JPH01127984A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JPH01127984A
JPH01127984A JP28586187A JP28586187A JPH01127984A JP H01127984 A JPH01127984 A JP H01127984A JP 28586187 A JP28586187 A JP 28586187A JP 28586187 A JP28586187 A JP 28586187A JP H01127984 A JPH01127984 A JP H01127984A
Authority
JP
Japan
Prior art keywords
magnetic field
light
polarizer
faraday
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28586187A
Other languages
Japanese (ja)
Inventor
Masaru Nakaseko
中世古 勝
Takeshi Miyazaki
健史 宮崎
Toshiharu Miyamoto
俊治 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28586187A priority Critical patent/JPH01127984A/en
Publication of JPH01127984A publication Critical patent/JPH01127984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To miniaturize a magnetic sensor and to decrease a measurement error caused by temperature as much as possible by using CdZnTe (cadmium zinc tellurium) as a Faraday rotary element. CONSTITUTION:A light beam from a light emission diode 1 passes through an optical fiber 2 and condensed by a rod lens 3, and thereafter, made incident on a polarizer 4, by which a light beam of non-polarization is converted to a linearly polarized light, passes through the polarizer 4 and made incident on a Faraday circuit element 6. While the linearly polarized light transmits through this element 6, the plane of polarization is rotated by some rotational angle by the influence of a magnetic field 7, converted to the light intensity by an analyzer 8, condensed by a rod lens 9, and thereafter, led to a photodiode 11 by an optical fiber 10. The element 6 uses CdZnTe. The DdZnTe is a single crystal whose conduction type which added Zn to CdTe is a P-type or an N- type, and its Verdet's constant is about three times, comparing with a magnetic field sensor which has been used up to the present. In such a way, the length can be reduced to 1/3 of a conventional sensor, and also, its temperature variation width is small, therefore, the measurement error can be decreased as much as possible.

Description

【発明の詳細な説明】 (イ)発明の属する技術分野 本発明は磁界センサに関し、より詳細にはファラデー効
果を利用した磁界センサに関する0(ロ)従来技術とそ
の問題点 鉛ガラス等の光の透過性の良い磁気光学材料に外jit
sから磁界を加え、磁界と同じ方向に光を透過させると
ファラデー効果により磁気光学材料を通−過中に光の偏
波面が回転する現象が知られている0偏波面の回転角θ
(0)は下式により与えられる0θ= V e Hl 
   ・・・・・・ (1)ここで、ve:ベルデ定数
(010e°m)H:磁界の強さ(Oe) l :ファラデー回転素子の長さ(闘)この磁気旋光現
象を利用して磁界の測定を行うことができる。
Detailed Description of the Invention (a) Technical field to which the invention pertains The present invention relates to a magnetic field sensor, and more particularly relates to a magnetic field sensor using the Faraday effect. (b) Prior art and its problems The outer jit is made of magneto-optical material with good transparency.
It is known that when a magnetic field is applied from s and light is transmitted in the same direction as the magnetic field, the polarization plane of the light rotates while passing through the magneto-optical material due to the Faraday effect.The rotation angle θ of the zero polarization plane
(0) is given by the following formula 0θ= V e Hl
...... (1) Here, ve: Verdet constant (010e°m) H: Magnetic field strength (Oe) l: Length of Faraday rotation element (T) Using this magnetic optical rotation phenomenon, the magnetic field is can be measured.

第3図はファラデー効果を利用した磁界センサの一例を
示している。同図によると、光源からの出射光は偏光子
4で無偏光の光から直線偏光にされた後、ファラデー回
転素子60に入射する。入射した直線偏光は、ファラデ
ー回転素子60を透過する間に磁界7の影響により偏波
面が角度θだけ回転された後、検光子8で光強度に変換
され、光検出器(ホトダイオード等)により検出される
FIG. 3 shows an example of a magnetic field sensor using the Faraday effect. According to the figure, the light emitted from the light source is converted from non-polarized light to linearly polarized light by a polarizer 4, and then enters a Faraday rotator 60. The incident linearly polarized light has its plane of polarization rotated by an angle θ due to the influence of the magnetic field 7 while passing through the Faraday rotation element 60, and is then converted into light intensity by the analyzer 8 and detected by a photodetector (photodiode, etc.). be done.

ここで、偏光子4と検光子8との間には光軸に関して4
5°ずれていて、回転角θに比例する光強度変化を受け
た光が検光子8から出射するよ5>てしている。
Here, between the polarizer 4 and the analyzer 8, there are 4
The light that is shifted by 5 degrees and undergoes a light intensity change proportional to the rotation angle θ is emitted from the analyzer 8.

上記磁界センサでは、ファラデー回転素子60として例
えばZlSeを使用していたが、次のような問題があっ
た。
In the magnetic field sensor described above, ZlSe, for example, was used as the Faraday rotary element 60, but there were the following problems.

■ セ/すが大型化する問題があった。■ There was a problem with the size of the center/su.

ZlSeのベルデ定数Veは0.15 m fn / 
oecm(波長λ=0.85μm、温度20℃)であり
、磁界に対する感度(変調度m)を例えば磁界3000
eに対して2チ程度得ようとすれば、Zn5eの長さl
が約5順程度必要であり、これ以上の感度を得ようとす
れば更にZlSeの長さjを大きくしなければならず、
七/すが大型化した。
The Verdet constant Ve of ZlSe is 0.15 m fn /
oecm (wavelength λ = 0.85 μm, temperature 20°C), and the sensitivity to the magnetic field (modulation degree m) is, for example, 3000
If you want to obtain about 2 inches for e, the length l of Zn5e
is required, and if you want to obtain higher sensitivity than this, the length j of ZlSe must be further increased,
7/The size has increased.

なお、変調度mとは磁界による光強度の変化率を意味し
、m=Ac/pcで表される(第4図参照)。
Note that the modulation degree m means the rate of change in light intensity due to the magnetic field, and is expressed as m=Ac/pc (see FIG. 4).

ここで、kGはファラデー回転素子に印加される交流電
流による交流磁界を意味し、またDCは入射光強度(一
定)を意味する。
Here, kG means an alternating magnetic field due to an alternating current applied to the Faraday rotation element, and DC means the intensity of incident light (constant).

■ 温度による出力変化幅が大きく、測定誤差が生じる
問題があった。
■ There was a problem that the range of output change due to temperature was large, resulting in measurement errors.

Zn5eは温度特性を有し、例えば温度を20℃→=1
0℃→60℃→20°Cと変化させたとき(第5図のグ
ラフ参照)出力変化幅が±2%程度と大きく(第5図の
グラフ参照)、精密磁界測定時に測定誤差の要因となっ
ていた。
Zn5e has temperature characteristics, for example, when the temperature is changed from 20℃ to 1
When changing from 0°C to 60°C to 20°C (see the graph in Figure 5), the output variation range is as large as ±2% (see the graph in Figure 5), which may cause measurement errors when measuring precision magnetic fields. It had become.

(ハ)発明の目的 本発明は上記従来技術を解決するためになされたもので
、その目的とするところは、小型化することが出来ると
共に、温度による測定誤差を可及的に少なくすることが
出来る磁界センサを提供することである0 (ニ)発明の構成 本発明は、ファラデー効果を利用して磁界を測定する磁
界センサにおいて、ファラデー回転素子としてCdZn
Te (カドミウム・亜鉛・テルル)を用いたことを特
徴としている0 また、光進路に沿りて配置された偏光子、旋光子、ファ
ラデー回転素子及び検光子を含む磁界センサにおいて、
前記ファラデー回転素子に、CdZnTe(カドミウム
・亜鉛・テルル)を用いたことを特徴としている。
(c) Purpose of the Invention The present invention has been made to solve the above-mentioned prior art, and its purpose is to reduce the size of the device and to reduce measurement errors due to temperature as much as possible. (d) Structure of the Invention The present invention provides a magnetic field sensor that measures a magnetic field using the Faraday effect, in which CdZn is used as a Faraday rotation element.
It is characterized by the use of Te (cadmium, zinc, tellurium)0 In addition, in a magnetic field sensor including a polarizer, a polarizer, a Faraday rotation element, and an analyzer arranged along the optical path,
The present invention is characterized in that CdZnTe (cadmium, zinc, tellurium) is used for the Faraday rotation element.

この発明で使用するCd Zn Teは、ベルデ定数V
eが0.52 minloacm (波長λ= 0.8
5 μm、温度20℃)と大きく、センサをZn5eに
比して/」・型化することが出来る。また、温度特性に
つ−・ても−10°C〜60″Cの温度変化で出力変化
幅力1十0.5係と小さく、精密測定時に測定誤差を可
及的に少なく抑えることが出来る。
Cd Zn Te used in this invention has a Verdet constant V
e is 0.52 minloacm (wavelength λ = 0.8
It is large (5 μm, temperature 20°C) and can be shaped into a sensor compared to Zn5e. In addition, the temperature characteristics are as small as 10.5 times the output change width with a temperature change of -10°C to 60''C, making it possible to keep measurement errors as low as possible during precision measurements. .

(ホ)発明の実施例 以下図面を参照して本発明の好ましく1実施例について
説明する。
(E) Embodiment of the Invention A preferred embodiment of the invention will be described below with reference to the drawings.

第1図は本発明による磁界セ/すの構成を示す平面図で
ある。図中符号1は光源としてのLED(発光ダイオー
ド)、2.10は光ファイノく−13,9はロッドレン
ズである。また、4は偏光子、5は旋光子、6はファラ
デー回転素子、8は検光子で、光進路に沿って配置され
ている。また、11は光検出器としてのフォトダイオー
ド、12はケースである0 この磁界センサの基本構成については、第3図に示すも
のとほぼ同じであるが、ここで重要な点は、ファラデー
回転素子6として、GdZnTe(カドミウム・亜鉛・
テルル)を用いた点である。このCdZnTe(カドミ
ウム・亜鉛・テルル)は、CdTe(カドミウム・テル
ル)にZn (亜鉛)を添加した伝導タイプがP型又は
N型の単結晶で、そのベルデ定数veは波長λ=0.8
5μm1温度20℃の下で、Ve = 0.85 ml
nloecmであり、従来の磁界センサに使用されたZ
n Se (Ve = 0.15 minloecm)
に比して約3倍大きい。従って、従来の磁界センサと同
一感度を得ようとすれば、ファラデー回転素子6の長さ
lを約173に縮小することができる。例えば、磁界3
000eに対して感度を2多程度得ようとすれば、Zn
5eでは長さlが約5EI程度必要であるのに対し、C
dZnTeでは長さlが5寵X (0,lL5 / 0
.52 ) = 1.44 yaで済む。また、長さl
が同じならば、感度については約3倍大きくすることが
出来る0 また、温度特性については、第2図のグラフ(@界7を
一定にして温度を変化させた時のファラデー回転角θの
変化、すなわちフォトダイオード11の出力変化を表す
グラフ)に示すように、上記従来例と同様に温度を変化
させたとき出力変化幅が±0.5%であり、従来の磁界
センサ(同様の温度変化で出力変化幅が±2チ〜±4%
)に比して非常に小さく、このため精密磁界測定時にお
いてff111定誤差を可及的に少なくすることができ
る。
FIG. 1 is a plan view showing the configuration of a magnetic field cell according to the present invention. In the figure, reference numeral 1 is an LED (light emitting diode) as a light source, 2, 10 is an optical fiber, 13, 9 is a rod lens. Further, 4 is a polarizer, 5 is an optical rotator, 6 is a Faraday rotation element, and 8 is an analyzer, which are arranged along the optical path. In addition, 11 is a photodiode as a photodetector, and 12 is a case. The basic configuration of this magnetic field sensor is almost the same as that shown in Fig. 3, but the important point here is that the Faraday rotation element 6, GdZnTe (cadmium, zinc,
The point is that tellurium) was used. This CdZnTe (cadmium-zinc-tellurium) is a single crystal with P-type or N-type conductivity, which is made by adding Zn (zinc) to CdTe (cadmium-tellurium), and its Verdet constant ve is at the wavelength λ = 0.8.
5μm 1 under temperature 20℃, Ve = 0.85 ml
nloecm and used in conventional magnetic field sensors
n Se (Ve = 0.15 minloecm)
It is about 3 times larger than . Therefore, in order to obtain the same sensitivity as a conventional magnetic field sensor, the length l of the Faraday rotation element 6 can be reduced to about 173. For example, magnetic field 3
If you want to obtain a sensitivity of 2 or more for 000e, Zn
In 5e, the length l is required to be about 5EI, whereas in C
In dZnTe, the length l is 5 x (0, lL5 / 0
.. 52) = 1.44 ya. Also, the length l
If the values are the same, the sensitivity can be increased by about 3 times.0 Also, regarding the temperature characteristics, see the graph in Figure 2 (Change in the Faraday rotation angle θ when the temperature is changed while keeping the field 7 constant). , that is, a graph representing the output change of the photodiode 11), when the temperature is changed in the same way as in the conventional example, the output change width is ±0.5%. The output change range is ±2 to ±4%.
), and therefore the ff111 constant error can be minimized as much as possible during precision magnetic field measurement.

上記磁界センサによると、LEDlからの光は光ファイ
バー2を通ってロッドレンズ3で集光された後、偏光子
4に入射し、ここで無偏光の光(偏光方向が特定されず
、ランダムな偏光方向をもつ光)から直線偏光となり、
旋光子4を通ってファラデー回転素子6に入射する。直
線偏光は、このファラデー回転素子6を透過する間に磁
界7の影響により偏波面が角度θだげ回転され、そして
検光子8で光強度に変換され、ロッドレンズ9で集光さ
れた後、光ファイバー10により光検出器であるフォト
ダイオード11に導かれる。
According to the above magnetic field sensor, the light from the LED 1 passes through the optical fiber 2 and is focused by the rod lens 3, and then enters the polarizer 4, where the light is unpolarized (the polarization direction is not specified and is randomly polarized). (directed light) becomes linearly polarized light,
The light passes through the optical rotator 4 and enters the Faraday rotation element 6 . While the linearly polarized light passes through the Faraday rotation element 6, the plane of polarization is rotated by an angle θ due to the influence of the magnetic field 7, and after being converted into light intensity by the analyzer 8 and condensed by the rod lens 9, The light is guided by an optical fiber 10 to a photodiode 11 which is a photodetector.

なお、偏光子4とファラデー回転素子6との間に旋光子
5を設置したのは、検光子8を偏光子4に対し光軸に関
して45°ずらせて、回転角θに比例する光強度変化を
受けた光が検光子8から出射するようにするため、すな
わち磁界に比例した出力が得られるようにするためであ
る。ここで、旋光子5は45°の旋光能を持つ長さに設
定されているQ 磁界センサの構成については、上記のように偏光子4、
旋光子5、ファラデー回転素子6、検光子8を光進路に
沿って配置するタイプ以外のもの、例えば反射型タイプ
のものにも適用することが出来る。要はファラデー回転
素子を使用した磁界センサに広く適用することが出来る
The reason for installing the optical rotator 5 between the polarizer 4 and the Faraday rotation element 6 is to shift the analyzer 8 by 45 degrees with respect to the optical axis with respect to the polarizer 4, so that the change in light intensity proportional to the rotation angle θ is detected. This is to ensure that the received light is emitted from the analyzer 8, that is, to obtain an output proportional to the magnetic field. Here, the length of the optical rotator 5 is set to have an optical rotation power of 45°. Regarding the configuration of the magnetic field sensor, as described above, the polarizer 4,
It is also possible to apply to a type other than the type in which the optical rotator 5, the Faraday rotation element 6, and the analyzer 8 are arranged along the optical path, for example, a reflective type. In short, it can be widely applied to magnetic field sensors using Faraday rotation elements.

(へ)発明の効果 以上のように本発明はファラデー回転素子として、Cd
ZnTe (カドミウム・亜鉛・テルル)を用いている
ので、小型化することが出来ると共に、温度による測定
誤差?可及的に少なくすることが出来る。
(f) Effects of the invention As described above, the present invention can be used as a Faraday rotation element.
Since it uses ZnTe (cadmium, zinc, tellurium), it can be made smaller and there is no measurement error due to temperature. It can be reduced as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を示すもので、第
1図は本発明による磁界センサの構成概念を示す平面図
、第2図はその温度特性を示すグラフであり、また第3
図乃至第5図は従来技術を示すもので、第3図は磁界セ
ンナの構成を示す概念図、第4図は変調度を説明する説
明図、第5図は温度特性を示すグラフである。 4・・・・偏光子、   5・・・・旋光子、6.60
・・・・ファラデー回転素子、8・・・・検光子。 特許出願人 住友電気工業株式会社 (外4名) 第3図 第4図 時間 −− N 〜  −0−NN   −ON
1 and 2 show one embodiment of the present invention, FIG. 1 is a plan view showing the structural concept of the magnetic field sensor according to the invention, and FIG. 2 is a graph showing its temperature characteristics. Third
5 to 5 show the prior art. FIG. 3 is a conceptual diagram showing the configuration of a magnetic field sensor, FIG. 4 is an explanatory diagram illustrating the degree of modulation, and FIG. 5 is a graph showing temperature characteristics. 4... Polarizer, 5... Optical rotator, 6.60
...Faraday rotating element, 8...analyzer. Patent applicant Sumitomo Electric Industries, Ltd. (4 others) Figure 3 Figure 4 Time -- N ~ -0-NN -ON

Claims (2)

【特許請求の範囲】[Claims] (1)ファラデー効果を利用して磁界を測定する磁界セ
ンサにおいて、ファラデー回転素子としてCdZnTe
(カドミウム・亜鉛・テルル)を用いたことを特徴とす
る磁界センサ。
(1) In a magnetic field sensor that measures magnetic fields using the Faraday effect, CdZnTe is used as a Faraday rotation element.
A magnetic field sensor characterized by using (cadmium, zinc, tellurium).
(2)光進路に沿って配置された偏光子、旋光子、ファ
ラデー回転素子及び検光子を含む磁界センサにおいて、
前記ファラデー回転素子に、CdZnTe(カドミウム
・亜鉛・テルル)を用いたことを特徴とする磁界センサ
(2) In a magnetic field sensor including a polarizer, a polarizer, a Faraday rotation element, and an analyzer arranged along the optical path,
A magnetic field sensor characterized in that CdZnTe (cadmium, zinc, tellurium) is used for the Faraday rotation element.
JP28586187A 1987-11-12 1987-11-12 Magnetic field sensor Pending JPH01127984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28586187A JPH01127984A (en) 1987-11-12 1987-11-12 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28586187A JPH01127984A (en) 1987-11-12 1987-11-12 Magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH01127984A true JPH01127984A (en) 1989-05-19

Family

ID=17697000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28586187A Pending JPH01127984A (en) 1987-11-12 1987-11-12 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH01127984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790299A (en) * 1995-12-15 1998-08-04 Optics For Research Optical isolator employing a cadmium-zinc-tellurium composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790299A (en) * 1995-12-15 1998-08-04 Optics For Research Optical isolator employing a cadmium-zinc-tellurium composition

Similar Documents

Publication Publication Date Title
JPS58129372A (en) Magnetic field-light converter
JPS5897669A (en) Magnetic field-light converter
JPH05249207A (en) Photosensor
JPH01127984A (en) Magnetic field sensor
JPH03154875A (en) Potential sensor and potential measuring method using electrooptic crystal
JPS59107273A (en) Photocurrent and magnetic field sensor
JP3148579B2 (en) Optical fiber current / magnetic field sensor
JP3130582B2 (en) Magneto-optical sensor
JPS60205379A (en) Light-applied magnetic field sensor
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JPH09189752A (en) Fiber-optic current and magnetic field sensor
JP2592942B2 (en) Faraday effect material and magnetic field sensor
JP2585397B2 (en) Magnetic field sensor
JP3159823B2 (en) Optical electric field measuring device
JP2585412B2 (en) Faraday effect material and magnetic field sensor
JPS5935156A (en) Optical current transformer
SU1221506A1 (en) Arrangement for measuring concentration of substance bonded with basic material
JPS5811867A (en) Voltage and temperature detector using light
JP2585411B2 (en) Faraday effect material and magnetic field sensor
JPH01237477A (en) Optical fiber sensor
JP2645450B2 (en) Faraday effect material and magnetic field sensor
JP2585396B2 (en) Faraday effect material
JP2003279601A (en) Faraday rotator, and polarization control method and current measurement method using the same
JPS61243380A (en) Photocurrent/magnetic field sensor
Pang et al. Effect of varying the input polarization on an external cavity controlled ensemble of five diode lasers