JPS59218971A - Measuring device of magnetic field - Google Patents

Measuring device of magnetic field

Info

Publication number
JPS59218971A
JPS59218971A JP9432283A JP9432283A JPS59218971A JP S59218971 A JPS59218971 A JP S59218971A JP 9432283 A JP9432283 A JP 9432283A JP 9432283 A JP9432283 A JP 9432283A JP S59218971 A JPS59218971 A JP S59218971A
Authority
JP
Japan
Prior art keywords
magneto
magnetic field
light
optical
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9432283A
Other languages
Japanese (ja)
Inventor
Osamu Kamata
修 鎌田
Kazuo Toda
戸田 和郎
Sumiko Takiuchi
滝内 澄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9432283A priority Critical patent/JPS59218971A/en
Publication of JPS59218971A publication Critical patent/JPS59218971A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0322Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To improve the sensitivity of magnetic field intensity and to measure the magnetic field accutately by arranging a ferromagnetic material magneto- optics conversion part having light reflectors on both the ends between a polarizer and an analyser and arranging a magneto-optics conversion part in the magnetic field. CONSTITUTION:The ferromagnetic material magneto-optics element 1 having light reflectors 4 on both the ends is arranged between the polarizer 2 and the analyser 3 of which transmitted polarized-light directions are different each other. A photodetecting means 10 detecting an output obtained after light from a light source 9 has been transmitted through the magneto-optics element 1 is provided. If the magneto-optics element 1 is arranged in the magnetic field, the magnetic field intensity is detected by the photodetecting means 10. When the thickness of the magneto-optics element 1 is reduced, the linear property and reproducibility of Farady effect are improved, but Radady's turning angle is reduced in proportion to the thickness and the sensitivity is reduced. Consequently, the effect efficiently increasing the thickness of the element is obtained by reflecting and reicprocating light in the magneto-optics element many times, so that high sensitivity, high linear property and high reproducibility are obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、−気光学素子の磁界によるファラデー効果を
観測して、その(み異強度を測定する磁界測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic field measuring device for observing the Faraday effect due to the magnetic field of an optical element and measuring its (differential intensity).

従来例の構成とその問題点 最近、磁界を測定する従来から周知のホール素子等に代
って、磁気光学効果の一つであるファラデー効果を利用
する方法が提案されている。光を媒体とするために、絶
縁性が良好である、電磁誘導ノイズを受けない等々の特
徴を持ち発送電設備内の高圧大市流測定、溶接機の一流
測定への応用かある。
Conventional Structure and Problems Recently, a method has been proposed that utilizes the Faraday effect, which is one of the magneto-optical effects, in place of the conventionally well-known Hall element and the like for measuring magnetic fields. Since it uses light as a medium, it has characteristics such as good insulation and is not susceptible to electromagnetic induction noise, and can be applied to high-voltage large-scale commercial measurements in power transmission equipment and first-class measurements of welding machines.

第1図(lてファラデー効果を用いた磁界の測定方法の
原理図を示す。第1図にファラデー効果を用いた磁界の
測定方法の原理図を示す。第1図において磁界H中に磁
気光学素子1か配置されている。
Figure 1 shows a principle diagram of a magnetic field measurement method using the Faraday effect. Figure 1 shows a principle diagram of a magnetic field measurement method using the Faraday effect. Element 1 is arranged.

この磁気光学素子1−に偏光子2で直線偏光(矢印で示
されている)にされた光を通過させる。ファラデー効果
により、4m光面ば磁界強度 に比例して回転を受ける
。その回転角はθで示されている。
Light that has been linearly polarized by a polarizer 2 (indicated by an arrow) is passed through this magneto-optical element 1-. Due to the Faraday effect, the 4m optical surface undergoes rotation in proportion to the magnetic field strength. Its rotation angle is indicated by θ.

回転を受けた偏光は偏光f2と透過偏光方向を異らしめ
た検光子3を通過し、回1117に角θの大きさが光量
変化に変換される。例えば、偏光子2と検光子3の透過
偏光方向を45°異らしめた場合、検光子3を透過した
のちの光量変化は、次式で示される。
The rotated polarized light passes through an analyzer 3 whose transmission polarization direction is different from that of the polarized light f2, and at step 1117, the magnitude of the angle θ is converted into a change in the amount of light. For example, when the transmitted polarization directions of the polarizer 2 and the analyzer 3 are different by 45 degrees, the change in the amount of light after passing through the analyzer 3 is expressed by the following equation.

△■= にsin 2θ       ・・・・・・・
・・(1)ここで、θ−VHg、△工は光量変化量、に
は比例定数、θはファラデー回転角〔度〕、■はヴエル
デ定数と呼ばれるもので、単位は〔ン’tyn−○e〕
であり磁気光学素子の感度を表わすものである。
△■= sin 2θ ・・・・・・・・・
...(1) Here, θ-VHg, △ is the amount of change in light intensity, is a proportionality constant, θ is the Faraday rotation angle [degrees], and ■ is the Weerde constant, and the unit is [n'tyn-○]. e〕
, which represents the sensitivity of the magneto-optical element.

従来、磁気光学素子としては、鉛ガラス、常磁性ガラス
が用いられる事が多いが、l]’J記ヴエルデ定数は小
さい。Y3Fe5O12に代表される強磁性体のファラ
デー効果は大きい事が良く知られており、高感度である
。しかしながら、Y3Fe5O12は強磁性体であり、
磁化のそろった分域(磁区)が存在している。その様な
物質のファラデー効果を第2図で説明する。
Conventionally, lead glass and paramagnetic glass are often used as magneto-optical elements, but the Werde constant is small. It is well known that ferromagnetic materials, represented by Y3Fe5O12, have a large Faraday effect and are highly sensitive. However, Y3Fe5O12 is a ferromagnetic material,
There are domains (magnetic domains) with uniform magnetization. The Faraday effect of such a substance is explained in FIG.

第2図は、ストライプ状磁区りを有している強1社性体
磁気光学素子の場合であり、となり合った磁区の磁化S
は反対方向を向いている。第2図(a)の様に磁界Hが
ない場合は、磁化は打ち消し合いファラデー効果は発生
しない。第2図(b)の様に外部磁界Hが印加されると
、磁化は、磁界方向にそろおうとする。したがって磁界
方向の磁化が増加し、その差がファラデー効果を発生さ
せる。しかるに、令弟2図に示す様に、入射された光の
ビームLの径φの中に含まれる磁区(rll d )の
数が少ないと、7アラギー効果の直線性、再現性が低下
する。第3図にその測定例を示す。これは、偏光子と検
光子を互いに45°傾けて配置した場合のファラデー効
果を、光量変化△Iで測定したものである。磁気光学素
子はYs F e5012  であり、厚み4 mmの
ものである。ここでは直流磁界を印加した場合のもので
あり、磁界強度に光量変化は比例しておらず、又、磁界
強度を上げていった場合と、下げていった場合の光量変
化は一致していない。
Figure 2 shows the case of a strongly monolithic magneto-optical element with striped magnetic domains, and the magnetization S of adjacent magnetic domains is
is facing the opposite direction. When there is no magnetic field H as shown in FIG. 2(a), the magnetization cancels each other out and the Faraday effect does not occur. When an external magnetic field H is applied as shown in FIG. 2(b), the magnetization tends to align in the direction of the magnetic field. Therefore, the magnetization in the direction of the magnetic field increases, and the difference causes the Faraday effect. However, as shown in Figure 2, when the number of magnetic domains (rll d ) included in the diameter φ of the incident light beam L is small, the linearity and reproducibility of the 7-Araghi effect deteriorate. Figure 3 shows an example of the measurement. This is a measurement of the Faraday effect when the polarizer and analyzer are arranged at an angle of 45 degrees with respect to the change in light amount ΔI. The magneto-optical element is made of Ys Fe5012 and has a thickness of 4 mm. Here, the case is when a DC magnetic field is applied, and the change in light intensity is not proportional to the magnetic field strength, and the change in light intensity when increasing the magnetic field strength does not match that when decreasing it. .

これにより、直線性、再現性が悪いことが良くわかる。This clearly shows that the linearity and reproducibility are poor.

発明の目的 本発明は上記の欠点を鑑みてなされたものであり、高感
度でなおかつ、測定出力の直線性、再現性の優れた小型
の磁界測定装置を提供するものである。
OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a compact magnetic field measuring device that is highly sensitive and has excellent linearity and reproducibility of measurement output.

発明のイl1M成 本発明は、透過偏光方向を互いに異ならしめた偏光子と
検光子の間に両端に光反射鏡を有した強磁性体磁気光学
素子を配置した磁気光学変換部と、+JiJ記磁気学変
換部の両端に設けられた光伝送路と、前記光伝送路に光
を大引する光発生手段と、前記入射光かfjq記磁気光
学変換部を透過した後の出力を検知する検知手段とを・
ili#え、t]iJ記磁気光磁気光学変換部中に配置
することにより、磁界強度を1」り記検知部で検出する
ものであり、望1しくは、たとえは強磁性体磁気光学素
子として一般式(TbxYl−x)3 Fe5O12で
示され、Xの1直が(0,1≦X≦03)のものを用い
る。
The present invention provides a magneto-optical converter in which a ferromagnetic magneto-optical element having light reflecting mirrors at both ends is arranged between a polarizer and an analyzer whose transmission polarization directions are different from each other; an optical transmission path provided at both ends of the magnetic optical conversion section, a light generation means for drawing light to the optical transmission path, and a detection means for detecting the output after the incident light passes through the magneto-optic conversion section fjq. Towo・
By placing it in the magneto-optical magneto-optical conversion section, the magnetic field strength is detected by the detection section, preferably a ferromagnetic magneto-optic element, for example. It is represented by the general formula (TbxYl-x)3Fe5O12, and one in which X is (0, 1≦X≦03) is used.

実施例 強磁性体の磁区幅は形状効果かあり、第2図の厚み℃か
小さくなれば、(■侘区幅dが小さくなる事が知られて
いる。したがって、磁気光学素子の厚みを小さくする事
によって、ファラデー効果の直1#注、再現性が同上す
る1工になるが、(1)式で示したようにファラデー回
ψム角θは厚みに比例して小さくなり、測定感要を低下
する。本発明によれは、磁気光学素子の中を多数回反射
往復させて、実効的にJ早みを増した効果か得、られ高
感度化がはかれ、なおかつ直線性、再現性が良好なもの
が得られる。
Example It is known that the magnetic domain width of a ferromagnetic material has a shape effect, and if the thickness of the ferromagnetic material shown in FIG. By doing so, the reproducibility of the Faraday effect is reduced to the same level as above, but as shown in equation (1), the Faraday rotation angle θ becomes smaller in proportion to the thickness, and the measurement sensitivity becomes smaller. According to the present invention, reflection and reciprocation are performed multiple times in the magneto-optical element, effectively increasing the J speed, achieving high sensitivity, and improving linearity and reproducibility. A good one can be obtained.

以下に本発明の実施例によるla磁界測定装置説明する
An la magnetic field measuring device according to an embodiment of the present invention will be explained below.

第4図において本発明の一実施列を説明する。One embodiment of the present invention will be described in FIG.

図面において、1は(Tb0.19 Yo、81 )3
 Fe5o12で示される強磁性体磁気学素子であり、
その厚みaを200μmになるように両側面が平行研磨
されている。また、光の入射部分、出射部分は角度φだ
け傾けて研磨されている。4はアルミニウム蒸着膜によ
る光反射鏡であり、磁気光学素子1の平行ω[磨された
両側面に取りつけである。2は磁気光学素子1の入射部
分に取り付けられた偏光子である。3は磁気光学素子1
の光出射部分に取り付けられており、かつ偏光子2に対
して透過偏光方向が45°傾くように設置された検光子
である。
In the drawing, 1 is (Tb0.19 Yo, 81)3
A ferromagnetic magnetic element represented by Fe5o12,
Both sides are parallel polished so that the thickness a is 200 μm. Furthermore, the light incident and light emitting portions are polished and tilted by an angle φ. Reference numeral 4 denotes a light reflecting mirror made of an aluminum vapor-deposited film, which is attached to both sides of the magneto-optical element 1 which are parallel to each other and polished. 2 is a polarizer attached to the entrance portion of the magneto-optical element 1. 3 is magneto-optical element 1
The analyzer is attached to the light emitting part of the analyzer and is installed so that the transmitted polarization direction is inclined by 45 degrees with respect to the polarizer 2.

偏光子2、検光子3として温度特性が良く、丑だ機械的
強度にすぐれており偏光特性が良好なT102結晶より
なる偏光分離板を用いた。磁気光学素子1、光反射鏡4
.偏光子2.検光子3からなる磁気光学変換部は、磁界
H中に配置される。6,6はそれぞれセルフォックレン
ズであり、レンズ6は磁気光学変換部に入射する光を平
行光線にするものであり、レンズ6は磁気光学変換部を
透過した光を集光するものである。7,8は光伝送路を
形成するオプチカルファイバーである。9はファイバー
、7に光を入射する光線であり、光の波長としては(T
bO,19YO,81)3  Fe5O12結晶に対し
て透過度がよい波長1.0μm〜1.6μmの範囲のう
ち波長1.27μmのものを用いた。10は、磁気光学
変換部を透過した光出力を検知する光検知手段で、ここ
で検知した光強度に応じて電気信号に変換される。
As the polarizer 2 and the analyzer 3, polarization separation plates made of T102 crystal, which have good temperature characteristics, excellent mechanical strength, and good polarization characteristics, were used. Magneto-optical element 1, light reflecting mirror 4
.. Polarizer 2. A magneto-optical converter consisting of the analyzer 3 is placed in the magnetic field H. Reference numerals 6 and 6 are selfoc lenses, respectively. The lens 6 converts the light incident on the magneto-optic converter into parallel rays, and the lens 6 collects the light that has passed through the magneto-optic converter. 7 and 8 are optical fibers forming an optical transmission path. 9 is a fiber, a light ray that enters 7, and the wavelength of the light is (T
bO,19YO,81)3 Among the wavelength range of 1.0 μm to 1.6 μm, which has good transmittance to the Fe5O12 crystal, a wavelength of 1.27 μm was used. Reference numeral 10 denotes a light detection means for detecting the light output transmitted through the magneto-optic converter, and converts it into an electric signal according to the light intensity detected here.

本実施例の磁気光学素子において、光の反射回数は20
回とし、厚み2が200μmの磁気光学素子を一度透過
させた場合の感度0.01ンOeの20倍、つまり0.
2°10eとなっている。本実施例による磁界の測定結
果の一例を第5図に示す。
In the magneto-optical element of this example, the number of light reflections is 20.
times, the sensitivity is 20 times the sensitivity of 0.01 mm Oe when it passes once through a magneto-optical element with a thickness 2 of 200 μm, that is, 0.
It is 2°10e. An example of the magnetic field measurement results according to this example is shown in FIG.

従来列に比べて、直線性を表わす振幅語差は、11%以
下となっており、再現性も11%以下と良好なものであ
った。
Compared to the conventional array, the amplitude word difference, which represents linearity, was 11% or less, and the reproducibility was also good, at 11% or less.

なお、本実施例において、光反射鏡4にアルミニウム蒸
着膜を用いたが、誘一体多層膜による反射鏡でも良い。
In this embodiment, an aluminum vapor deposited film is used for the light reflecting mirror 4, but a reflecting mirror made of a dielectric multilayer film may also be used.

又、偏光子2、検光子3にTl 02偏光分離板を用い
たか、Ca CO3による偏光分離板、誘電体多層膜を
用いた偏光ビームスグリツタ−、グラントムソンプリズ
ム等を用いても良い。
Further, a Tl 02 polarization splitting plate may be used for the polarizer 2 and the analyzer 3, or a polarization splitting plate made of CaCO3, a polarization beam sinter using a dielectric multilayer film, a Glan-Thompson prism, or the like may be used.

丑だ、素子1としては、磁区を有する強磁性体磁気光学
素子を用いる事が出来、例えばY a F el 50
12に代表される希土類ガーネート結晶がある。なかで
も一般式(TbxYlx)3 Fe5012(o、1≦
X≦0.3)のものが望ましい。
As the element 1, a ferromagnetic magneto-optical element having magnetic domains can be used, for example, Y a F el 50.
There are rare earth garnate crystals represented by 12. Among them, the general formula (TbxYlx)3 Fe5012 (o, 1≦
X≦0.3) is desirable.

発明の効果 以上述べたことから明らかなように、本発明の磁界測定
装置によれは、磁界強度を感度良く、かつ精度良く測定
できるものであり、比較的小型でその工業的価値は高い
Effects of the Invention As is clear from the above description, the magnetic field measuring device of the present invention can measure magnetic field strength with high sensitivity and accuracy, is relatively small, and has high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

体の磁区とファラデー効果を説明するための図、第3図
は磁区幅の大きいイ6気光学素子のファラデー効果の直
線性、再現性を測定した結果を示す図、第4図は本発明
の一実施例における磁界測定装置を説明するための図、
第5図は本発明を実力臼した結果を示す図である。 1・・・・・磁気光学素子、2・・・・・・偏光子、3
・・・・・・検光子、4・・・・・光反H説、5+ 6
・・・・・・セルフ2.ツクレンズ、7,8・・・・・
・オプチカルファイノQ1・・・・・・9光源、10・
・・・・・光検知手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名39 第1図 第 2 図 第3図 第4図
Figure 3 is a diagram showing the results of measuring the linearity and reproducibility of the Faraday effect of an optical element with a large magnetic domain width, and Figure 4 is a diagram for explaining the magnetic domains of the body and the Faraday effect. A diagram for explaining a magnetic field measuring device in one embodiment,
FIG. 5 is a diagram showing the results of the actual milling of the present invention. 1...Magneto-optical element, 2...Polarizer, 3
...Analyzer, 4...Light anti-H theory, 5+ 6
...Self 2. Cleanse, 7, 8...
・Optical Fino Q1・・・9 light sources, 10・
...Light detection means. Name of agent: Patent attorney Toshio Nakao and 1 other person39 Figure 1 Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)透過偏光方向を互いに異らしめた偏光子と検光子
の間に両端に光反射鏡を有した強磁性体磁気光学素子を
配置した磁気光学変換部と、+)rj記磁気光学変換部
の両端に設けられた光伝送路と、前記光伝送路に光を入
射する光発生手段と、1)Iノ記人則光が前記磁気光学
変換部を透過した後の出力を検知する検知手段とをII
f!?え、前記磁気光学変換部を磁界中に配置すること
により、磁界強度を前記検知部で検出することを特徴と
する磁界測定装置。
(1) A magneto-optic converter in which a ferromagnetic magneto-optical element having light reflecting mirrors at both ends is arranged between a polarizer and an analyzer with different transmission polarization directions, and +) rj magneto-optic conversion. an optical transmission path provided at both ends of the section; a light generating means for inputting light into the optical transmission path; means and II
f! ? Furthermore, a magnetic field measurement device characterized in that the magnetic field strength is detected by the detection unit by arranging the magneto-optical conversion unit in a magnetic field.
(2)強磁性体磁気光学素子として一般式(TbxYl
 −x )3 Fe5O12で示され、Xの値か(0,
1≦X≦0.3)のものを用いることを特徴とする特許
請求の範囲第1項記載の磁界測定装置。
(2) As a ferromagnetic magneto-optical element, the general formula (TbxYl
-x )3 Fe5O12, and the value of X is (0,
1. The magnetic field measuring device according to claim 1, wherein the magnetic field measuring device satisfies the following: 1≦X≦0.3.
JP9432283A 1983-05-27 1983-05-27 Measuring device of magnetic field Pending JPS59218971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9432283A JPS59218971A (en) 1983-05-27 1983-05-27 Measuring device of magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9432283A JPS59218971A (en) 1983-05-27 1983-05-27 Measuring device of magnetic field

Publications (1)

Publication Number Publication Date
JPS59218971A true JPS59218971A (en) 1984-12-10

Family

ID=14107041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9432283A Pending JPS59218971A (en) 1983-05-27 1983-05-27 Measuring device of magnetic field

Country Status (1)

Country Link
JP (1) JPS59218971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316081U (en) * 1989-06-29 1991-02-18
JP2005099554A (en) * 2003-09-26 2005-04-14 Sumitomo Osaka Cement Co Ltd Reflection type optical modulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316081U (en) * 1989-06-29 1991-02-18
JP2005099554A (en) * 2003-09-26 2005-04-14 Sumitomo Osaka Cement Co Ltd Reflection type optical modulator
JP4519436B2 (en) * 2003-09-26 2010-08-04 住友大阪セメント株式会社 Reflective light modulator

Similar Documents

Publication Publication Date Title
US6232763B1 (en) Magneto-optical element and optical magnetic field sensor
EP0086373B1 (en) Magneto-optical converter
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects
CN109507467A (en) Optical current mutual inductor and its current measuring method based on catoptric arrangement
US4608535A (en) Magnetic field and current measuring device using a Faraday cell with a thin electrically conductive film substantially covering the Faraday cell
JPS59218971A (en) Measuring device of magnetic field
JPS58140716A (en) Magnetic field-light transducer
JPS61212773A (en) Photosensor
JPS59107273A (en) Photocurrent and magnetic field sensor
JP3044084B2 (en) Magneto-optical element for magnetic field sensor
Yoshino et al. Polygonal Faraday effect current sensor with polarization-preserving dielectric mirrors
JPH0812231B2 (en) Optical interference device utilizing magnetic field dependence of refractive index of magnetic fluid
JP3135744B2 (en) Optical magnetic field sensor
JPH05264603A (en) Apparatus and method for measuring photomagnetic field
JPS60375A (en) Measuring device of magnetic field
Carey et al. The transverse Kerr effect in cobalt thin films and its application to a simple hysteresis loop plotter
Wieder et al. Faraday rotation in FeNi films
RU2021590C1 (en) Method of measurement of parameters of outside action on medium or object and device to implement it
JPS63196865A (en) Optical current measuring apparatus
JPH0560818A (en) Optical electric field measuring instrument
JPS5937461A (en) Optical current transformer
Dutcher Brillouin light scattering studies of epitaxial ferromagnetic films
JP3215861B2 (en) Magneto-optical element and current measuring device using the same
Geerts et al. Biaxial Kerr magnetometry in oblique field for the study of thin films with a perpendicular anisotropy
JPH0248868B2 (en)