JPH05264603A - Apparatus and method for measuring photomagnetic field - Google Patents

Apparatus and method for measuring photomagnetic field

Info

Publication number
JPH05264603A
JPH05264603A JP4081398A JP8139892A JPH05264603A JP H05264603 A JPH05264603 A JP H05264603A JP 4081398 A JP4081398 A JP 4081398A JP 8139892 A JP8139892 A JP 8139892A JP H05264603 A JPH05264603 A JP H05264603A
Authority
JP
Japan
Prior art keywords
magnetic field
light
magnetic
magneto
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4081398A
Other languages
Japanese (ja)
Other versions
JP3140546B2 (en
Inventor
Shinji Iwatsuka
信治 岩塚
Makoto Nakazawa
誠 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP04081398A priority Critical patent/JP3140546B2/en
Priority to US07/892,468 priority patent/US5477376A/en
Publication of JPH05264603A publication Critical patent/JPH05264603A/en
Priority to US08/526,336 priority patent/US5619367A/en
Application granted granted Critical
Publication of JP3140546B2 publication Critical patent/JP3140546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To simplify the structure of a photomagnetic field measuring apparatus and make its size compact by computing the light intensity ratio of a ray component which vibrates with twice as high frequency of a magnetic field frequency and a ray component corresponding to the direct current component among 0-order diffracted rays which pass a magnetooptical element device. CONSTITUTION:Light is led to a magnetooptical element device 1 from a light- emitting element device through an optical fiber, etc., and among the diffracted rays which pass the element device 1, only 0-order diffracted rays are drawn out to an optical fiber through a collimator lens 3' and converted into electric signals. Then, the intensity I (2omega) of a ray component with twice as high frequency of the magnetic field frequency omega of a magnetic field measuring object (electric cable 8) and the intensity I0 corresponding to the direct current component among the electric signals are sent to frequency component detectors 5 and 6, respectively and observed as electric signals. Next, based on these signals, the ratio; k=I(2omega)/I0 is computed by a dividing apparatus 7 and the magnetic field intensity Homega of the measuring object is computed based on the prescribed equation wherein Hs stands for saturated magnetic field of the magnetooptical element device and theta1 for saturated Faraday rotation angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、送電線、配電線の電流
を測定するのに好適な光磁界(電流)測定装置及び光磁
界(電流)測定方法に関し、更に詳細には、センサ部の
構造が極めて簡単であり且つ使用温度に依存しない新規
な光磁界測定装置及び光磁界測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field (current) measuring device and an optical magnetic field (current) measuring method suitable for measuring currents in power transmission lines and distribution lines. The present invention relates to a novel optical magnetic field measuring device and an optical magnetic field measuring method that have an extremely simple structure and do not depend on operating temperature.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】光磁界
センサは、光を媒体としているために、絶縁性が良好で
あり、電磁誘導の影響を受けないという特徴を持ち、送
電線の電流測定等に使用されている。図6に従来用いら
れていた磁界測定装置の一例を示す。この装置の光学系
は磁気光学素子1、光ファイバ2、2’コリメータレン
ズ3、3’、偏光子17、検光子18から構成されてい
る。光源4から射出した光はコリメータレンズ3により
平行ビームになり、偏光子17を透過して直線偏光にな
る。磁気光学素子1に磁界が印加されるとファラデー効
果によりこの直線偏光の偏光面が磁界の強度に比例して
回転する。この光が検光子18を透過すると偏光面の角
度により光量が変化し、コリメータレンズ3’により光
ファイバ2’へ集光され、受光素子19により検出され
る。ここで、検光子を通過した光の磁界周波数ωで振動
する光成分の光強度I(ω) と直流成分に相当する光成分
の光強度I0 との比は、 I(ω) /IO =2Vr LHω (式中、Hωは周波数ωで振動する被測定体の交流磁界
強度、Vr はファラデー素子のヴェルデ定数、Lはファ
ラデー素子の厚さ)により表され、磁界の強度HωはI
(ω) /IO を観測することによって簡単に求められ
る。
2. Description of the Related Art Since an optical magnetic field sensor uses light as a medium, it has good insulating properties and is not affected by electromagnetic induction. It is used for etc. FIG. 6 shows an example of a magnetic field measuring device used conventionally. The optical system of this device is composed of a magneto-optical element 1, optical fibers 2, 2'collimator lenses 3 and 3 ', a polarizer 17 and an analyzer 18. The light emitted from the light source 4 becomes a parallel beam by the collimator lens 3, passes through the polarizer 17, and becomes a linearly polarized light. When a magnetic field is applied to the magneto-optical element 1, the plane of polarization of this linearly polarized light rotates in proportion to the strength of the magnetic field due to the Faraday effect. When this light passes through the analyzer 18, the amount of light changes depending on the angle of the plane of polarization, is condensed by the collimator lens 3 ′ onto the optical fiber 2 ′, and is detected by the light receiving element 19. Here, the ratio of the light intensity I (ω) of the light component vibrating at the magnetic field frequency ω of the light passing through the analyzer and the light intensity I 0 of the light component corresponding to the direct current component is I (ω) / I O = 2V r LHω (where Hω is the AC magnetic field strength of the measured object vibrating at the frequency ω, V r is the Verdet constant of the Faraday element, L is the thickness of the Faraday element), and the magnetic field strength Hω is I
It can be easily determined by observing (ω) / I O.

【0003】しかしながら、このような従来の磁界測定
装置は、磁気光学素子の両側に偏光子及び検光子を配置
する必要があり、センサ自体の構造が複雑化するという
欠点があった。また、磁気光学素子のヴェルデ定数Vr
は温度の関数であるので測定環境を一定にしなければな
らないという問題もあった。
However, such a conventional magnetic field measuring device has a drawback in that it is necessary to dispose a polarizer and an analyzer on both sides of the magneto-optical element, which complicates the structure of the sensor itself. In addition, the Verdet constant V r of the magneto-optical element
Since is a function of temperature, there was also the problem that the measurement environment had to be constant.

【0004】別の従来の磁界測定装置として、例えば、
特開平1−223359号に記載されたような光電流・
磁界測定装置が知られている。この装置では、センサヘ
ッドのファラデー素子に、測定する交流磁界とは異なる
一定のバイアス磁界を別に加え、ファラデー回転子を透
過する光の該交流磁界と同一の角周波数成分(Eω)及
び該交流磁界の2倍の角周波数成分(E2ω)をそれぞ
れ取り出し、該同一の角周波数成分(Eω)に対する該
2倍の角周波数成分(E2ω)の相対値を求めることに
よって磁界を測定している。この技術では、上記の技術
とは異なり、温度の関数であるVr とは無関係に磁界強
度を知ることができるという利点があった。
As another conventional magnetic field measuring apparatus, for example,
Photocurrent as described in JP-A-1-223359
Magnetic field measuring devices are known. In this device, a constant bias magnetic field different from the AC magnetic field to be measured is separately added to the Faraday element of the sensor head, and the same angular frequency component (Eω) and the AC magnetic field as the AC magnetic field of the light passing through the Faraday rotator are added. The magnetic field is measured by extracting the angular frequency component (E2ω) that is twice as large as that of the above, and determining the relative value of the double angular frequency component (E2ω) with respect to the same angular frequency component (Eω). In this technique, unlike the technique, the V r is a function of temperature there is an advantage that regardless can know the magnetic field intensity.

【0005】しかしながら、特開平1−223359号
の磁界測定装置も、前記の従来の技術と同様に磁気光学
素子の両側に偏光子及び検光子を配置する必要があり、
さらに、バイアス磁界印加手段も必要とするのでセンサ
の構造は一層複雑化するという欠点があった。
However, in the magnetic field measuring device disclosed in Japanese Patent Laid-Open No. 1-223359, it is necessary to dispose the polarizer and the analyzer on both sides of the magneto-optical element as in the above-mentioned conventional technique.
Further, since the bias magnetic field applying means is also required, the structure of the sensor is further complicated.

【0006】そこで、本発明の目的は、偏光子及び検光
子を必要としない簡単な構造を有する新規な光磁界測定
装置及び方法を提供することにある。また、本発明は、
偏光子及び検光子並びにバイアス印加手段をも必要とせ
ずに、送電線等の磁界を測定する装置及び方法を提供す
ることにある。
Therefore, an object of the present invention is to provide a novel optical magnetic field measuring apparatus and method having a simple structure which does not require a polarizer and an analyzer. Further, the present invention is
An object of the present invention is to provide an apparatus and method for measuring a magnetic field of a power transmission line or the like without requiring a polarizer, an analyzer and a bias applying unit.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意、検討研究した結果、回折現象を利
用した新規な磁気光学素子を用いることによって、偏光
子及び検光子を必要としない構造が簡単な光磁界測定装
置並びに該装置を用いる新規な磁界測定方法を開発する
ことに成功した。
Means for Solving the Problems As a result of earnest studies and researches for solving the above problems, the present inventor has found that a polarizer and an analyzer are required by using a novel magneto-optical element utilizing a diffraction phenomenon. The inventors have succeeded in developing an optical magnetic field measuring device having a simple structure and a novel magnetic field measuring method using the device.

【0008】すなわち本発明は、磁界を印加しない状態
では多磁区構造を有し且つ磁区内の光の進行方向と平行
な磁化成分が隣接する磁区では互いに異なる磁気光学素
子と、該素子に光を入射するための発光手段と、該磁気
光学素子を通過した0次回折光のうち被磁界測定体の磁
界周波数ωの2倍の周波数で振動する光成分の光強度I
(2ω) 及び該0次回折光のうちの直流成分に相当する光
成分の光強度IO とを求める手段と、比I(2ω) /IO
を求める手段とを有する光磁界測定装置である。
That is, according to the present invention, a magneto-optical element having a multi-domain structure in a state where a magnetic field is not applied, and a magnetic component parallel to the traveling direction of light in the magnetic domain is different from each other in adjacent magnetic domains, and light is applied to the element. Light emitting means for entering and light intensity I of a light component of the 0th-order diffracted light that has passed through the magneto-optical element and vibrates at a frequency twice the magnetic field frequency ω of the magnetic field measured object.
(2ω) and means for obtaining the light intensity I O of the light component corresponding to the DC component of the 0th-order diffracted light, and the ratio I (2ω) / I O
And an optical magnetic field measuring device having means for obtaining

【0009】また、本発明の別の態様に従えば、本発明
は、磁界を発生する被磁界測定体の近傍において、磁界
を印加しない状態では多磁区構造を有し且つ磁区内の光
の進行方向と平行な磁化成分が隣接する磁区では互いに
異なる磁気光学素子に、光を入射させ、前記磁気光学素
子を通過した回折光のうち、0次回折光のみを取り出
し、該0次回折光のうち被磁界測定体の磁界周波数ωの
2倍の周波数2ωで振動する光成分の光強度I(2ω) 及
び直流成分に相当する光成分の光強度IO とをそれぞれ
測定し、それらの比I(2ω) /IO を求めることによっ
て被磁界測定体の磁界を測定する方法である。
According to another aspect of the present invention, the present invention has a multi-domain structure in the vicinity of a magnetic field-measuring object that generates a magnetic field and a light propagation in the magnetic domain when no magnetic field is applied. Light is made incident on magneto-optical elements different from each other in magnetic domains whose magnetization components parallel to the direction are adjacent to each other, and out of the diffracted light that has passed through the magneto-optical element, only the 0th-order diffracted light is extracted, and the magnetic field of the 0th-order diffracted light is extracted. The light intensity I (2ω) of the light component oscillating at a frequency 2ω that is twice the magnetic field frequency ω of the measurement object and the light intensity I O of the light component corresponding to the direct current component are measured, and their ratio I (2ω) is measured. It is a method of measuring the magnetic field of the magnetic field measured object by obtaining / I O.

【0010】本発明の別の態様に従えば、本発明は、磁
界を印加しない状態では多磁区構造を有し且つ磁区内の
光の進行方向と平行な磁化成分が隣接する磁区では互い
に異なる磁気光学素子と、該素子に光を入射するための
発光手段と、上記磁気光学手段に一定のバイアス磁界を
加える磁界印加手段と、該磁気光学素子を通過した0次
回折光のうち被磁界測定体の磁界周波数ωで振動する光
成分の光強度I(ω) と、その2倍の周波数2ωで振動す
る光成分の光強度I(2ω) とを測定する手段と、比I(2
ω) /I(ω) を求める手段とを有する光磁界測定装置で
ある。
According to another aspect of the present invention, the present invention has a multi-domain structure in the state where no magnetic field is applied, and the magnetic components parallel to the traveling direction of light in the magnetic domains are different from each other in adjacent magnetic domains. An optical element, a light emitting means for making light incident on the element, a magnetic field applying means for applying a constant bias magnetic field to the magneto-optical means, and a zero-order diffracted light passing through the magneto-optical element of a magnetic field measured object. A means for measuring the light intensity I (ω) of the light component oscillating at the magnetic field frequency ω and the light intensity I (2ω) of the light component oscillating at the frequency 2ω, which is twice that, and the ratio I (2
An optical magnetic field measuring apparatus having means for obtaining ω) / I (ω).

【0011】本発明の別の態様に従えば、本発明は、磁
界を発生する被磁界測定体の近傍において、磁界を印加
しない状態では多磁区構造を有し且つ磁区内の光の進行
方向と平行な磁化成分が隣接する磁区では互いに異なる
磁気光学素子に、一定のバイアス磁界を印加しながら光
を入射させ、前記磁気光学素子を通過した回折光のう
ち、0次回折光のみを取り出し、該0次回折光のうち被
磁界測定体の磁界周波数ωで振動する光成分の光強度I
(ω) とその2倍の周波数で振動する光成分の光強度I
(2ω) をそれぞれ測定し、それらの比I(2ω) /I(ω)
を求めることによって被測定体の磁界強度を測定する方
法である。
According to another aspect of the present invention, the present invention has a multi-domain structure in the vicinity of a magnetic field measuring object that generates a magnetic field in a state where no magnetic field is applied, and has a direction of travel of light in the magnetic domain. In a magnetic domain in which parallel magnetization components are adjacent to each other, light is incident on different magneto-optical elements while applying a constant bias magnetic field, and out of the diffracted light that has passed through the magneto-optical element, only the 0th-order diffracted light is extracted. Light intensity I of the optical component of the diffracted light of the second order that oscillates at the magnetic field frequency ω of the magnetic field measurement object
(ω) and the light intensity I of the light component that oscillates at twice that frequency
(2ω) is measured, respectively, and their ratio I (2ω) / I (ω)
Is a method of measuring the magnetic field strength of the object to be measured.

【0012】本発明に用いる磁気光学素子は、磁界を印
加しないときに、多磁区構造を有する材料であって、図
3に示すように、入射光の進行方向に対する磁化ベクト
ル成分が隣接する磁区で互いに異なるように配置され
る。例えば、Biを多量置換した磁性ガーネット材料
は、通常、垂直磁化であり、同図のような多磁区構造を
有している。このような多磁区構造に、磁化方向と平行
な直線偏光の光が入射すると、ファラデー効果により偏
波面が回転し、磁化が光の進行方向と同じ向きである磁
区では光の偏波面は+θf 回転し、一方、逆向きの磁化
である磁区では−θf 回転する。このように磁区の場所
により偏波面の回転角が異なってくるため、回折が生じ
ることになる。このような多磁区構造は飽和磁界より小
さい磁界が印加されている場合に残存しており、ここに
光が入射すると、多磁区構造は回折格子として作用して
入射光の一部を回折する。その結果、検出光は回折損失
を生じることになる。ここで、回折損失が生じることに
よって回折次数nがn=0次光、すなわち直進光の光強
度Iは、実測値を良好に再現する近似式である下記
(1)式によって表される:
The magneto-optical element used in the present invention is a material having a multi-domain structure when no magnetic field is applied. As shown in FIG. 3, the magneto-optical element is a magnetic domain in which the magnetization vector component with respect to the traveling direction of incident light is adjacent. They are arranged differently from each other. For example, a magnetic garnet material in which a large amount of Bi has been replaced is usually perpendicularly magnetized and has a multi-domain structure as shown in FIG. When linearly polarized light parallel to the magnetization direction enters such a multi-domain structure, the polarization plane rotates due to the Faraday effect, and the polarization plane of the light is + θ f in the magnetic domain in which the magnetization is in the same direction as the traveling direction of light. On the other hand, the magnetic domain having the opposite magnetization rotates by −θ f . In this way, the rotation angle of the plane of polarization differs depending on the location of the magnetic domain, so that diffraction occurs. Such a multi-domain structure remains when a magnetic field smaller than the saturation magnetic field is applied, and when light enters the multi-domain structure, the multi-domain structure acts as a diffraction grating to diffract a part of the incident light. As a result, the detection light causes diffraction loss. Here, the light intensity I of the n = 0th order light, that is, the straight traveling light, due to the occurrence of the diffraction loss, is represented by the following equation (1), which is an approximate expression that favorably reproduces the actual measurement value:

【数1】 I=PO (cos2 θf +(H/Hs2 sin2 θf )・・・(1) (式中、θf は飽和ファラデー回転角、Hは外部磁界、
s は飽和磁界、PO は飽和磁界以上のときの光強度、
|H|≦Hsである) なお、|H|>HsではI=PO である。従って、磁気
光学素子からの0次回折光強度Iを観測することによ
り、外部磁界Hが求められることになる。
[Number 1] I = P O in (cos 2 θ f + (H / H s) 2 sin 2 θ f) ··· (1) ( wherein, the theta f saturated Faraday rotation angle, H is an external magnetic field,
H s is the saturation magnetic field, P O is the light intensity above the saturation magnetic field,
| H | ≦ Hs) It should be noted that I = P O for | H |> Hs. Therefore, the external magnetic field H is obtained by observing the 0th-order diffracted light intensity I from the magneto-optical element.

【0013】磁気光学素子の入射光に対する配置は、図
3に示すように、隣接する磁区内の磁化方向が入射光と
平行であり且つ互いに平行であることが好ましいが、垂
直磁化を有する磁気光学素子自体を入射光に対して斜め
の配置にすることもできる。また、光減衰量の調節等の
目的で磁気光学素子を複数枚重ね合わせて使用すること
もできる。
The arrangement of the magneto-optical element with respect to the incident light is preferably such that the magnetization directions in the adjacent magnetic domains are parallel to the incident light and parallel to each other as shown in FIG. 3, but the magneto-optical element has perpendicular magnetization. The element itself may be arranged obliquely with respect to the incident light. Further, a plurality of magneto-optical elements may be used in superposition for the purpose of adjusting the amount of light attenuation.

【0014】上記のような磁界を印加しない状態で多磁
区構造を有する材料としては、例えば、LPE法等によ
り作製したBi置換稀土類鉄ガーネット材料、稀土類鉄
ガーネット、オルソフェライト等を挙げることができる
が、特にこれらに限定されず、本発明の目的を達成でき
る範囲内で多磁区構造を有する種々の材料を用いること
ができる。これらの材料を、磁化容易軸が面と垂直な方
向となるように切り出すことによって、一般に、垂直磁
化の薄膜が得られ、本発明の素子として用いることがで
きる。特に、LPE法により作製したBi置換稀土類鉄
ガーネット膜の場合は、成長誘導磁気異方性により特別
の処理をしなくてもそのままで垂直磁化性を有してお
り、本発明の目的を達成する上で好ましい。しかも、こ
のBi置換稀土類鉄ガーネット材料はファラデー回転能
が大きいため、薄い厚さで大きな回折損失が得られると
いう点からも好適である。
Examples of the material having a multi-domain structure without applying a magnetic field as described above include Bi-substituted rare earth iron garnet materials, rare earth iron garnets, orthoferrites and the like produced by the LPE method or the like. However, the material is not particularly limited to these, and various materials having a multi-domain structure can be used within the range in which the object of the present invention can be achieved. By cutting out these materials so that the easy axis of magnetization is in a direction perpendicular to the plane, a thin film with perpendicular magnetization is generally obtained and can be used as the element of the present invention. Particularly, in the case of the Bi-substituted rare earth iron garnet film produced by the LPE method, the film has perpendicular magnetizability as it is without any special treatment due to the growth-induced magnetic anisotropy, and the object of the present invention is achieved. It is preferable to do so. Moreover, since this Bi-substituted rare earth iron garnet material has a large Faraday rotation ability, it is suitable in that a large diffraction loss can be obtained with a small thickness.

【0015】本発明の第1の態様である光磁界測定装置
の一具体例を図1に示す。磁気光学素子1、該素子に光
を入射するための発光手段4と、コリメータレンズ3、
3’と、該0次回折光を受光して電気信号に変換する受
光手段19と被測定体の磁界周波数ωの2倍の周波数で
振動する光成分の光強度を測定する手段5と、該0次回
折光のうちの直流成分に相当する光成分の光強度IO
求める手段6と前記I(2ω) との比I(2ω) /IO を求
める手段7を有する。手段5として、磁界周波数ωの2
倍の周波数で振動する光成分の光強度I(2ω) を、受光
手段19を通じて電気信号強度I'(2 ω) として測定す
る手段が便利である。同様に手段6として該0次回折光
のうちの直流成分に相当する光成分の光強度IO を、受
光手段19を通じて電気信号強度I'Oとして測定する手
段が便利である。図中、2及び2’は光ファイバであ
る。0次回折光のみを取り出すには、光ファイバ2’内
にn≠0次光の回折光が入射しないように配置すればよ
く、例えば、光ファイバ2,2’としてシングルモード
ファイバを用い、コリメータレンズ3,3’により平行
ビーム光学系とすることにより実現できる。発光素子と
しては、例えば、レーザ、LED等が挙げられるが、特
にこれらに限定されず種々の光源を用いることができ
る。また、比I(2ω) /IO を求める手段7としては、
例えば、割算回路を用いることができる。
FIG. 1 shows a specific example of the optical magnetic field measuring apparatus according to the first aspect of the present invention. Magneto-optical element 1, light emitting means 4 for making light incident on the element, collimator lens 3,
3 ', a light receiving means 19 for receiving the 0th-order diffracted light and converting it into an electric signal, a means 5 for measuring the light intensity of a light component vibrating at a frequency twice the magnetic field frequency ω of the object to be measured, and 0 having a ratio I (2ω) / I O seek means 7 and means 6 for determining the light intensity I O of the optical component wherein the I (2 [omega) which corresponds to the DC component of the diffracted light. As the means 5, 2 of the magnetic field frequency ω
It is convenient to measure the light intensity I (2ω) of the light component vibrating at the double frequency as the electric signal intensity I ′ (2ω) through the light receiving means 19. Similarly, as the means 6, a means for measuring the light intensity I O of the light component corresponding to the DC component of the 0th-order diffracted light as the electric signal intensity I ′ O through the light receiving means 19 is convenient. In the figure, 2 and 2 ′ are optical fibers. In order to take out only the 0th-order diffracted light, it may be arranged so that the diffracted light of n ≠ 0th order does not enter the optical fiber 2 ′. For example, a single mode fiber is used as the optical fibers 2 and 2 ′, and a collimator lens is used. This can be realized by forming a parallel beam optical system with 3, 3 '. Examples of the light emitting element include a laser and an LED, but the light emitting element is not particularly limited to these and various light sources can be used. Further, as the means 7 for obtaining the ratio I (2ω) / IO ,
For example, a division circuit can be used.

【0016】このような装置を、被磁界測定体である電
線ケーブル8の近傍に設置して、以下のような操作によ
って磁界を測定する。最初に、発光素子4から光ファイ
バ等を通じて光を磁気光学素子1に入射させ、前記磁気
光学素子を通過した回折光のうち、0次回折光のみをコ
リメータレンズ3’を通じて光ファイバ2’へ取り出
し、受光素子により電気信号に変換する。次いでこの電
気信号のうち被測定体の磁界周波数ωの2倍の周波数成
分の強度I(2ω) 及び直流成分に相当する強度IO
を、それぞれ、周波数成分検出器5及び6に入力させて
電気信号として観測する。次いでそれらの信号を割算器
7によってそれらの比k=I(2ω) /IO 並びに下記式
(2)で表されるHωを算出させる。
Such a device is installed in the vicinity of the electric wire cable 8 which is the magnetic field measured object, and the magnetic field is measured by the following operation. First, light is made incident on the magneto-optical element 1 from the light emitting element 4 through an optical fiber or the like, and out of the diffracted light that has passed through the magneto-optical element, only the 0th-order diffracted light is extracted to the optical fiber 2 ′ through the collimator lens 3 ′, It is converted into an electric signal by the light receiving element. Next, the intensity I (2ω) of the frequency component twice the magnetic field frequency ω of the object to be measured and the intensity I O corresponding to the DC component of this electric signal are input to the frequency component detectors 5 and 6, respectively. Observe as an electric signal. Then to calculate the Hω represented by their ratio k = I (2ω) / I O and the following formula (2) by divider 7 these signals.

【数2】 Hω=(HS /tan θf )・√{2k/(1−k)} ・・・(2) (式中、Hωは被測定体の磁界強度、HS は磁気光学素
子の飽和磁界、θf は飽和ファラデー回転角である)。
## EQU2 ## Hω = (H S / tan θ f ) √ {2k / (1-k)} (2) (where, Hω is the magnetic field strength of the object to be measured, and H S is the magneto-optical element) , The saturated magnetic field, θ f is the saturated Faraday rotation angle).

【0017】kを算出して式(2)により被測定体の磁
界強度Hωが導かれることを以下に示す。被測定体であ
る送電線等の電流から生ずる磁気光学素子における磁界
Hは、次式で表される:
It will be shown below that k is calculated and the magnetic field strength Hω of the object to be measured is derived by the equation (2). The magnetic field H in the magneto-optical element generated from the electric current of the power transmission line or the like as the DUT is expressed by the following equation:

【数3】H=Hωsinωt・・・・・(3) (式中、ωは送電線の交流電場の周波数であり、Hωは
磁界の振幅である) (3)式を(1)式に代入して次式を得る。
## EQU3 ## H = Hωsinωt (3) (where ω is the frequency of the AC electric field of the transmission line and Hω is the amplitude of the magnetic field). Substituting the formula (3) into the formula (1). And obtain the following equation.

【数4】 I=IO −I(2ω) cos2ωt・・・・・(6) ここに、IO =PO (cos2 θf +(Hω2 /2
S 2)sin2 θf ) I(2ω) =PO (Hω2 /2HS 2)sin2 θf であ
る。 k=I(2ω) /IO としてHωを求めると、下記(2)
式を得る。
Equation 4] I = I O -I (2ω) cos2ωt ····· (6) Here, I O = P O (cos 2 θ f + (Hω 2/2
H S 2 ) sin 2 θ f ) I (2ω) = P O (Hω 2 / 2H S 2 ) sin 2 θ f . When Hω is calculated with k = I (2ω) / IO , the following (2)
Get the expression.

【数5】 Hω=(HS /tan θf )・√{2k/(1−k)}・・・(2)Hω = (H S / tan θ f ) · √ {2k / (1-k)} (2)

【0018】(2)式は、k≪1の場合は、Hω≒(H
S /tan θf )√(2k)のように一層簡単になる。こ
こで温度に対して安定にHωを測定するためには(HS
/tan θf )の温度依存性を小さくすればよい。温度を
Tとして、
Equation (2) shows that when k << 1, Hω≈ (H
It becomes even simpler as S / tan θ f ) √ (2k). Here, in order to measure Hω stably with respect to temperature, (H S
It suffices to reduce the temperature dependence of / tan θ f ). Let T be the temperature,

【0019】[0019]

【数6】 [Equation 6]

【0020】例えば、組成Bi1.51.5 Fe512
磁気光学素子では、
For example, in a magneto-optical element having the composition Bi 1.5 Y 1.5 Fe 5 O 12 ,

【数7】 このように材料組成とファラデー回転角θf (すなわち
厚さ)を適宜調整することにより、磁気光学素子を周囲
温度に依存しないようにすることができる。
[Equation 7] By appropriately adjusting the material composition and the Faraday rotation angle θ f (that is, the thickness) in this way, the magneto-optical element can be made independent of the ambient temperature.

【0021】この本発明の方法及び装置は、従来技術に
比べて偏光子及び検光子を必要とせず、さらに特開平1
−223359号の技術のようなバイアス磁界を印加す
ることなく装置の温度依存性を解消することができるた
め、磁界の測定が一層容易である。また、装置自体を一
層簡略にすることができる。
The method and apparatus of the present invention do not require a polarizer and an analyzer as compared with the prior art, and are further described in JP-A-1.
Since the temperature dependence of the device can be eliminated without applying a bias magnetic field as in the technique of -223359, the magnetic field can be measured more easily. Further, the device itself can be further simplified.

【0022】次に、本発明の第2の態様に従う光磁界測
定装置の一具体例を図4に示す。同図は、図1の本発明
の光磁界測定装置において、磁気光学素子1の両側に磁
界印加手段9を設置し、図1の装置のIO の代わりにI
(ω) を測定する装置を、また、比I(2ω) /IO を算
出する手段の代わりに比I(2ω) /I(ω) を求める手段
を設置した以外は図1と同様の装置である。ここで、磁
界印加手段としては、例えば、円筒状永久磁石、コイル
等を用いることができるが、特にそれらに限定されず磁
気光学素子1に一定の磁界を印加することができる手段
ならば種々のものを用いることができる。I(ω) を測定
する装置としては、例えば、I(2ω) と同様に周波数成
分検出器を、比I(2ω) /I(ω) を算出する装置として
は、例えば、割算器を用いることができる。
Next, FIG. 4 shows a specific example of the optical magnetic field measuring apparatus according to the second aspect of the present invention. In the figure, in the optical magnetic field measuring apparatus of the present invention of FIG. 1, magnetic field applying means 9 are installed on both sides of the magneto-optical element 1, and I is replaced by I O of the apparatus of FIG.
A device similar to that of FIG. 1 except that a device for measuring (ω) and a device for obtaining the ratio I (2ω) / I (ω) are provided instead of the device for calculating the ratio I (2ω) / I O. Is. Here, for example, a cylindrical permanent magnet, a coil, or the like can be used as the magnetic field applying means, but the magnetic field applying means is not particularly limited thereto, and various means can be used as long as they can apply a constant magnetic field to the magneto-optical element 1. Any thing can be used. As a device for measuring I (ω), for example, a frequency component detector similar to I (2ω) is used, and as a device for calculating the ratio I (2ω) / I (ω), for example, a divider is used. be able to.

【0023】図4に示すような装置を被磁界測定体であ
る電線ケーブル8の近傍に設置して磁界を測定する。磁
界の測定方法は、図1に示した装置の場合と基本的に同
様であるが、この方法においては、磁界印加手段によっ
て磁気光学素子に一定の磁界を印加しながら磁気光学素
子からの0次回折光を観測する。ここで観測する回折光
の光成分として、被測定体である送電線の電圧の周波数
ωで振動する光成分とその2倍の周波数2ωで振動する
光成分の光の強度I(ω) 及びI(2ω) をそれぞれ測定す
る。そして下記式(5):
A device as shown in FIG. 4 is installed in the vicinity of the electric cable 8 which is a magnetic field measured object to measure the magnetic field. The method of measuring the magnetic field is basically the same as in the case of the device shown in FIG. 1, but in this method, the magnetic field applying means applies a constant magnetic field to the magneto-optical element while Observe origami. As the light components of the diffracted light observed here, the light intensity I (ω) and I of the light component oscillating at the frequency ω of the voltage of the transmission line which is the object to be measured and the light component oscillating at the frequency 2ω that is twice that Measure (2ω) respectively. And the following formula (5):

【数8】 Hω=(4I(2ω) /I(ω) )Hb ・・・・・(5) (式中、Hbはバイアス磁界強度である) を用いて送電線の磁界強度Hωを算出することができ
る。式(5)を用いる磁界Hωの算出原理を以下に説明
する。この場合、バイアス磁界が被磁界測定体からの磁
界とは別に磁気光学素子に印加されているので、磁気光
学素子が受ける磁界は全体として次のようになる。
[Equation 8] Hω = (4I (2ω) / I (ω)) Hb (5) (where, Hb is the bias magnetic field strength) is used to calculate the magnetic field strength Hω of the transmission line. be able to. The principle of calculating the magnetic field Hω using the equation (5) will be described below. In this case, since the bias magnetic field is applied to the magneto-optical element separately from the magnetic field from the magnetic field measured object, the magnetic field received by the magneto-optical element is as follows as a whole.

【数9】H=Hb+Hωsinωt この磁界Hを、0次回折光強度を求める式(1)に代入
して下記式(4)を得る。
[Equation 9] H = Hb + Hωsinωt This magnetic field H is substituted into the equation (1) for obtaining the 0th-order diffracted light intensity, and the following equation (4) is obtained.

【数10】 I=IO +I(ω) sinωt−I(2ω) cos2ωt・・・(4) ここで、## EQU10 ## I = IO + I (ω) sin ωt-I (2ω) cos2ωt (4) Here,

【数11】 IO =PO (cos2 θf +{(Hb2 +Hω2 /2)/HS 2}sin2 θf I(ω) =PO (2HbHω/HS 2)sin2 θf I(2ω) =PO (Hω2 /2HS 2)sin2 θf そしてI(ω) とI(2ω) の比を計算すると、I(ω) /I
(2ω) =4Hb/Hωとなり、上記(5)式が求まる。
Equation 11] I O = P O (cos 2 θ f + {(Hb 2 + Hω 2/2) / H S 2} sin 2 θ f I (ω) = P O (2HbHω / H S 2) sin 2 θ f I (2ω) = P O (Hω 2 / 2H S 2 ) sin 2 θ f Then, when the ratio of I (ω) and I (2ω) is calculated, I (ω) / I
(2ω) = 4Hb / Hω, and the above equation (5) is obtained.

【0024】このようにHωは、I(2ω) /I(ω) 、H
bから求めることができ、(5)式は、θf 、Hsを含
まないため、磁気光学素子の温度特性にまったく依存せ
ず、Hωを安定に測定できる。但し、Hb自体の温度依
存性を充分小さくしておく必要がある。なお、測定可能
な磁界Hωの範囲はHω<Hs−Hbである。
As described above, Hω is I (2ω) / I (ω), H
It can be obtained from b, and since Equation (5) does not include θ f and Hs, Hω can be stably measured without depending on the temperature characteristics of the magneto-optical element. However, it is necessary to sufficiently reduce the temperature dependence of Hb itself. The measurable range of the magnetic field Hω is Hω <Hs−Hb.

【0025】本発明の光磁界測定装置及び方法を図1及
び図4を用いて説明してきたが、磁気光学素子、発光手
段及び受光手段等の配置はそれらの図に限定されること
なく種々の配置を採用することができる。例えば、磁気
光学素子の一端に鏡を密着配置または隔離配置して入射
光を鏡により入射方向に戻すことも可能である。また、
図5に示すように、磁界測定装置の検光部において、反
射鏡を備えたガラスプリズム12を設置したような配置
も可能である。図5では、光ファイバから出射した光は
コリメータレンズ3で平行ビームとなり、反射膜14で
反射され、磁気光学素子1を透過後、反射鏡13で反射
される。反射光はほぼ同じ光路を通り、コリメータレン
ズ3により光ファイバ2’に集光される。また、磁気光
学素子は1枚に限らず複数枚を重ねて光の進行方向に配
置することもできる。以下に、本発明の実施例を示す
が、本発明はこれらに限定されるものではない。
Although the optical magnetic field measuring apparatus and method of the present invention have been described with reference to FIGS. 1 and 4, the arrangement of the magneto-optical element, the light emitting means, the light receiving means, etc. is not limited to these figures, and various arrangements are possible. Arrangements can be adopted. For example, a mirror may be placed in close contact with or separated from one end of the magneto-optical element, and incident light may be returned to the incident direction by the mirror. Also,
As shown in FIG. 5, it is also possible to dispose the glass prism 12 having a reflecting mirror in the light detecting portion of the magnetic field measuring apparatus. In FIG. 5, the light emitted from the optical fiber becomes a parallel beam by the collimator lens 3, is reflected by the reflecting film 14, passes through the magneto-optical element 1, and is then reflected by the reflecting mirror 13. The reflected light passes through almost the same optical path and is focused on the optical fiber 2 ′ by the collimator lens 3. Further, the number of magneto-optical elements is not limited to one, and a plurality of magneto-optical elements can be stacked and arranged in the light traveling direction. Examples of the present invention will be shown below, but the present invention is not limited thereto.

【0026】[0026]

【実施例】実施例1 図2に示すような本発明の光磁界測定装置を作製した。
同図の装置では、磁気光学素子1として、厚さが80μ
mのLPE法により作製した組成Bi1.51. 5 Fe5
12の光学素子を用いた。この素子の一端に反射膜14
を蒸着法により形成した。もう一方の端部に、接着層1
5である紫外線硬化樹脂を介してレンズ(SML)を付
着した。このレンズのもう一方の側にガラス管で支持し
た入射用及び射出用の光ファイバをそれぞれ装着し、こ
のガラス管及び光ファイバ部分を同図に示すようにSU
Sスリーブにより包囲した。発光源として波長が1.3
μmのLED光を用いた(図示しない)。また受光素子
としてフォトダイオードを用いて(図示しない)、そし
て被磁界測定体の周波数ω、2ω及び直流成分に対応す
る光の強度I(ω) 、I(2ω) 及びIO をそれぞれ周波数
成分検出器を用いて観測した。さらに磁気光学素子に磁
界を印加する手段9としてコイルを、同図に示すように
かかる素子の両側に配置した。
Example 1 An optical magnetic field measuring apparatus of the present invention as shown in FIG. 2 was produced.
In the apparatus shown in the figure, the thickness of the magneto-optical element 1 is 80 μm.
The composition was prepared by LPE method m Bi 1.5 Y 1. 5 Fe 5
An optical element of O 12 was used. A reflective film 14 is formed on one end of this element.
Was formed by a vapor deposition method. Adhesive layer 1 on the other end
A lens (SML) was attached via an ultraviolet curing resin of No. 5. An optical fiber for incidence and an optical fiber supported by a glass tube are attached to the other side of this lens, and the glass tube and the optical fiber portion are attached to the SU as shown in FIG.
Surrounded by S-sleeve. The wavelength of the light source is 1.3
LED light of μm was used (not shown). And using a photodiode as the light receiving element (not shown), and the frequency omega of the magnetic field measured sample, 2 [omega and corresponds to the DC component to the intensity of light I (omega), I (2 [omega) and I O respectively frequency component detection It was observed using a vessel. Further, as means 9 for applying a magnetic field to the magneto-optical element, coils were arranged on both sides of the element as shown in FIG.

【0027】(1)バイアス磁界がない場合の磁界測定 図2の装置に磁界印加手段9により50Hzの外部磁界
を印加して、光の強度I(2ω) 及びIO を測定し、k=
I(2ω) /IO を測定した。Hωが小さいとき、外部磁
界の振幅Hωとkの関係式(2)から次のように求めら
れた。
[0027] (1) is applied to the apparatus of the magnetic field measuring Figure 2 when no bias magnetic field is an external magnetic field of 50Hz by a magnetic field applying means 9 measures the intensity of light I (2 [omega) and I O, k =
I (2ω) / IO was measured. When Hω is small, it was obtained as follows from the relational expression (2) between the amplitude Hω of the external magnetic field and k.

【数12】Hω(Oe)=3150×√k この関係は周囲の温度によってもほとんど変化しないこ
とがわかった。
## EQU12 ## Hω (Oe) = 3150 × √k It has been found that this relationship hardly changes depending on the ambient temperature.

【0028】(2)バイアス磁界がある場合の磁界測定 永久磁石を用いてバイアス磁界として500(Oe)の
一定磁界を上記の装置に印加した状態で、上記(1)と
同様にして磁界印加手段から50Hzの外部磁界を印加
した。I(2ω) 、I(ω) 及びその比I(2ω) /I(ω) を
測定して、(5)式の関係より下記式:
(2) Magnetic field measurement in the presence of a bias magnetic field A magnetic field applying means similar to the above (1) with a constant magnetic field of 500 (Oe) being applied as a bias magnetic field to the above apparatus using a permanent magnet. An external magnetic field of 50 to 50 Hz was applied. I (2ω), I (ω) and the ratio I (2ω) / I (ω) are measured, and the following formula is obtained from the relation of formula (5):

【数13】Hω(Oe)=2000×I(2ω) /I(ω) が求められ、これにより外部磁界Hωが容易に求められ
ることを確認した。
[Equation 13] Hω (Oe) = 2000 × I (2ω) / I (ω) was obtained, and it was confirmed that the external magnetic field Hω was easily obtained.

【0029】[0029]

【発明の効果】本発明の光磁界測定装置は、偏光子、検
光子を用いないため、構造が簡単であり、小型化するこ
とができ、その製造も容易である。また、偏光子、検光
子を用いていないので、光ファイバを伝搬する光の偏波
面が変動しても光量の変化はなく、安定に測定できる。
また、I(2ω) /I(ω) 、I(2ω) /IO のように光量
の比を測定するため、環境変化により光ファイバを伝搬
する光量及び周囲温度が変化しても安定に測定できる。
さらに本発明の第1の光磁界測定装置にあってはバイア
ス磁界を必要とせずに温度安定化を図れるために、装置
の構造が一層簡単であり、それによる測定方法も一層容
易である。
The optical magnetic field measuring apparatus of the present invention does not use a polarizer and an analyzer, and therefore has a simple structure, can be miniaturized, and is easy to manufacture. Further, since neither a polarizer nor an analyzer is used, even if the polarization plane of the light propagating through the optical fiber changes, the light quantity does not change, and stable measurement is possible.
In addition, since the ratio of the light quantity is measured as I (2ω) / I (ω) and I (2ω) / I O , stable measurement is possible even if the light quantity propagating through the optical fiber and the ambient temperature change due to environmental changes. it can.
Further, in the first optical magnetic field measuring apparatus of the present invention, since the temperature can be stabilized without the need for a bias magnetic field, the structure of the apparatus is simpler and the measuring method by it is easier.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の光磁界測定装置の具体例を示
す。
FIG. 1 shows a specific example of a first optical magnetic field measuring apparatus of the present invention.

【図2】本発明の実施例で用いた光磁界測定装置のセン
サ部を示す。
FIG. 2 shows a sensor unit of an optical magnetic field measuring apparatus used in an example of the present invention.

【図3】本発明で用いる多磁区構造を有する磁気光学素
子を示す。
FIG. 3 shows a magneto-optical element having a multi-domain structure used in the present invention.

【図4】バイアス磁界を印加する本発明の第2の光磁界
測定装置の一具体例を示す。
FIG. 4 shows a specific example of a second optical magnetic field measuring apparatus of the present invention which applies a bias magnetic field.

【図5】反射鏡を備えたガラスプリズムを用いた本発明
の光磁界測定装置のセンサ部を示す。
FIG. 5 shows a sensor section of the optical magnetic field measuring apparatus of the present invention using a glass prism provided with a reflecting mirror.

【図6】偏光子、検光子及びファラデー回転子を用いる
従来の光磁界センサの配置を示す図である。
FIG. 6 is a diagram showing an arrangement of a conventional optical magnetic field sensor using a polarizer, an analyzer and a Faraday rotator.

【符号の説明】[Explanation of symbols]

1 磁気光学素子 2 光ファイバ 3 コリメータレンズ 4 発光素子(光源) 5,6 周波数成分検出器 7 割算器7 8 電線ケーブル 9 磁界印加手段 12 プリズム 13 反射鏡 14 反射膜 15 接着層 17 偏光子 18 検光子 19 受光素子 20 トランス 21 プリアンプ 22 DCアンプ 23 ACアンプ 24 割算器 25 ガラス管 26 SUSスリーブ DESCRIPTION OF SYMBOLS 1 Magneto-optical element 2 Optical fiber 3 Collimator lens 4 Light emitting element (light source) 5,6 Frequency component detector 7 Divider 7 8 Electric wire cable 9 Magnetic field applying means 12 Prism 13 Reflector 14 Reflective film 15 Adhesive layer 17 Polarizer 18 Analyzer 19 Light receiving element 20 Transformer 21 Preamplifier 22 DC amplifier 23 AC amplifier 24 Divider 25 Glass tube 26 SUS sleeve

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年3月10日[Submission date] March 10, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁界を印加しない状態では多磁区構造を
有し且つ磁区内の光の進行方向と平行な磁化成分が隣接
する磁区では互いに異なる磁気光学素子と、該素子に光
を入射するための発光手段と、該磁気光学素子を通過し
た0次回折光のうち被磁界測定体の磁界周波数ωの2倍
の周波数で振動する光成分の光強度II(2ω) 及び該0
次回折光のうちの直流成分に相当する光成分の光強度I
O とを求める手段と、比I(2ω) /IO を求める手段と
を有する光磁界測定装置。
1. A magneto-optical element having a multi-domain structure in a state where a magnetic field is not applied, and the magnetic components parallel to the traveling direction of light in the magnetic domain are different from each other in adjacent magnetic domains, and light is incident on the element. Of the 0th-order diffracted light passing through the magneto-optical element, and the light intensity II (2ω) of the light component vibrating at a frequency twice the magnetic field frequency ω of the magnetic field measurement target and the 0
Light intensity I of the light component corresponding to the DC component of the next-order diffracted light
An optical magnetic field measuring apparatus having means for obtaining O and means for obtaining the ratio I (2ω) / I O.
【請求項2】 磁界を発生する被磁界測定体の近傍にお
いて、磁界を印加しない状態では多磁区構造を有し且つ
磁区内の光の進行方向と平行な磁化成分が隣接する磁区
では互いに異なる磁気光学素子に、光を入射させ、前記
磁気光学素子を通過した回折光のうち、0次回折光のみ
を取り出し、該0次回折光のうち被磁界測定体の磁界周
波数ωの2倍の周波数2ωで振動する光成分の強度I(2
ω) 及び直流成分に相当する光成分の強度IO とをそれ
ぞれ測定し、それらの比I(2ω) /IO を求めることに
よって被磁界測定体の磁界を測定する方法。
2. A magnetic field having a multi-domain structure in the vicinity of a magnetic field measurement object that generates a magnetic field when no magnetic field is applied, and magnetic components parallel to the traveling direction of light in the magnetic domain are different from each other in adjacent magnetic domains. Light is incident on the optical element, and out of the diffracted light that has passed through the magneto-optical element, only the 0th-order diffracted light is extracted and oscillates at a frequency 2ω that is twice the magnetic field frequency ω of the magnetic field measured object in the 0th-order diffracted light. Intensity of light component I (2
ω) and the intensity I O of the light component corresponding to the DC component, and the ratio I (2ω) / I O of them is measured to measure the magnetic field of the magnetic field measurement target.
【請求項3】 磁界を印加しない状態では多磁区構造を
有し且つ磁区内の光の進行方向と平行な磁化成分が隣接
する磁区では互いに異なる磁気光学素子と、該素子に光
を入射するための発光手段と、上記磁気光学手段に一定
のバイアス磁界を加える磁界印加手段と、該磁気光学素
子を通過した0次回折光のうち被磁界測定体の磁界周波
数ωで振動する光成分の光強度I(ω) と、その2倍の周
波数2ωで振動する光成分の光強度I(2ω) とを測定す
る手段と、比I(2ω) /I(ω)を求める手段とを有する
光磁界測定装置。
3. A magneto-optical element having a multi-domain structure in a state where a magnetic field is not applied, and the magnetic components parallel to the traveling direction of light in the magnetic domain are different from each other in adjacent magnetic domains, and light is incident on the element. Light emitting means, a magnetic field applying means for applying a constant bias magnetic field to the magneto-optical means, and a light intensity I of a light component of the 0th-order diffracted light passing through the magneto-optical element that vibrates at the magnetic field frequency ω of the magnetic field measured object. (ω) and a means for measuring the light intensity I (2ω) of a light component oscillating at twice the frequency 2ω, and a means for determining the ratio I (2ω) / I (ω) ..
【請求項4】 磁界を発生する被磁界測定体の近傍にお
いて、磁界を印加しない状態では多磁区構造を有し且つ
磁区内の光の進行方向と平行な磁化成分が隣接する磁区
では互いに異なる磁気光学素子に、一定のバイアス磁界
を印加しながら光を入射させ、前記磁気光学素子を通過
した回折光のうち、0次回折光のみを取り出し、該0次
回折光のうち被磁界測定体の磁界周波数ωで振動する光
成分の光強度I(ω) とその2倍の周波数で振動する光成
分の光強度I(2ω) をそれぞれ測定し、それらの比I(2
ω) /I(ω) を求めることによって被磁界測定体の磁界
強度を測定する方法。
4. A magnetic field having a multi-domain structure in the vicinity of a magnetic field measuring object that generates a magnetic field and a magnetic component parallel to the traveling direction of light in the magnetic domain is different from each other in the adjacent magnetic domains when no magnetic field is applied. Light is incident on the optical element while applying a constant bias magnetic field, and only 0th-order diffracted light is extracted from the diffracted light that has passed through the magneto-optical element. The light intensity I (ω) of the light component oscillating at and the light intensity I (2ω) of the light component oscillating at twice the frequency are measured, respectively, and their ratio I (2
A method for measuring the magnetic field strength of a magnetic field subject by determining ω) / I (ω).
【請求項5】 磁気光学素子としてBi置換稀土類鉄ガ
ーネットを用い且つそのファラデー回転角をθf 、飽和
磁界をHS としたときHS / tanθf の温度変化が小さ
くなるような厚みで用いる請求項1の光磁界測定装置。
5. A Bi-substituted rare earth iron garnet is used as the magneto-optical element, and is used with a thickness such that the temperature change of H S / tan θ f becomes small when the Faraday rotation angle is θ f and the saturation magnetic field is H S. The optical magnetic field measuring device according to claim 1.
JP04081398A 1991-06-04 1992-03-04 Optical magnetic field measuring apparatus and method Expired - Fee Related JP3140546B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04081398A JP3140546B2 (en) 1992-03-04 1992-03-04 Optical magnetic field measuring apparatus and method
US07/892,468 US5477376A (en) 1991-06-04 1992-06-02 Optical attenuators and optical modulators employing magneto-optic element
US08/526,336 US5619367A (en) 1991-06-04 1995-09-11 Apparatus and method for measuring magnetic fields employing magneto-optic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04081398A JP3140546B2 (en) 1992-03-04 1992-03-04 Optical magnetic field measuring apparatus and method

Publications (2)

Publication Number Publication Date
JPH05264603A true JPH05264603A (en) 1993-10-12
JP3140546B2 JP3140546B2 (en) 2001-03-05

Family

ID=13745205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04081398A Expired - Fee Related JP3140546B2 (en) 1991-06-04 1992-03-04 Optical magnetic field measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP3140546B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033357A (en) * 2005-07-29 2007-02-08 Sumitomo Metal Mining Co Ltd Method of evaluating magneto-optical device
JP2012013710A (en) * 2011-08-18 2012-01-19 Sumitomo Metal Mining Co Ltd Method of evaluating magneto-optical device
WO2013125502A1 (en) * 2012-02-24 2013-08-29 スタック電子株式会社 Small-diameter three-axis electric field sensor and method for manufacturing same
WO2024090561A1 (en) * 2022-10-28 2024-05-02 シチズンファインデバイス株式会社 Magnetic film and magnetic field sensor head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033357A (en) * 2005-07-29 2007-02-08 Sumitomo Metal Mining Co Ltd Method of evaluating magneto-optical device
JP2012013710A (en) * 2011-08-18 2012-01-19 Sumitomo Metal Mining Co Ltd Method of evaluating magneto-optical device
WO2013125502A1 (en) * 2012-02-24 2013-08-29 スタック電子株式会社 Small-diameter three-axis electric field sensor and method for manufacturing same
WO2024090561A1 (en) * 2022-10-28 2024-05-02 シチズンファインデバイス株式会社 Magnetic film and magnetic field sensor head

Also Published As

Publication number Publication date
JP3140546B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US4112367A (en) Magnetomer using a thin magnetic film optical waveguide with a.c. modulation and automatic nulling
US6232763B1 (en) Magneto-optical element and optical magnetic field sensor
US4563639A (en) Temperature and/or electrical intensity measuring apparatus based on the Faraday effect
US4529875A (en) Fiber-optical measuring apparatus
US6122415A (en) In-line electro-optic voltage sensor
US4539519A (en) Fiber optics device for measuring the intensity of an electric current utilizing the Faraday effect
US5619367A (en) Apparatus and method for measuring magnetic fields employing magneto-optic element
US5691837A (en) Magneto-optical element and optical magnetic field sensor using the same
JPH0475470B2 (en)
JPS58103674A (en) Measuring head for magnetometer and magnetometer containing said head
US4956607A (en) Method and apparatus for optically measuring electric current and/or magnetic field
JP3144928B2 (en) Optical sensor
JPH05264603A (en) Apparatus and method for measuring photomagnetic field
Sohlström Fibre optic magnetic field sensors utilizing iron garnet materials
JPH01312483A (en) Magnetic field measuring apparatus
JPH0445813B2 (en)
JP3135744B2 (en) Optical magnetic field sensor
JP3065142B2 (en) Optical magnetic field sensor
Cecelja et al. Optical sensors for the validation of electromagnetic field distributions in biological phantoms
JP3494525B2 (en) Optical fiber current measuring device
JP3041637B2 (en) Optical applied DC current transformer
GB2100018A (en) Fibre optics measuring device
JP2008256371A (en) Optical fiber current sensor, and current measuring method
JPS62150184A (en) Magnetic field measuring apparatus
JPH08278357A (en) Device and method for measuring magnetic field

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001205

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees