JP3159823B2 - Optical electric field measuring device - Google Patents

Optical electric field measuring device

Info

Publication number
JP3159823B2
JP3159823B2 JP03444393A JP3444393A JP3159823B2 JP 3159823 B2 JP3159823 B2 JP 3159823B2 JP 03444393 A JP03444393 A JP 03444393A JP 3444393 A JP3444393 A JP 3444393A JP 3159823 B2 JP3159823 B2 JP 3159823B2
Authority
JP
Japan
Prior art keywords
electric field
light
light source
electro
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03444393A
Other languages
Japanese (ja)
Other versions
JPH06230052A (en
Inventor
辺 栄 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP03444393A priority Critical patent/JP3159823B2/en
Publication of JPH06230052A publication Critical patent/JPH06230052A/en
Application granted granted Critical
Publication of JP3159823B2 publication Critical patent/JP3159823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電気光学結晶を用いて電
界を測定する光方式の電界測定装置に係わり、特に検出
特性の向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical type electric field measuring apparatus for measuring an electric field using an electro-optic crystal, and more particularly to improvement of detection characteristics.

【0002】[0002]

【従来の技術】一般に物質に電界を加えると、その光学
的性質が変化する。このような現象は広く電気光学効果
と呼ばれ、たとえばポッケルス効果、カー効果等がよく
知られている。このような電気光学効果は、物質にたと
えば電界Eを印加したときの物質の屈折率nとして次式
で与えられる。 n=n0+an+bn2+・・・ ただしn0:電界印加前の屈折率 E:印加電界 ここで、電界Eの1次の係数aをポッケルス係数、2次
の係数bをカー係数という。
2. Description of the Related Art Generally, when an electric field is applied to a substance, its optical properties change. Such a phenomenon is widely called an electro-optic effect, and for example, the Pockels effect, the Kerr effect, and the like are well known. Such an electro-optic effect is given by the following formula as the refractive index n of a substance when an electric field E is applied to the substance. n = n0 + an + bn2 +... where n0: refractive index before electric field application E: applied electric field Here, the first order coefficient a of the electric field E is called the Pockels coefficient, and the second order coefficient b is called the Kerr coefficient.

【0003】このような電気光学効果が顕著で、電界強
度の測定等に用いられる物質(以下電気光学結晶と称
す)としてはニオブ酸リチウム(LiNbO3)、タンタ
ル酸リチウム(LiTaO3)、水晶、BSO(Bi12Si
O20)、BGO(Bi12GeO20)等の結晶が知られてい
る。これらの結晶は結晶軸に対して所定の角度に切断し
て直方体に整形して用いるようにしている。そして、こ
のような電気光学結晶の屈折率が電界の1次の項に比例
するポッケルス効果を利用し、光の送受に光ファイバを
用いて電界、電圧等を測定する装置が研究されている。
Such an electro-optic effect is remarkable, and materials used for measuring electric field intensity and the like (hereinafter referred to as electro-optic crystals) include lithium niobate (LiNbO3), lithium tantalate (LiTaO3), quartz, BSO ( Bi12Si
O20) and BGO (Bi12GeO20) crystals are known. These crystals are cut at a predetermined angle with respect to the crystal axis and shaped into a rectangular parallelepiped for use. An apparatus for measuring an electric field, a voltage, and the like by using an optical fiber for transmitting and receiving light using the Pockels effect in which the refractive index of such an electro-optic crystal is proportional to the first-order term of the electric field has been studied.

【0004】すなわち、電気光学結晶に電界を印加する
と、当該結晶の屈折率が変化し、それによって結晶を透
過する光線の速度が変化する。一方、電気光学結晶を透
過する2つの偏光成分は、電気光学結晶に印加された電
界強度に応じてそれぞれ異なる位相変調を受ける。した
がって、このような電界の測定を行う装置では、たとえ
ば単色光の光源からの光を偏光板で直線偏光した後にλ
/4波長板を透過させて円偏光とし、この光線を上記電
気光学結晶に入射する。そして電気光学結晶を透過した
光線は、いわゆる楕円偏光となり、その長軸の方向は電
気光学結晶に印加した電界強度および電気光学結晶中の
光路の長さに応じて変化する。そして電気光学結晶から
出射した光線を検光子を透過させると検光子の角度に対
応する方向成分の光のみが通過するので光出力の強度は
上記電界強度に応じた変化を生じ、この光強度の変化は
電界強度の大きさに対応することになる。
[0004] That is, when an electric field is applied to an electro-optic crystal, the refractive index of the crystal changes, thereby changing the speed of light rays passing through the crystal. On the other hand, the two polarized light components transmitted through the electro-optic crystal undergo different phase modulations according to the electric field strength applied to the electro-optic crystal. Therefore, in an apparatus for measuring such an electric field, for example, after light from a light source of monochromatic light is linearly polarized by a polarizing plate, λ
The light is transmitted through a 波長 wavelength plate to form circularly polarized light, and this light is incident on the electro-optic crystal. The light transmitted through the electro-optic crystal becomes so-called elliptically polarized light, and the direction of the major axis changes according to the electric field intensity applied to the electro-optic crystal and the length of the optical path in the electro-optic crystal. Then, when the light emitted from the electro-optic crystal is transmitted through the analyzer, only the light of the directional component corresponding to the angle of the analyzer passes, so that the intensity of the light output changes in accordance with the electric field intensity, and the intensity of the light intensity is changed. The change will correspond to the magnitude of the electric field strength.

【0005】このような原理に基づいて、電界を測定す
る装置として本発明の出願人により特願昭63−316
726号「光方式直流電界測定装置」が出願されてい
る。このような電界測定装置では、たとえば計測部にレ
ーザ・ダイオード等の単色の光源を用意して、この光源
からの光線を光ファイバを用いて検出部の電気光学結晶
へ導くようにしている。そして電気光学結晶を透過した
光線を、再び光ファイバを用いて計測部へ導いて受光素
子により光学的な変化を検出するようにしている。
Based on such a principle, the applicant of the present invention has filed a Japanese Patent Application No. 63-316 as an apparatus for measuring an electric field.
No. 726, "Optical DC electric field measuring apparatus" has been filed. In such an electric field measuring apparatus, for example, a monochromatic light source such as a laser diode is prepared in a measuring unit, and a light beam from this light source is guided to an electro-optic crystal of a detecting unit using an optical fiber. Then, the light beam transmitted through the electro-optic crystal is guided again to the measuring section using an optical fiber, and an optical change is detected by a light receiving element.

【0006】しかして、このような装置によって電界を
測定すれば、電気光学結晶および光ファイバは絶縁体で
構成されるために電気的な絶縁を容易に行え、信号の伝
送を光で行うので高電界中にあっても電磁誘導や外来雑
音の影響を受けることがなく、無火花、防爆性で耐薬品
性も良好な利点を得られる。したがってこのような電界
測定装置は、強電の分野における高電圧の電力設備の保
全、コンビナートの石油備蓄基地における帯電電荷の測
定等の安全性を重視する分野で独自の用途が期待されて
いる。
However, when an electric field is measured by such a device, the electro-optic crystal and the optical fiber are made of an insulator, so that electrical insulation can be easily performed, and signal transmission is performed by light. Even in an electric field, there is no influence from electromagnetic induction or external noise, and advantages such as no spark, explosion proof and good chemical resistance can be obtained. Therefore, such an electric field measuring device is expected to have a unique use in fields where safety is important, such as maintenance of high-voltage power facilities in the field of high power, and measurement of charged charges at a petroleum storage base in a complex.

【0007】図5は従来の電界測定装置の原理的な構成
を示すブロック図で、たとえば光源駆動部1によって単
色光の光源2を駆動し、光源2で発生した光線を光ファ
イバ3に導く。光ファイバ3で導いた光はレンズ4、偏
光子5、波長板6を介して、たとえば水晶からなる電気
光学結晶7へ入射する。この電気光学結晶7の両側面の
電極8には測定すべき電界Eを印加し、また電気光学結
晶7の出射光を検光子9およびレンズ10を介して光フ
ァイバ11により受光素子12へ導く。受光素子12の
検出信号は電界測定部13に入力して電界の測定値を
得、この測定値を表示部14で表示し、必要に応じて記
録する。そして、たとえば図6に示すような透過光の変
調特性を得、電界強度に応じて得た透過光の光学的な変
化、たとえば光強度の変化から上記電界Eの値を測定す
るようにしている。
FIG. 5 is a block diagram showing the basic configuration of a conventional electric field measuring device. For example, a light source driving unit 1 drives a monochromatic light source 2 and guides a light beam generated by the light source 2 to an optical fiber 3. The light guided by the optical fiber 3 enters the electro-optic crystal 7 made of, for example, quartz through the lens 4, the polarizer 5, and the wavelength plate 6. An electric field E to be measured is applied to the electrodes 8 on both sides of the electro-optic crystal 7, and the light emitted from the electro-optic crystal 7 is guided to the light receiving element 12 by the optical fiber 11 via the analyzer 9 and the lens 10. The detection signal of the light receiving element 12 is input to the electric field measuring unit 13 to obtain a measured value of the electric field, and the measured value is displayed on the display unit 14 and recorded as necessary. Then, for example, the modulation characteristics of the transmitted light as shown in FIG. 6 are obtained, and the value of the electric field E is measured from the optical change of the transmitted light obtained according to the electric field intensity, for example, the change of the light intensity. .

【0008】しかして、このような電界測定装置では測
定すべき電界を印加する電気光学結晶等を含む検出部
と、この検出部で生じた光学的な変化から電界強度を測
定する電界測定部との間は光学的に結合させるだけでよ
い。したがって、たとえば電気の絶縁体である光ファイ
バを用いて検出部と電界測定部とを結合させることによ
り、電気的に高い絶縁性を維持した状態で信号の送受を
行うことができる。したがって検出部と電界測定部との
間を電気的に十分な絶縁を得られる長さの光ファイバを
介して結合することにより、高電圧の測定も安全に行う
ことができる。
In such an electric field measuring apparatus, a detecting section including an electro-optical crystal or the like for applying an electric field to be measured, and an electric field measuring section for measuring an electric field intensity from an optical change generated in the detecting section are provided. It is only necessary to optically couple between them. Therefore, for example, by connecting the detection unit and the electric field measurement unit using an optical fiber that is an electrical insulator, it is possible to transmit and receive signals while maintaining high electrical insulation. Therefore, by connecting the detection section and the electric field measurement section via an optical fiber having a length that can provide sufficient electrical insulation, high voltage measurement can be performed safely.

【0009】ところで、このような電界測定装置に用い
る光源としては、要求される種々の特性を満たす、たと
えばレーザ・ダイオードや発光ダイオード等の半導体素
子が用いられる。しかしながら、このような光源は発光
させた際に供給したエネルギの損失分は熱となり発熱量
と放熱量の平衡するまで温度は上昇し、かつ光出力の波
長は光源の温度に応じて変化する。図7はこの種の発光
ダイオードのケースの温度と25℃の発光波長λに対す
るピーク発光波長の偏差の一例を示すグラフである。こ
のグラフから明らかなように、25℃における波長85
0nmを基準とした場合、±35度の温度変化によって
発光波長λは±10nm変化し、この変化の割合は当該
発光波長の±1.2%にも相当する。
As a light source used in such an electric field measuring apparatus, a semiconductor element which satisfies various required characteristics, such as a laser diode or a light emitting diode, is used. However, in such a light source, the amount of energy loss supplied when emitting light becomes heat, and the temperature rises until the calorific value and the heat radiation amount are balanced, and the wavelength of the light output changes according to the temperature of the light source. FIG. 7 is a graph showing an example of a deviation of the peak emission wavelength with respect to the emission wavelength λ at 25 ° C. and the temperature of the case of this type of light emitting diode. As is clear from this graph, the wavelength 85 at 25 ° C.
On the basis of 0 nm, the emission wavelength λ changes by ± 10 nm due to a temperature change of ± 35 degrees, and the rate of this change corresponds to ± 1.2% of the emission wavelength.

【0010】ところでこのような装置において、電気光
学結晶の電気光学効果は半波長電圧Vπとして表すこと
ができる。この半波長電圧Vπは図6において光強度を
0から1まで変化させるために必要な電圧であって、こ
の電圧が低い結晶は感度は良好であるが測定可能な最高
電圧は低めに制限され、逆に半波長電圧Vπが高い結晶
の場合は感度は低いが高い電圧まで良好な直線性で測定
することができる。
In such a device, the electro-optic effect of the electro-optic crystal can be expressed as a half-wave voltage Vπ. This half-wavelength voltage Vπ is a voltage necessary to change the light intensity from 0 to 1 in FIG. 6, and a crystal having a low voltage has good sensitivity, but the highest measurable voltage is limited to a lower level. Conversely, in the case of a crystal having a high half-wave voltage Vπ, the sensitivity is low, but the measurement can be performed with good linearity up to a high voltage.

【0011】この半波長電圧Vπは結晶の種類、結晶軸
に対する電圧の印加方向、結晶軸に対する光線の透過方
向に応じて変化するが、たとえば電気光学結晶として水
晶を用いて結晶のY軸方向に電界を印加し、Z軸方向に
光線を透過させるように配置した場合は、次式で与えら
れる。 Vπ=λ/2no3r11・(d/L) ただし:λは透過光線の波長 noは常光線屈折率 r11はポッケルス定数 dは電圧または電界の印加方向の結晶の厚み Lは光線の透過方向の結晶の長さ この式からも明らかなように、半波長電圧Vπの値は光
線の波長λに比例するため光源の出力光の波長λの変化
はそのまま測定値の誤差となる。
The half-wavelength voltage Vπ varies according to the type of crystal, the direction of voltage application to the crystal axis, and the direction of light transmission to the crystal axis. When an electric field is applied and the light is arranged to transmit light in the Z-axis direction, it is given by the following equation. Vπ = λ / 2no3r11 · (d / L) where λ is the wavelength of the transmitted light beam, no is the ordinary refractive index, r11 is the Pockels constant d is the thickness of the crystal in the direction in which the voltage or electric field is applied, and L is the thickness of the crystal in the direction of transmitting the light beam Length As is clear from this equation, since the value of the half-wavelength voltage Vπ is proportional to the wavelength λ of the light beam, a change in the wavelength λ of the output light from the light source directly becomes an error in the measured value.

【0012】またこのように光源の出力光の波長が変化
すると、波長に依存する光学系は設計通りの性能を発揮
することができなくなる問題もある。たとえば受光素子
としてフォトダイオードを用いた場合、この種のダイオ
ードはたとえば図8に示すような波長感度特性を有し、
入力光の波長λに応じて受光感度は変化する。このため
光源の出力光の波長λは、フォトダイオードの受光感度
の最も良好な領域となるような設計がなされるが、光源
の温度変化によって出力光の波長λが変化すればフォト
ダイオードの検出感度は低下してしまう。
Further, when the wavelength of the output light of the light source changes as described above, there is also a problem that the optical system depending on the wavelength cannot exhibit the performance as designed. For example, when a photodiode is used as a light receiving element, this type of diode has a wavelength sensitivity characteristic as shown in FIG. 8, for example.
The light receiving sensitivity changes according to the wavelength λ of the input light. For this reason, the wavelength λ of the output light of the light source is designed so as to be in the region having the best light receiving sensitivity of the photodiode. Will decrease.

【0013】[0013]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、電界、電圧等を光学的に測定す
るものにおいて、光源を一定温度に保つことのよって出
力光の波長を一定波長に維持して良好な検出特性を得る
ことができる光方式の電界測定装置を提供することを目
的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and in an optical measurement of an electric field, a voltage, and the like, the wavelength of output light is maintained by maintaining a light source at a constant temperature. It is an object of the present invention to provide an optical electric field measuring apparatus capable of obtaining good detection characteristics while maintaining a constant wavelength.

【0014】[0014]

【課題を解決するための手段】本発明は、測定すべき電
界を印加した電気光学結晶に光源からの光線を透過させ
て受光素子で受光し透過光の電気光学効果による光学的
な変化から上記電界を測定するものにおいて、上記光源
と上記受光素子の発熱側とを熱的に結合させて受光素子
側の熱を光源側へ移送するサーモ・モジュールを具備す
ること、および上記光源を一定温度に保つように上記サ
ーモモジュールによる熱の移送量を制御する温度制御部
を具備することを特徴とするものである。
According to the present invention, a light beam from a light source is transmitted through an electro-optic crystal to which an electric field to be measured is applied, and the light is received by a light receiving element. In a device for measuring an electric field, a thermo module that thermally couples the light source and the heat-generating side of the light-receiving element to transfer heat from the light-receiving element to the light source side is provided, and the light source is kept at a constant temperature. It is characterized by comprising a temperature control unit for controlling the amount of heat transferred by the thermo module so as to maintain the temperature.

【0015】[0015]

【実施例】以下、本発明の一実施例を図1に示す電界測
定装置の概略構成図を参照して詳細に説明する。なお図
5と同一の部材には同一符号を付与してその説明を省略
する。図1において21は制御電流に応じて熱を移送す
るサーモ・モジュールである。図2はサーモ・モジュー
ル21の周辺の構造の一例を示す裁断正面図で、サーモ
・モジュール21によって光源2と受光素子12とを熱
的に結合させて、受光素子12から光源2へ熱の移送を
行うようにしている。そして光源2に温度センサ22を
取り付け、このセンサ22の検出信号を温度制御部23
へ与えて光源2を一定温度に維持するように熱の移送量
を制御するようにしている。なお上記サーモ・モジュー
ル21等は容器24に収納し、光源2および受光素子1
2には、光コネクタ25を介して光ファイバを接続する
ようにしている。なお図2において26は受光素子12
の前置増幅器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the schematic diagram of the electric field measuring apparatus shown in FIG. Note that the same members as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 1, reference numeral 21 denotes a thermo module for transferring heat according to a control current. FIG. 2 is a cutaway front view showing an example of the structure around the thermo module 21. The thermo module 21 thermally couples the light source 2 and the light receiving element 12 to transfer heat from the light receiving element 12 to the light source 2. To do. Then, a temperature sensor 22 is attached to the light source 2, and a detection signal of the sensor 22 is sent to a temperature control unit 23.
To control the amount of heat transfer so as to maintain the light source 2 at a constant temperature. The thermo module 21 and the like are housed in a container 24, and the light source 2 and the light receiving element 1
2 is connected to an optical fiber via an optical connector 25. In FIG. 2, reference numeral 26 denotes the light receiving element 12.
Is a preamplifier.

【0016】上記サーモ・モジュール21は、たとえば
図3に示すような熱電半導体を利用したペルチェ素子の
ヒートポンプである。すなわち、P型素子21aおよび
N型素子21bからなる2種類の熱電半導体を電極金属
21cに接合してπ型直列回路を構成する。そして、こ
のπ型直列回路のP、N対のN型素子21bからP型素
子21aの方向へ電源21dから電流を流すと、ペルチ
ェ効果によってπ型の上部で吸熱、下部で発熱を生じ、
吸熱側から発熱側へ熱の移送を行うものである。しかし
て、ペルチェ素子の吸熱側を受光素子12、放熱側を光
源2に取り付けて受光素子12から光源2へ熱を移送す
ることによって受光素子12および前置増幅器26側を
冷却し、光源2側を加熱し、かつサーモ・モジュール2
1による熱の移送量を温度制御部23によって制御し、
光源2の温度を一定温度に保つようにしている。
The thermo-module 21 is, for example, a Peltier element heat pump using a thermoelectric semiconductor as shown in FIG. That is, two types of thermoelectric semiconductors, which are the P-type element 21a and the N-type element 21b, are joined to the electrode metal 21c to form a π-type series circuit. When a current flows from the power supply 21d in the direction from the P-type and N-type N-type elements 21b to the P-type element 21a in the π-type series circuit, heat is absorbed at the upper part of the π-type and heat is generated at the lower part by the Peltier effect.
The heat is transferred from the heat absorbing side to the heat generating side. The heat absorbing side of the Peltier element is attached to the light receiving element 12 and the heat radiating side is attached to the light source 2 to transfer heat from the light receiving element 12 to the light source 2, thereby cooling the light receiving element 12 and the preamplifier 26 side. Heating and thermo module 2
1 is controlled by the temperature control unit 23,
The light source 2 is kept at a constant temperature.

【0017】このような構成であれば、電気光学結晶7
に電界Eを印加すると該電気光学結晶7を透過する光線
は印加した電界Eの大きさに応じて光学的変化を生じ
る。したがって透過光の光学的変化の大きさを受光素子
12で電気信号に変換して電界測定部13で測定するこ
とによって印加した電界Eの値を測定することができ
る。そして、光源2と受光素子12とをサーモ・モジュ
ール21によって熱的に結合させて受光素子12側の熱
を光源2側へ移送し、受光素子12を冷却するとともに
光源2を加熱するようにしている。そして温度制御部2
3によってサーモ・モジュール21による熱の移送量を
制御して光源2の温度を一定温度に保つようにしてい
る。したがって、光源2は一定の温度に加熱されるので
出力光の波長λを一定波長に維持することができ、光学
系は設計通りに最高の性能を発揮することができる。
With such a configuration, the electro-optic crystal 7
When an electric field E is applied to the light, the light beam transmitted through the electro-optic crystal 7 causes an optical change according to the magnitude of the applied electric field E. Therefore, the value of the applied electric field E can be measured by converting the magnitude of the optical change of the transmitted light into an electric signal by the light receiving element 12 and measuring the electric signal by the electric field measuring unit 13. Then, the light source 2 and the light receiving element 12 are thermally coupled by the thermo module 21 to transfer the heat of the light receiving element 12 to the light source 2 side, thereby cooling the light receiving element 12 and heating the light source 2. I have. And the temperature controller 2
3, the amount of heat transferred by the thermo module 21 is controlled to keep the temperature of the light source 2 at a constant temperature. Therefore, since the light source 2 is heated to a constant temperature, the wavelength λ of the output light can be maintained at a constant wavelength, and the optical system can exhibit the highest performance as designed.

【0018】一方、受光素子としてフォトダイオードを
用いた場合、フォトダイオードの周囲温度と暗電流との
関係は、たとえば図4に示すようになる。すなわち温度
の上昇とともに暗電流は増加して微弱な信号を検出でき
なくなるのでできるだけ低温度にすることが望ましい。
しかして上記実施例では、受光素子12側は冷却される
ために低温度になり、それによってS/N比を高めるこ
とができ、良好な検出感度を得ることができる。
On the other hand, when a photodiode is used as the light receiving element, the relationship between the ambient temperature of the photodiode and the dark current is as shown in FIG. 4, for example. That is, the dark current increases as the temperature rises, making it impossible to detect a weak signal. Therefore, it is desirable to keep the temperature as low as possible.
Thus, in the above embodiment, the temperature of the light receiving element 12 is lowered due to cooling, whereby the S / N ratio can be increased, and good detection sensitivity can be obtained.

【0019】[0019]

【発明の効果】以上詳述したように、本発明によれば簡
単な構成で光源の光出力の波長を一定の波長に保つこと
ができ、かつ受光素子は高いS/N比を維持できるので
電気光学結晶を透過する光線に対する光学的変化を高感
度に検出することができ、それによって電界、電圧等の
電界を高感度かつ正確に測定することができる光方式の
電界測定装置を提供することができる。
As described in detail above, according to the present invention, the light output wavelength of the light source can be maintained at a constant wavelength with a simple configuration, and the light receiving element can maintain a high S / N ratio. Provided is an optical-type electric field measurement device that can detect an optical change with respect to a light beam transmitted through an electro-optic crystal with high sensitivity, and thereby can measure an electric field such as an electric field and a voltage with high sensitivity and accuracy. Can be.

【0020】[0020]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】図1に示す実施例のサーモ・モジュールの周辺
の裁断正面図である。
FIG. 2 is a cutaway front view around the thermo module of the embodiment shown in FIG. 1;

【図3】図1に示す実施例のサーモ・モジュールの動作
を説明する図である。
FIG. 3 is a diagram for explaining the operation of the thermo module of the embodiment shown in FIG.

【図4】受光素子の温度と暗電流の関係を示グラフであ
る。
FIG. 4 is a graph showing a relationship between a temperature of a light receiving element and a dark current.

【図5】従来の電界測定装置の一例を示すブロック図で
ある。
FIG. 5 is a block diagram illustrating an example of a conventional electric field measurement device.

【図6】図5に示す電界測定装置の印加電圧と透過光強
度の関係を示すグラフである。
6 is a graph showing a relationship between an applied voltage and transmitted light intensity of the electric field measuring device shown in FIG.

【図7】発光ダイオードのケース温度とピーク発光波長
λの偏差を示すグラフである。
FIG. 7 is a graph showing a deviation between a case temperature of a light emitting diode and a peak light emission wavelength λ.

【図8】受光素子の波長λと受光感度との関係を示すグ
ラフである。
FIG. 8 is a graph showing the relationship between the wavelength λ of the light receiving element and the light receiving sensitivity.

【符号の説明】[Explanation of symbols]

2 光源 7 電気光学結晶 12 受光素子 21 サーモ・モジュール 23 温度制御部 2 light source 7 electro-optic crystal 12 light receiving element 21 thermo module 23 temperature controller

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測定すべき電界を印加した電気光学結晶に
光源からの光線を透過させて受光素子で受光し透過光の
電気光学効果による光学的な変化から上記電界を測定す
るものにおいて、 上記光源と上記受光素子の発熱側とを熱的に結合させて
受光素子側の熱を光源側へ移送するサーモ・モジュール
を具備することを特徴とする光方式の電界測定装置。
1. An apparatus for transmitting a light beam from a light source to an electro-optic crystal to which an electric field to be measured is applied, receiving the light beam from a light source, and measuring the electric field from an optical change due to an electro-optic effect of the transmitted light. An optical electric field measuring apparatus, comprising: a thermo module for thermally coupling a light source and a heat generating side of the light receiving element to transfer heat of the light receiving element to the light source side.
【請求項2】上記光源の温度を一定温度に保つように上
記サーモモジュールによる熱の移送量を制御する温度制
御部を具備することを特徴とする請求項1の光方式の電
界測定装置。
2. An optical electric field measuring apparatus according to claim 1, further comprising a temperature controller for controlling an amount of heat transferred by said thermo module so as to keep the temperature of said light source at a constant temperature.
JP03444393A 1993-01-30 1993-01-30 Optical electric field measuring device Expired - Fee Related JP3159823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03444393A JP3159823B2 (en) 1993-01-30 1993-01-30 Optical electric field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03444393A JP3159823B2 (en) 1993-01-30 1993-01-30 Optical electric field measuring device

Publications (2)

Publication Number Publication Date
JPH06230052A JPH06230052A (en) 1994-08-19
JP3159823B2 true JP3159823B2 (en) 2001-04-23

Family

ID=12414389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03444393A Expired - Fee Related JP3159823B2 (en) 1993-01-30 1993-01-30 Optical electric field measuring device

Country Status (1)

Country Link
JP (1) JP3159823B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989852B2 (en) * 2019-01-22 2022-02-03 横河電機株式会社 Electric field sensor

Also Published As

Publication number Publication date
JPH06230052A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
US4465969A (en) Voltage and electric field measuring device using light
US7719666B2 (en) Distributed optical fiber sensor
US6724179B2 (en) Opto-electric device for measuring the root-mean-square value of an alternating current voltage
US5053617A (en) Instrument for concurrently optically measuring thermal and electric quantities
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects
Li et al. Optical voltage sensor based on electrooptic crystal multiplier
JPS58129372A (en) Magnetic field-light converter
US6285182B1 (en) Electro-optic voltage sensor
CN105137147B (en) Optical voltage measuring device
KR0153277B1 (en) Wide bandwidth fiber optic accelerometer
US3675022A (en) Kerr cell system for modulating a laser beam
JP3159823B2 (en) Optical electric field measuring device
US6930475B2 (en) Method for the temperature-compensated, electro-optical measurement of an electrical voltage and device for carrying out the method
RU83340U1 (en) NON-CONTACT THERMOSTABLE VOLTAGE SENSOR OF CONSTANT AND VARIABLE ELECTRIC FIELDS BASED ON ELECTRO-OPTICAL EFFECT IN CRYSTAL Bi12SiO20 (BSO)
US4974945A (en) Optical modulator
JP3128377B2 (en) Optical magnetic field measuring device
Li et al. Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate
Bordovsky et al. Comparative study of cubic crystals performance in bulk electro-optic sensor for DC and extra-low-frequency measurements
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
RU2539130C1 (en) Fibre-optic device for measurement of electric field intensity
RU204860U1 (en) SENSING ELEMENT FOR HIGH VOLTAGE OPTICAL VOLTAGE TRANSFORMERS
JP3235301B2 (en) Light voltage sensor
Heino Fiber optic high voltage probe
JP2509692B2 (en) Optical measuring device
JP2580443B2 (en) Optical voltage sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees