years.

第2図は、ポッケルス効果を利用した光ファイバ型電圧
センサの一従来例である。双方向で用いる人、出力兼用
光ファイバ1と自己集束性ロッドレンズ2の一端側との
間に、1枚の複屈折材料(ルチル平板)3を置いて偏光
分離機能を持たせ、また、自己集束性ロッドレンズ2の
他端には、電極4を有するポッケルス材料(本従来例で
は、L i N b O3単結晶)5と1/3波長板6
、及び反射板7を配置して、反射光学系を構成する。入
出力兼用光ファイバ117j手前には分岐器8があって
、入力光ファイバ9からの光ginを入出力兼用光ファ
イバ1に通し、また、入出力兼用光ファイバ1から逆方
向に帰ってきた信号光eout′(i−出力光ファイバ
1oに分岐する。
FIG. 2 shows a conventional example of an optical fiber type voltage sensor that utilizes the Pockels effect. For bidirectional use, a birefringent material (rutile plate) 3 is placed between the output optical fiber 1 and one end of the self-focusing rod lens 2 to provide a polarization separation function. At the other end of the focusing rod lens 2, there is a Pockels material (in this conventional example, L i N b O3 single crystal) 5 having an electrode 4 and a 1/3 wavelength plate 6 .
, and a reflecting plate 7 are arranged to constitute a reflective optical system. There is a splitter 8 in front of the input/output optical fiber 117j, which passes the light gin from the input optical fiber 9 to the input/output optical fiber 1, and also passes the light gin from the input/output optical fiber 1 in the opposite direction. Light eout' (i-branched to output optical fiber 1o).

この動作原理を説明すると、入出力兼用光ファイバ1か
ら出射した光einはルチル平板3で直線偏光になり、
ポッケルス材料5及び、1/3波長板6を透過後、ミラ
ー7で反射され、再び1/3波長板6及び、ポッケルス
材料6を通過後、ルチル平板3で偏光分離されて、入出
力兼用光ファイバ1に受光される。ポッケルス材料5は
電界により屈折率が変化するが、その変化率が偏光方向
により異なるため、通過する光の位相が変わシ、楕円偏
光となる。この偏光の変化を検光子に当たるルチル平板
3で偏光分離し、強度変化に変換する。
To explain the principle of operation, the light ein emitted from the input/output optical fiber 1 becomes linearly polarized light by the rutile flat plate 3.
After passing through the Pockels material 5 and the 1/3 wavelength plate 6, it is reflected by the mirror 7, and after passing through the 1/3 wavelength plate 6 and the Pockels material 6 again, it is polarized and separated by the rutile flat plate 3, and is used for both input and output. The light is received by fiber 1. The refractive index of the Pockels material 5 changes depending on the electric field, but since the rate of change differs depending on the polarization direction, the phase of the light passing therethrough changes and becomes elliptically polarized light. This change in polarization is separated by a rutile flat plate 3, which is an analyzer, and converted into a change in intensity.

ここで、ポッケルス材料5を通過する光が電界により受
ける光学的位相差Δφは印加電界強度Eに比例する。す
なわち Δφ=kE   ただしに:比例定数 ・・・・・・・
・・(1)となる。
Here, the optical phase difference Δφ that the light passing through the Pockels material 5 receives due to the electric field is proportional to the applied electric field strength E. In other words, Δφ=kE However: Constant of proportionality...
...(1).

また、光線は1/3波長板を往復することにより、π/
2の位相差を受ける。従って、この場合の出力強度は、 p oc 1−5in (Δφ)        、旧
、、 、、、(2)となり、Δφが小さい時には、 p cc 1〜Δφ=1−kE      −0−,0
,−<3)となり、電界強度Eに比例した光量変化が得
られる。
Also, by reciprocating the 1/3 wavelength plate, the light beam is
It receives a phase difference of 2. Therefore, the output intensity in this case is p oc 1-5in (Δφ) , old, , , , (2), and when Δφ is small, p cc 1~Δφ=1−kE −0−,0
, -<3), and a change in the amount of light proportional to the electric field strength E can be obtained.

発明が解決しようとする問題点 従来例では、入出力光ファイバ1を双方向で兼用してい
るために、信号光eoutを分岐するためには分岐器8
が不可欠であり、入力時と出力時の2回分岐器8を通過
するために、分岐器8内のハーフミラ−11及び、光部
品の結合部位等で合計e dB以上の光損失が生ずる。
Problems to be Solved by the Invention In the conventional example, since the input/output optical fiber 1 is used in both directions, a splitter 8 is required to branch the signal light eout.
Since the light passes through the splitter 8 twice, once at the input and once at the output, a total optical loss of edB or more occurs at the half mirror 11 in the splitter 8, the coupling site of the optical components, etc.

また、分岐器8を必要とするために、コスト高であり、
部品点数の増加により高い信頼性を得ることができない
In addition, since the branch 8 is required, the cost is high;
High reliability cannot be obtained due to the increase in the number of parts.

さらに、本従来例では、複屈折材料3を2回通過するた
めに、2回の偏光分離による損失e dBも避けること
ができない。
Furthermore, in this conventional example, since the light passes through the birefringent material 3 twice, loss e dB due to two polarization separations cannot be avoided.

問題点を解決するための手段 本発明は、上記問題を解決するために、半導体レーザを
光源として使用し、入力用偏波面保存型光ファイバと出
力用マルチモード型光7アイパとを自己集束型ロッドレ
ンズの一方の端面に1枚の複屈折材料を介して配置し、
前記自己集束型ロッドレンズの他方の端面に、ポッケル
ス効果を有する材料と1/8波長板、及び反射板とを配
置し、前記入力用偏波面保存型光ファイバを、前記自己
集束型ロンドレンズの光軸上に配置すると共に、前記出
力用マルチモード型光ファイバを、前記集束型ロッドレ
ンズの光軸に対して前記入力用偏波面保存型光ファイバ
の位置から前記複屈折材料の常光、異常光分離方向に、
前記常光、異常光分離巾だけ離れた位置に配置するもの
である。
Means for Solving the Problems In order to solve the above problems, the present invention uses a semiconductor laser as a light source and connects an input polarization maintaining optical fiber and an output multimode optical 7-eyeper to a self-focusing type. Placed on one end surface of the rod lens via a piece of birefringent material,
A material having a Pockels effect, a 1/8 wavelength plate, and a reflection plate are disposed on the other end surface of the self-focusing rod lens, and the input polarization-maintaining optical fiber is connected to the other end surface of the self-focusing rod lens. The output multimode optical fiber is arranged on the optical axis, and the ordinary light and extraordinary light of the birefringent material are connected to the output multimode optical fiber from the position of the input polarization preserving optical fiber with respect to the optical axis of the focusing rod lens. In the separation direction,
The light beams are placed at positions separated by the separation width between the ordinary light and the extraordinary light.

作  用 本発明は上記の構成により、入力用偏波面保存型光ファ
イバからの出射光は直線偏光となっており、入力側での
偏光分離が不要となり、3dBの光損失を避けることが
できるだけでなく、入力用光ファイバより比較的コア径
の大きな出力用光ファイバを出力専用として使用するた
め、人、出力間での光の結合損失を低減でき、また分岐
器が不用となり、光損失の大巾な改善が期待できる。さ
らに、光源として使用する半導体レーザの発振波長点が
りの半賀全中は一般的に数nmと非常に狭いため測定精
度の改善が可能となる。
Function: With the above configuration, the light emitted from the input polarization-maintaining optical fiber becomes linearly polarized light, eliminating the need for polarization separation on the input side and avoiding 3 dB optical loss. Since the output optical fiber, which has a relatively larger core diameter than the input optical fiber, is used exclusively for output, it is possible to reduce the coupling loss of light between the person and the output, and also eliminates the need for a splitter, which reduces the large optical loss. We can expect wide-ranging improvements. Furthermore, since the oscillation wavelength range of the semiconductor laser used as the light source is generally very narrow, several nanometers, it is possible to improve measurement accuracy.

実施例 第1図は本発明の光ファイバ型電圧センサの一実施例を
示す構成図であり、従来例と同一箇所には同一番号を付
しである。
Embodiment FIG. 1 is a configuration diagram showing an embodiment of the optical fiber type voltage sensor of the present invention, and the same parts as in the conventional example are given the same numbers.

従来例と大きく異なる点は、入力用光ファイバ9の位置
から複屈折材料3の偏光分離方向に偏光分離中だけ離れ
た位置に出力用光ファイバ1oを配置し、入出力光ファ
イバを分離したことであり、このため分岐器が不用とな
っている。
The major difference from the conventional example is that the output optical fiber 1o is placed at a position away from the position of the input optical fiber 9 in the polarization separation direction of the birefringent material 3 only during polarization separation, and the input and output optical fibers are separated. Therefore, there is no need for a turnout.

次に、本発明によるセンサの動作原理を説明する。半導
体レーザ12から出射した直線偏光は自己集束型ロッド
レンズ2の光軸上に配置された入力用偏波面保存型光フ
ァイバの偏光固有軸に入射する。これにより光は、直線
偏光を保ったまま光ファイバ中を伝搬しルチル平板等か
らなる複屈折材料3に入射する。この時入射した直線偏
光が常光となるように入力用偏波面保存型光ファイバ9
の出力端面をファイバ軸を中心に回軸調整することによ
り、はとんど損失なく複屈折材料3中を通過し、自己集
束型レンズ2で平行光となり、ポッケルス材料6及び1
/8波長板6を通過後反射板7で反射されて、再び1/
8波長板6及びポッケルス材料6を通過し、複屈折材料
3に再び入射する。光は、ポッケルス材料5を通過時に
電極4から印加される電圧に対応した位相変化を受ける
ため、また、1/8波長板を1往復することにより1/
4波長の位相差を受けて楕円偏光となっているため、複
屈折材料3に再び入射した光は、常光と異常光とに偏光
分離され、2光線となる。この2光線のうちの異常光は
、複屈折材料3を通過し、位相変化が強度変化に変換さ
れ、出力用マルチモード光ファイバに集光し伝搬するこ
とにより、電圧の強度に比例した光量の変化が得られる
Next, the principle of operation of the sensor according to the present invention will be explained. The linearly polarized light emitted from the semiconductor laser 12 enters the polarization eigenaxis of the input polarization-maintaining optical fiber arranged on the optical axis of the self-focusing rod lens 2 . As a result, the light propagates through the optical fiber while maintaining linear polarization and enters the birefringent material 3 made of a rutile plate or the like. The input polarization-maintaining optical fiber 9 is connected so that the linearly polarized light incident at this time becomes ordinary light.
By adjusting the rotation axis of the output end face around the fiber axis, the light passes through the birefringent material 3 with almost no loss, becomes a parallel light at the self-focusing lens 2, and the Pockels materials 6 and 1
After passing through the /8 wavelength plate 6, it is reflected by the reflection plate 7, and the 1/8 wavelength is reflected again.
The light passes through the 8-wavelength plate 6 and the Pockels material 6 and enters the birefringent material 3 again. Since the light undergoes a phase change corresponding to the voltage applied from the electrode 4 when passing through the Pockels material 5, it also undergoes a phase change corresponding to the voltage applied from the electrode 4.
Since the light becomes elliptically polarized due to the phase difference of four wavelengths, the light that enters the birefringent material 3 again is polarized and separated into ordinary light and extraordinary light, resulting in two light beams. Of these two light beams, the extraordinary light passes through the birefringent material 3, the phase change is converted into an intensity change, and the light is focused on the output multimode optical fiber and propagated, increasing the amount of light proportional to the voltage intensity. You can get change.

なお、複屈折材料は、ルチルの単結晶を使用しているが
、例えば、方解石でも使用可能である。
Note that although a single crystal of rutile is used as the birefringent material, for example, calcite can also be used.

また、ルチル平板は、2偏光酸分を角度をつけて分離す
るために、光軸に対して傾けて切シ出したものであり、
光ファイバ間隔に応じて、有効に偏光分離できる様に、
光軸との角度、及びルチル平板の厚みを設計すれば良い
In addition, the rutile plate is cut out at an angle with respect to the optical axis in order to separate the two polarized acids at an angle.
In order to effectively separate polarized light according to the optical fiber spacing,
What is necessary is to design the angle with the optical axis and the thickness of the rutile flat plate.

なお、本実施例でば1/8波長板の位置をポッケルス材
料とミラーの間に置いたが、複屈折材料とミラーの間で
あれば、どこに置いても動作に変わりはない。
In this embodiment, the 1/8 wavelength plate was placed between the Pockels material and the mirror, but the operation remains the same no matter where it is placed between the birefringent material and the mirror.

なお、本実施例では、入力光ファイバを自己集水すよう
に、出力9ファイバを光軸上に置き、複屈折材料の偏光
分離方向に偏光分離幅だけ離れた位置に、入力光ファイ
バを置いても良い。
In this example, in order to self-concentrate the input optical fiber, the output 9 fibers are placed on the optical axis, and the input optical fiber is placed at a position separated by the polarization separation width in the polarization separation direction of the birefringent material. It's okay.

なお、ポッケルス材料は、L I N b Os に限
らず、ポッケルス効果を有するもの(例えば、KDP。
Note that the Pockels material is not limited to L I N b Os, but also those having the Pockels effect (for example, KDP).

ADP 、LfTaO3,Zn5e、ZnS、水晶等)
であれば何であっても良く、横壓変調方式によるものと
、縦型変調方式によるものによって、電極の位置が異な
ることは言うまでもない。
ADP, LfTaO3, Zn5e, ZnS, crystal, etc.)
It goes without saying that the positions of the electrodes are different depending on whether the transverse modulation method is used or the vertical modulation method.

発明の効果 以上述べたように、本発明によれば、入力用偏波面保存
型光ファイバからの出射光は直線偏光となっており入力
側での偏光分離が不要となり、3dBの光損失を避ける
ことができるだけでなく、入力用光ファイバよりコア径
の大きな出力用マルチモード光ファイバ(偏波面保存型
光ファイバコア径は10μm以下、マルチモード型光フ
ァイバでは50μm以上)を、出力専用として使用する
ため入出力間での光の結合損失を低減でき、また分岐器
が不用となるため、光損失の大巾な改善が期待できる。
Effects of the Invention As described above, according to the present invention, the output light from the input polarization-maintaining optical fiber becomes linearly polarized light, eliminating the need for polarization separation on the input side and avoiding 3 dB optical loss. In addition to this, an output multimode optical fiber with a larger core diameter than the input optical fiber (polarization maintaining optical fiber core diameter is 10 μm or less, multimode optical fiber has a core diameter of 50 μm or more) is used for output only. Therefore, optical coupling loss between input and output can be reduced, and a splitter is not required, so a significant improvement in optical loss can be expected.

さらに光源として使用する半導体レーザの発振波長床が
りの半値食中は一般的に数Hmと、発光ダイオードのそ
れ(数10 nm−10゜nm以上)より非常に狭いた
め、測定精度の改善が可能となるものである。
Furthermore, the half-maximum eclipse of the oscillation wavelength of the semiconductor laser used as a light source is generally several Hm, which is much narrower than that of a light-emitting diode (several 10 nm - 10° nm or more), making it possible to improve measurement accuracy. This is the result.

【図面の簡単な説明】[Brief explanation of drawings]

竺1M1汁十益叩の一生愉椋+ry−t−叶入を7.イ
バ型電圧センサの構成図、第2図は従来のセン丈の構成
図である。 9・・・・・・入力用偏波面保存型光ファイバ、10・
・・・・・出力用マルチモード型光ファイバ、12・・
・・・・半導体レーザ、3・・・・・・複屈折材料、2
・・・・・・自己集束型ロッドレンズ、5・・・・・・
ポッケルス材料、6・・・・・・1/8波長板、4・・
・・・・電極、7・・・・・・反射板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
7. Lifetime enjoyment of 1M1 juice and 10 benefits +ry-t-kaniri. FIG. 2 is a block diagram of a lever-type voltage sensor, and FIG. 2 is a block diagram of a conventional sensor length. 9... Input polarization preserving optical fiber, 10.
...Multimode optical fiber for output, 12...
... Semiconductor laser, 3 ... Birefringent material, 2
・・・・・・Self-focusing rod lens, 5・・・・・・
Pockels material, 6...1/8 wavelength plate, 4...
...Electrode, 7...Reflector. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザを光源として使用し、入力用偏波面保存型
光ファイバと出力用マルチモード型光ファイバとを自己
集束型ロッドレンズの一方の端面に1枚の複屈折材料を
介して配置し、前記自己集束型ロッドレンズの他方の端
面に、ポッケルス効果を有する材料と1/8波長板及び
反射板とを配置し、前記入力用偏波面保存型光ファイバ
を、前記自己集束型ロッドレンズの光軸上に配置すると
共に、前記出力用マルチモード型光ファイバを、前記集
束型ロッドレンズの光軸に対して前記入力用偏波面保存
型光ファイバの位置から前記複屈折材料の常光、異常光
分離方向に、前記常光、異常光分離巾だけ離れた位置に
配置してなる光ファイバ型電圧センサ。
A semiconductor laser is used as a light source, and an input polarization-maintaining optical fiber and an output multimode optical fiber are placed on one end face of a self-focusing rod lens via a piece of birefringent material, and A material having a Pockels effect, a 1/8 wavelength plate, and a reflection plate are arranged on the other end surface of the focusing rod lens, and the input polarization maintaining optical fiber is placed on the optical axis of the self-focusing rod lens. and the output multimode optical fiber is arranged from the position of the input polarization preserving optical fiber with respect to the optical axis of the focusing rod lens in the direction of ordinary and extraordinary light separation of the birefringent material. , an optical fiber type voltage sensor arranged at a position separated by the ordinary light and extraordinary light separation width.
JP61042215A 1986-02-27 1986-02-27 Optical fiber type voltage sensor Expired - Fee Related JPH0782036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61042215A JPH0782036B2 (en) 1986-02-27 1986-02-27 Optical fiber type voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61042215A JPH0782036B2 (en) 1986-02-27 1986-02-27 Optical fiber type voltage sensor

Publications (2)

Publication Number Publication Date
JPS62198769A true JPS62198769A (en) 1987-09-02
JPH0782036B2 JPH0782036B2 (en) 1995-09-06

Family

ID=12629810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61042215A Expired - Fee Related JPH0782036B2 (en) 1986-02-27 1986-02-27 Optical fiber type voltage sensor

Country Status (1)

Country Link
JP (1) JPH0782036B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006007A1 (en) * 2000-07-13 2002-01-24 Designmecha Co., Ltd. Micro-burnishing apparatus using ultrasonic vibration
WO2004023119A1 (en) * 2002-09-09 2004-03-18 Corning Incorporated Enhanced fiber-optic sensor
EP1482315A1 (en) * 2002-03-01 2004-12-01 The Tokyo Electric Power Co., Inc. Current measuring device
JP2013032968A (en) * 2011-08-02 2013-02-14 Toyota Industries Corp Optical fiber type voltage sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006007A1 (en) * 2000-07-13 2002-01-24 Designmecha Co., Ltd. Micro-burnishing apparatus using ultrasonic vibration
EP1482315A1 (en) * 2002-03-01 2004-12-01 The Tokyo Electric Power Co., Inc. Current measuring device
EP1482315A4 (en) * 2002-03-01 2008-04-23 Tokyo Electric Power Co Current measuring device
WO2004023119A1 (en) * 2002-09-09 2004-03-18 Corning Incorporated Enhanced fiber-optic sensor
JP2013032968A (en) * 2011-08-02 2013-02-14 Toyota Industries Corp Optical fiber type voltage sensor

Also Published As

Publication number Publication date
JPH0782036B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
KR960007746B1 (en) Fiberer-optic gyroscope with depolarizers in a fiber coil located between a light source and a polarizer
JPH03503927A (en) Fiber optic gyroscope with improved bias stability and repeatability and method for manufacturing the same
JPS61223612A (en) Optical type measuring device
US4444503A (en) Ring interferometer with a mode diaphragm
JPS62198768A (en) Optical fiber type voltage sensor
JPS62198769A (en) Optical fiber type voltage sensor
JPH024864B2 (en)
JP2007003728A (en) Device for detecting difference in intensity of light
JPH05273260A (en) Voltage sensor
JPS6135321A (en) Optical sensor
JPS59166873A (en) Optical applied voltage and electric field sensor
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JPS6264961A (en) Optical fiber type voltage sensor
JPH07117556B2 (en) Polarizing box used in a current converter utilizing the Faraday effect
JP2666362B2 (en) Optical pulse tester
JPS60263866A (en) Optical electric field sensor
JPS61212773A (en) Photosensor
JPS59120970A (en) Optical magnetic field sensor
JP3235301B2 (en) Light voltage sensor
JPH0695049A (en) Magneto-optical field sensor
JP2713537B2 (en) Optical physical quantity detection sensor
JP3145798B2 (en) Optical magnetic field sensor and magnetic field measuring device
JP3000030B2 (en) Measuring method of reflection amount of optical fiber component and apparatus therefor
JPS63139318A (en) Ld module optical system
JPS60147627A (en) Method and device for measuring characteristics of polarization maintaining optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees