JPH04315074A - Optical magnetic field sensor - Google Patents

Optical magnetic field sensor

Info

Publication number
JPH04315074A
JPH04315074A JP3080145A JP8014591A JPH04315074A JP H04315074 A JPH04315074 A JP H04315074A JP 3080145 A JP3080145 A JP 3080145A JP 8014591 A JP8014591 A JP 8014591A JP H04315074 A JPH04315074 A JP H04315074A
Authority
JP
Japan
Prior art keywords
magnetic field
light
magneto
wavelength
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3080145A
Other languages
Japanese (ja)
Inventor
Hidekazu Nishimura
英一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3080145A priority Critical patent/JPH04315074A/en
Publication of JPH04315074A publication Critical patent/JPH04315074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To obtain the title sensor capable of measuring the intensity of a magnetic field over a range from a low magnetic field to a high magnetic field with high accuracy. CONSTITUTION:Two linearly polarized lights having different wavelengths are guided to magnetic optical elements 22 different in Verdet constant according to a wavelength along the direction of a magnetic field to be measured. The planes of polarization of the lights passing through the elements 22 are rotated corresponding to the wavelengths of said lights by wavelength magnetic optical effect. Two lights emitted from the magnetic optical elements 22 are guided to an analyzer 23 permitting the linearly polarized lights to transmit in a specific direction and the intensities of the lights transmitted through said analyzer are respectively detected by photodetectors 28a, 28b. On the basis of the detected values, the signal based on the light having a wavelength large in Verdet constant is used in a low magnetic field intensity range and the signal based on the light low in Verdet constant is used in a high magnetic field intensity range.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁気光学素子を用いた
光磁界センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field sensor using a magneto-optical element.

【0002】0002

【従来の技術及び発明が解決しようとする課題】従来、
磁気光学素子の有するファラデ−効果を利用した磁界セ
ンサが開発されている。ファラデ−効果は磁気光学素子
中を光が通過する際、その進行方向と同一方向に外部磁
界が加わると、偏光面が回転する現象をいう。
[Prior art and problems to be solved by the invention] Conventionally,
Magnetic field sensors that utilize the Faraday effect of magneto-optical elements have been developed. The Faraday effect is a phenomenon in which when light passes through a magneto-optical element, when an external magnetic field is applied in the same direction as the direction in which the light travels, the plane of polarization rotates.

【0003】このような磁界センサの原理を図4に示す
。図4に示すように、発光部1からの入射光2は、偏光
子3により直線偏光4となり、磁気光学素子5に導かれ
る。磁気光学素子5には光の進行方向に外部磁界Hが印
加されており、この磁界Hによってθだけ偏光面が回転
する。そして、検光子6により直線偏光4と45°の相
対角度差の偏光方向を有する出射光7が受光部8に導か
れる。この受光部8において検出された光強度を例えば
電流値に変換し、その値に基づいて磁界Hの大きさを求
めることができる。
The principle of such a magnetic field sensor is shown in FIG. As shown in FIG. 4, incident light 2 from the light emitting section 1 becomes linearly polarized light 4 by the polarizer 3, and is guided to the magneto-optical element 5. An external magnetic field H is applied to the magneto-optical element 5 in the direction in which the light travels, and the plane of polarization is rotated by θ due to this magnetic field H. Then, the output light 7 having a polarization direction with a relative angle difference of 45 degrees from the linearly polarized light 4 is guided to the light receiving section 8 by the analyzer 6 . The light intensity detected by the light receiving section 8 is converted into, for example, a current value, and the magnitude of the magnetic field H can be determined based on that value.

【0004】従来より実際に使用されている磁界センサ
の概略構成を図5に示す。発光素子17からの光は、光
ファイバ16aによってレンズ15aに導かれ、レンズ
15aを通過して偏光子11に入射される。偏光子11
を通過した直線偏光は磁気光学素子12に導かれ、そこ
で被測定磁界Hに応じて光の偏光面が回転し、さらに検
光子13に導かれる。検光子13を通過した光は反射ミ
ラ−14、レンズ15b、及び光ファイバ16bを介し
て受光素子18に導かれる。取り付けの都合上、図4に
示すように、入射ファイバ16aと出射ファイバ16b
とを同一方向に引き出すのが一般的である。
FIG. 5 shows a schematic configuration of a magnetic field sensor that has been actually used in the past. Light from the light emitting element 17 is guided to the lens 15a by the optical fiber 16a, passes through the lens 15a, and enters the polarizer 11. Polarizer 11
The linearly polarized light that has passed is guided to the magneto-optical element 12, where the plane of polarization of the light is rotated according to the magnetic field H to be measured, and further guided to the analyzer 13. The light passing through the analyzer 13 is guided to the light receiving element 18 via the reflecting mirror 14, the lens 15b, and the optical fiber 16b. For convenience of installation, as shown in FIG. 4, the input fiber 16a and the output fiber 16b are
It is common to pull them out in the same direction.

【0005】ファラデ−効果による偏光面の回転は、回
転角をθ、印加する磁界をH、磁気光学素子のベルデ定
数をV、素子の中の光が通過する部分の長さをlとする
と、θは以下の(1)式で表される。
The rotation of the plane of polarization due to the Faraday effect is expressed as follows: where the rotation angle is θ, the applied magnetic field is H, the Verdet constant of the magneto-optical element is V, and the length of the part of the element through which light passes is l. θ is expressed by the following equation (1).

【0006】θ=V・H・l………(1)P0 を磁界
0の時の光強度、Pを検光子通過後の光強度とすると、
Pは以下の(2)式で表される。
θ=V・H・l……(1) If P0 is the light intensity when the magnetic field is 0, and P is the light intensity after passing through the analyzer, then
P is expressed by the following formula (2).

【0007】P=P0 (1+sin2θ)………(2
)これらθとPとの関係を図6に示す。図6から明らか
なように、θが非常に小さい時には(2)式は以下の(
3)式で近似することができ、検出される光強度はθに
比例し、この光強度に基づいて磁界の大きさを求めるこ
とができる。
P=P0 (1+sin2θ)……(2
) The relationship between these θ and P is shown in FIG. As is clear from Figure 6, when θ is very small, equation (2) becomes the following (
It can be approximated by equation 3), the detected light intensity is proportional to θ, and the magnitude of the magnetic field can be determined based on this light intensity.

【0008】P=P0 (1+2θ)………(3)従っ
て、回転角がθ《45°と極めて小さい場合には、直線
性が極めて良好である。
P=P0 (1+2θ) (3) Therefore, when the rotation angle is extremely small such as θ<45°, the linearity is extremely good.

【0009】しかし、回転角が大きくなるにつれて、以
下の(4)式で表される非直線性誤差Eが大きくなる。
However, as the rotation angle increases, the nonlinearity error E expressed by the following equation (4) increases.

【0010】 E=(2θ−Sin2θ)/2θ………(4)例えば、
非直線性誤差が1%以内であるのはθ≦7°の時である
E=(2θ−Sin2θ)/2θ (4) For example,
The nonlinearity error is within 1% when θ≦7°.

【0011】従って、従来の光磁界センサにおいて低磁
界(低電流)を高精度で測定するためにはベルデ定数の
大きい磁気光学素子を使用するため高磁界(大電流)域
で非直線誤差が大きくなり、また逆に高磁界を高精度で
測定するためにはベルデ定数の小さい磁気光学素子を使
用するため低磁界(低電流)域では光強度変化が非常に
小さくS/N比が悪くなり、測定誤差が大きくなる。
[0011] Therefore, in order to measure low magnetic fields (low currents) with high accuracy in conventional optical magnetic field sensors, a magneto-optical element with a large Verdet constant is used, which results in large nonlinear errors in the high magnetic field (large current) region. Conversely, in order to measure high magnetic fields with high precision, a magneto-optical element with a small Verdet constant is used, so in the low magnetic field (low current) region, the change in light intensity is very small, resulting in a poor S/N ratio. Measurement error increases.

【0012】このため、低磁界から高磁界まで高精度で
測定しようとする場合には、ベルデ定数が大きな磁気光
学素子を備えた光磁界センサとベルデ定数が小さい磁気
光学素子を備えた光磁界センサとの2組必要であり、取
付けスペ−スが増加すると共に、コスト高になるという
問題があった。
Therefore, when measuring from low magnetic fields to high magnetic fields with high precision, a magneto-optical field sensor equipped with a magneto-optical element having a large Verdet constant and a magneto-optical field sensor equipped with a magneto-optical element having a small Verdet constant are used. This requires two sets, which increases the installation space and increases costs.

【0013】この発明はかかる事情に鑑みてなされたも
のであって、1台で低磁界から高磁界まで高精度で磁界
強度を測定することができる、広いダイナミックレンジ
を有する光磁気センサを提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a magneto-optical sensor having a wide dynamic range and capable of measuring magnetic field strength with high precision from low magnetic fields to high magnetic fields with a single device. The purpose is to

【0014】[0014]

【課題を解決するための手段】この目的を達成するため
に、本発明は、直線偏光された光が測定すべき磁界の方
向に沿って導かれ、その中を通過する偏光の偏光面を前
記磁界による磁気光学効果により回転させる磁気光学素
子と、この磁気光学素子から出射された特定方向の直線
偏光を透過させる検光子と、検光子を透過した光の強度
を検出する検出手段とを有し、この検出値に基づいて前
記磁界の強度を測定する光磁界センサであって、前記磁
気光学素子は、通過する光の波長によりベルデ定数が異
なる材料で形成されており、この磁気光学素子に対し、
測定磁界強度に応じて少なくとも2種類の波長の光が導
かれることを特徴とする光磁界センサを提供する。
To achieve this object, the invention provides that linearly polarized light is guided along the direction of the magnetic field to be measured, and that the plane of polarization of the polarized light passing through it is It has a magneto-optical element that is rotated by the magneto-optic effect of a magnetic field, an analyzer that transmits linearly polarized light in a specific direction emitted from the magneto-optical element, and a detection means that detects the intensity of the light that has passed through the analyzer. , an optical magnetic field sensor that measures the strength of the magnetic field based on this detected value, wherein the magneto-optical element is formed of a material with a Verdet constant that differs depending on the wavelength of the light passing through, and the magneto-optical element has a ,
An optical magnetic field sensor is provided, characterized in that light of at least two different wavelengths is guided depending on the strength of a measured magnetic field.

【0015】[0015]

【作用】この発明においては、照射する波長によってベ
ルデ定数が異なる磁気光学素子を用い、測定する磁界強
度に応じて異なる波長の光をこの磁気光学素子に導くの
で、測定しようとする磁界強度に応じて適切に測定を行
うことができる。従って、低磁界から高磁界まで高精度
で磁界強度を測定することができる。
[Operation] In this invention, a magneto-optical element whose Verdet constant varies depending on the wavelength of irradiation is used, and light of different wavelengths is guided to the magneto-optical element according to the magnetic field strength to be measured. measurements can be carried out appropriately. Therefore, magnetic field strength can be measured with high precision from low magnetic fields to high magnetic fields.

【0016】[0016]

【実施例】以下、この発明の実施例について具体的に説
明する。
[Examples] Examples of the present invention will be described in detail below.

【0017】図1はこの発明の一実施例に係る光磁界セ
ンサを示す概略構成図である。発光素子27a及び27
bは、夫々異なる波長の光(λA ,λB )を発光し
、これらの光は波長合成器30によって合成される。合
成された光は光ファイバ−26によってレンズ25に導
かれ、平行光にされるか又は集光されて波長分波器29
に導かれ、再びλA ,λB の光に分離される。分離
された光の一方は反射ミラ−24で反射して偏光子21
に導かれ、他方は直接偏光子21に導かれる。これら2
つの波長の光は偏光子21を通過して直線偏光となり、
磁気光学素子22に導かれる。磁気光学素子22は、波
長によりベルデ定数の異なる材料で形成されており、こ
の素子を通過する光の方向は、測定しようとする磁界H
の方向と一致している。
FIG. 1 is a schematic diagram showing a magneto-optical field sensor according to an embodiment of the present invention. Light emitting elements 27a and 27
b emits light of different wavelengths (λA, λB), and these lights are combined by the wavelength combiner 30. The combined light is guided to a lens 25 by an optical fiber 26, and is made into parallel light or condensed and sent to a wavelength demultiplexer 29.
The light is then separated into λA and λB lights again. One of the separated lights is reflected by a reflection mirror 24 and sent to a polarizer 21.
and the other directly to the polarizer 21. These 2
Light with two wavelengths passes through the polarizer 21 and becomes linearly polarized light,
It is guided to the magneto-optical element 22. The magneto-optical element 22 is made of a material with a Verdet constant that differs depending on the wavelength, and the direction of light passing through this element depends on the magnetic field H to be measured.
is consistent with the direction of

【0018】磁気光学素子22に波長λA 及び波長λ
B の光が入射された場合のファラデ−回転角θλA 
、θλB は、各波長におけるベルデ定数をVλA 、
VλB 、光路長をlとすると、夫々以下の(5),(
6)で表すことができる。
The magneto-optical element 22 has a wavelength λA and a wavelength λ
Faraday rotation angle θλA when light of B is incident
, θλB is the Verdet constant at each wavelength VλA ,
Let VλB and the optical path length be l, the following (5) and (
6).

【0019】θλA =VλA ・H・l………(5)
θλB =VλB ・H・l………(6)従って、結果
として波長λA の光と波長λB の光とでファラデ−
回転角が変化することとなる。例えば、磁気光学素子2
2が図2に示すような波長依存性を有することとなる。 この場合、例えばλA が850nmでλB が155
0nmであれば、θλA がθλB よりも十分に大き
くなる。
[0019]θλA =VλA・H・l……(5)
θλB = VλB ・H・l (6) Therefore, as a result, the light of wavelength λA and the light of wavelength λB have a Faraday
The rotation angle will change. For example, the magneto-optical element 2
2 has wavelength dependence as shown in FIG. In this case, for example, λA is 850 nm and λB is 155 nm.
If it is 0 nm, θλA will be sufficiently larger than θλB.

【0020】このように偏光面が回転した2つの光は、
特定の方向に直線偏光した光(例えば、各磁気光学素子
に入射された直交する2つの光の偏光方向に対し45°
の角度を有する光)を透過させる検光子23に導かれる
[0020] The two lights whose polarization planes have been rotated in this way are
Light linearly polarized in a specific direction (for example, 45° to the polarization direction of two orthogonal lights incident on each magneto-optical element)
is guided to an analyzer 23 that transmits light (having an angle of .

【0021】この検光子23を透過した光の強度PA 
、PB は、夫々以下の式(7),(8)で表わすこと
ができる。
The intensity PA of the light transmitted through this analyzer 23
, PB can be expressed by the following equations (7) and (8), respectively.

【0022】 PA =P0A(1+sin2θλA )………(7)
PB =P0B(1+sin2θλB )………(8)
検光子23を通過した光の一方は反射ミラ−34で反射
した後に波長合波器31に導かれ、また他方の光は直接
波長合波器31に導かれ、再び1つの光ビ−ムとされる
。この光はレンズ35及び光ファイバ36を介して波長
分波器39に導かれ、ここで波長λA 及び波長λB 
の光に分離される。そして、波長λA の光は受光素子
28aに、波長λB の光は受光素子28bに導かれる
。これら受光素子28a,28bは、例えば光電変換素
子からなり、検出した光強度を電流信号として出力し、
その値に基づいて磁界強度を求める。
PA=P0A(1+sin2θλA)……(7)
PB=P0B(1+sin2θλB)……(8)
One of the lights that passed through the analyzer 23 is reflected by a reflection mirror 34 and then guided to the wavelength multiplexer 31, and the other light is directly guided to the wavelength multiplexer 31 and is again combined into one light beam. be done. This light is guided to a wavelength demultiplexer 39 via a lens 35 and an optical fiber 36, where wavelength λA and wavelength λB
The light is separated into two. Then, the light with wavelength λA is guided to the light receiving element 28a, and the light with wavelength λB is guided to the light receiving element 28b. These light receiving elements 28a and 28b are composed of, for example, photoelectric conversion elements, and output the detected light intensity as a current signal.
Calculate the magnetic field strength based on that value.

【0023】この場合に、磁界強度と検光子を通過した
光の強度との関係は図3に示すようになる。
In this case, the relationship between the magnetic field strength and the intensity of light passing through the analyzer is as shown in FIG.

【0024】磁界強度の測定を高精度で行うためには、
非直線性誤差を少なくする必要があるが、そのためには
、検出される光強度が、夫々P0A(1+2θλA )
、P0B(1+2θB )で近似することができる範囲
、すなわち直線性が良好な範囲を用いる必要がある。ま
た、低磁界(低電流)を高精度で測定するためには光強
度変化が大きくする必要がある。従って、図2に示すよ
うに、低磁界(低電流)領域aを測定する場合には波長
λA の光を用い、高磁界(大電流)領域bを測定する
場合には波長λB の光を用いる。すなわち、領域aで
は受光素子28aからの信号を使用し、領域bでは受光
素子28bからの信号を使用する。
[0024] In order to measure the magnetic field strength with high precision,
It is necessary to reduce the nonlinearity error, but for this purpose, the detected light intensity must be P0A(1+2θλA)
, P0B(1+2θB), that is, a range with good linearity needs to be used. Furthermore, in order to measure a low magnetic field (low current) with high precision, it is necessary to increase the change in light intensity. Therefore, as shown in Figure 2, when measuring low magnetic field (low current) region a, light with wavelength λA is used, and when measuring high magnetic field (large current) region b, light with wavelength λB is used. . That is, in region a, the signal from light receiving element 28a is used, and in region b, the signal from light receiving element 28b is used.

【0025】このように、光の波長によってベルデ定数
の異なる磁気光学素子を用い、この磁気光学素子を通過
した波長が異なる光を、夫々異なる検出素子により検出
するので、測定しようとする磁界強度に応じて適切に測
定を行うことができる。
In this way, a magneto-optical element with a Verdet constant that differs depending on the wavelength of light is used, and the light having passed through this magneto-optical element with a different wavelength is detected by a different detection element, so that the intensity of the magnetic field to be measured can be adjusted. Appropriate measurements can be taken accordingly.

【0026】なお、測定する磁界強度の範囲に応じて、
適当な波長を選定することができる。また、使用する磁
気光学素子はベルデ定数に波長依存性があればよいが、
このような材料としては、例えば希土類鉄ガ−ネット結
晶(YIG単結晶など)がある。
[0026] Depending on the range of magnetic field strength to be measured,
An appropriate wavelength can be selected. In addition, it is sufficient that the magneto-optical element used has wavelength dependence in the Verdet constant.
Examples of such materials include rare earth iron garnet crystals (YIG single crystal, etc.).

【0027】なお、この発明のセンサは、ポッケルス効
果を応用した光電圧センサに適用することも可能である
Note that the sensor of the present invention can also be applied to a photovoltage sensor to which the Pockels effect is applied.

【0028】[0028]

【発明の効果】この発明によれば、測定しようとする磁
界強度に応じて適切に測定を行うことができ、低磁界か
ら高磁界まで高精度で磁界強度を測定することができる
。従って、低磁界から高磁界まで測定するのに1台のセ
ンサでよく、取り付けスペ−スを節約できるとともに、
コストダウンを図ることができる。
According to the present invention, measurements can be made appropriately depending on the magnetic field strength to be measured, and magnetic field strengths can be measured with high precision from low magnetic fields to high magnetic fields. Therefore, only one sensor is required to measure from low to high magnetic fields, saving installation space and
Cost reduction can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施態様に係る光磁界センサの概略
構成図。
FIG. 1 is a schematic configuration diagram of a magneto-optical field sensor according to an embodiment of the present invention.

【図2】図1のセンサに用いた磁気光学素子における透
過光の波長とファラデ−回転角との関係を示す図。
FIG. 2 is a diagram showing the relationship between the wavelength of transmitted light and the Faraday rotation angle in the magneto-optical element used in the sensor of FIG. 1;

【図3】図1に示すセンサで求められる磁界強度と検出
された光強度との関係を示すグラフ図。
FIG. 3 is a graph diagram showing the relationship between the magnetic field strength determined by the sensor shown in FIG. 1 and the detected light intensity.

【図4】従来の光磁界センサの原理を説明するための図
FIG. 4 is a diagram for explaining the principle of a conventional optical magnetic field sensor.

【図5】従来の光磁界センサの概略構成図。FIG. 5 is a schematic configuration diagram of a conventional optical magnetic field sensor.

【図6】従来のセンサにおけるファラデ−回転角と検出
された光強度との関係を示すグラフ図。
FIG. 6 is a graph diagram showing the relationship between Faraday rotation angle and detected light intensity in a conventional sensor.

【符号の説明】 21;偏光子、22;磁気光学素子、23;検光子、2
4,34;反射ミラ−、25,35;レンズ、26,3
6;光ファイバ、27a,27b;発光素子、28a,
28b;受光素子、30,31;波長合波器、29,3
9;波長分波器。
[Explanation of symbols] 21; polarizer, 22; magneto-optical element, 23; analyzer, 2
4, 34; Reflection mirror, 25, 35; Lens, 26, 3
6; Optical fiber, 27a, 27b; Light emitting element, 28a,
28b; Light receiving element, 30, 31; Wavelength multiplexer, 29, 3
9; Wavelength demultiplexer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  直線偏光された光が測定すべき磁界の
方向に沿って導かれ、その中を通過する偏光の偏光面を
前記磁界による磁気光学効果により回転させる磁気光学
素子と、この磁気光学素子から出射された特定方向の直
線偏光を透過させる検光子と、検光子を透過した光の強
度を検出する検出手段とを有し、この検出値に基づいて
前記磁界の強度を測定する光磁界センサであって、前記
磁気光学素子は、通過する光の波長によりベルデ定数が
異なる材料で形成されており、この磁気光学素子に対し
、測定磁界強度に応じて少なくとも2種類の波長の光が
導かれることを特徴とする光磁界センサ。
1. A magneto-optical element in which linearly polarized light is guided along the direction of a magnetic field to be measured, and the plane of polarization of the polarized light passing therethrough is rotated by the magneto-optic effect caused by the magnetic field; An optical magnetic field that has an analyzer that transmits linearly polarized light in a specific direction emitted from the element and a detection means that detects the intensity of the light that has passed through the analyzer, and that measures the intensity of the magnetic field based on the detected value. In the sensor, the magneto-optical element is formed of a material having a Verdet constant that differs depending on the wavelength of light passing therethrough, and light of at least two different wavelengths is guided to the magneto-optical element according to the strength of the magnetic field to be measured. An optical magnetic field sensor characterized by
JP3080145A 1991-04-12 1991-04-12 Optical magnetic field sensor Pending JPH04315074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080145A JPH04315074A (en) 1991-04-12 1991-04-12 Optical magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080145A JPH04315074A (en) 1991-04-12 1991-04-12 Optical magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH04315074A true JPH04315074A (en) 1992-11-06

Family

ID=13710108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080145A Pending JPH04315074A (en) 1991-04-12 1991-04-12 Optical magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH04315074A (en)

Similar Documents

Publication Publication Date Title
US6122415A (en) In-line electro-optic voltage sensor
US4560932A (en) Magneto-optical converter utilizing Faraday effect
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel&#39;s and Faraday effects
JP3144928B2 (en) Optical sensor
JPH04315074A (en) Optical magnetic field sensor
JP3130582B2 (en) Magneto-optical sensor
JPS59107273A (en) Photocurrent and magnetic field sensor
JPH04315073A (en) Optical magnetic field sensor
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JP2509692B2 (en) Optical measuring device
JPS58146858A (en) Optical current and magnetic field measuring device
JP3148614B2 (en) Optical fiber current / magnetic field sensor
JPS63196865A (en) Optical current measuring apparatus
JP2580443B2 (en) Optical voltage sensor
SU789686A1 (en) Density meter
SU757990A1 (en) Optronic current meter
JPH06337275A (en) Photocurrent sensor
JPS5935156A (en) Optical current transformer
JPS5811867A (en) Voltage and temperature detector using light
Abe et al. Signal-to-Noise Ratio in Polarization Modulation Method for Magneto-Optical Measurement
Grigor'ev Magnetooptic rotator in the optical circuit of a polarimetric transducer
JPS62182627A (en) Method for measuring photoelasticity constant
JPS60375A (en) Measuring device of magnetic field
Ning et al. Recent developments in the field of bulk-optic current sensors
JPS59218971A (en) Measuring device of magnetic field