JP3215861B2 - Magneto-optical element and current measuring device using the same - Google Patents

Magneto-optical element and current measuring device using the same

Info

Publication number
JP3215861B2
JP3215861B2 JP31554891A JP31554891A JP3215861B2 JP 3215861 B2 JP3215861 B2 JP 3215861B2 JP 31554891 A JP31554891 A JP 31554891A JP 31554891 A JP31554891 A JP 31554891A JP 3215861 B2 JP3215861 B2 JP 3215861B2
Authority
JP
Japan
Prior art keywords
magneto
light
incident
medium
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31554891A
Other languages
Japanese (ja)
Other versions
JPH05196653A (en
Inventor
俊彦 芳野
Original Assignee
俊彦 芳野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 俊彦 芳野 filed Critical 俊彦 芳野
Priority to JP31554891A priority Critical patent/JP3215861B2/en
Publication of JPH05196653A publication Critical patent/JPH05196653A/en
Application granted granted Critical
Publication of JP3215861B2 publication Critical patent/JP3215861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ファラデー効果を有
する媒体からなる磁気光学素子と、この磁気光学素子を
用いた電流測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical device made of a medium having a Faraday effect and a current measuring device using the magneto-optical device.

【0002】[0002]

【従来の技術】従来より、4本のファラデー効果を有す
るガラスロッドを四角の枠形に構成して光閉回路を形成
し、この光閉回路の枠面を貫通するように電流を流し、
枠形の1つの角から偏光された光を入射させ、3個所の
角で直角に反射させた後に入射点の近くから偏光光を出
射し、この出射光の偏光面の回転角度から電流量を測定
する光電流計が知られている。この光電流計は電力分野
において電気的CTに代わるものとして実用化されつつ
ある。
2. Description of the Related Art Conventionally, four glass rods having a Faraday effect are formed in a rectangular frame shape to form an optical closed circuit, and a current is passed through the frame surface of the optical closed circuit.
Polarized light is incident from one corner of the frame, reflected at three angles at right angles, and then polarized light is emitted from near the point of incidence. Photoammeters for measuring are known. This photoammeter is being put to practical use as an alternative to electrical CT in the power field.

【0003】このような従来の光電流計は、光閉回路の
3個所の角の反射部分において、プリズムの全反射を利
用しているので、全反射時に発生する偏光の変化を補正
する必要がある。このために、直交して配置した2つの
全反射面を設けて偏光の変化を補正していた。
In such a conventional photoammeter, since the total reflection of the prism is used in the three corner reflection portions of the optical closed circuit, it is necessary to correct a change in polarization generated at the time of total reflection. is there. For this purpose, two orthogonally arranged total reflection surfaces are provided to correct the polarization change.

【0004】[0004]

【発明が解決しようとする課題】このため従来の光電流
計では、構成が複雑になり、材料を多く必要とし、生産
性が悪いなど多くの問題があった。また、直交して配置
した2つの全反射面の間においては、偏光が直線偏光で
ないので、この部分に光路に対して平行な磁界が存在す
ると測定誤差になるという問題もあった。
For this reason, the conventional photoammeter has a number of problems, such as a complicated structure, a large amount of materials, and a low productivity. Further, since the polarized light is not linearly polarized between two orthogonally arranged total reflection surfaces, there is a problem that a measurement error occurs if a magnetic field parallel to the optical path exists in this portion.

【0005】[0005]

【課題を解決するための手段】本発明における磁気光学
素子は、磁気光学効果を有する材料の媒体からなり、媒
体内部に入射した光が表面の複数の反射面で反射されて
入射個所近くから出射するように構成され、この反射面
は誘電体の多層膜で形成されるとともに、反射面に対す
る光の入射角度がブリュスター角以上かつ臨界角以下に
なるように、媒体の屈折率および入射角を設定したもの
である。
A magneto-optical device according to the present invention comprises a medium made of a material having a magneto-optical effect. Light incident inside the medium is reflected by a plurality of reflecting surfaces on the surface and emitted from near the incident point. The reflective surface is formed of a dielectric multilayer film, and the refractive index and the incident angle of the medium are adjusted so that the incident angle of light on the reflective surface is equal to or greater than the Brewster angle and equal to or less than the critical angle. It is set.

【0006】また、本発明による電流測定装置は、この
磁気光学素子を用い、媒体内を反射する光の光路で囲ま
れた空間内に電流の通路を形成し、この通路を流れる電
流量に応じて光の偏光量を変化させ、この偏光量から電
流量を測定するようにしたものである。
In addition, the current measuring device according to the present invention uses the magneto-optical element to form a current path in a space surrounded by an optical path of light reflected in the medium, and according to the amount of current flowing through the path. Thus, the amount of polarization of light is changed, and the amount of current is measured from the amount of polarization.

【0007】[0007]

【作用】各反射面において、光の入射角がブリュスター
角以上でありかつ臨界角以下であるので、反射光の位相
は入射面に平行および垂直に偏った直線に対して同じに
なる。このため、反射面の多層膜の各膜厚を斜光線に対
して1/4にすると、各反射面で発生した全ての部分反
射波を同じ位相で重ねることができる。したがって、膜
数を十分に多くすることによって、平行偏光(P)およ
び垂直偏光(S)ともに、振幅反射係数R=R=1
が実現できることになる。すなわち、完全等方性光路実
現の可能性がある。
In each of the reflecting surfaces, the incident angle of light is equal to or greater than the Brewster angle and equal to or less than the critical angle. Therefore, the phase of the reflected light is the same with respect to straight lines that are parallel and perpendicular to the incident surface. For this reason, if the thickness of each multilayer film on the reflecting surface is reduced to 1/4 of the oblique ray, all the partially reflected waves generated on each reflecting surface can be overlapped with the same phase. Therefore, by sufficiently increasing the number of films, the amplitude reflection coefficient R s = R p = 1 for both the parallel polarization (P) and the vertical polarization (S).
Can be realized. That is, there is a possibility of realizing a completely isotropic optical path.

【0008】また、媒体内の光閉回路を貫通する電流を
流すと、媒体内の各点で発生した磁界による磁気光学効
果は光路に沿って保存され、かつ、反射面による反射で
も偏光状態は変化しないので、出射光の偏光回転角の測
定から電流量を正確に測定できる。
When a current is passed through the optical closed circuit in the medium, the magneto-optical effect caused by the magnetic field generated at each point in the medium is preserved along the optical path. Since there is no change, the current amount can be accurately measured from the measurement of the polarization rotation angle of the emitted light.

【0009】[0009]

【実施例】以下、本発明に係る磁気光学素子と電流測定
装置を詳細に説明する。図1は、本発明の磁気光学素子
の一実施例の正面図である。1は磁気光学効果であるフ
ァラデー効果を有する材料で作られた六角形の媒体で、
中心部に電流測定時に電線を通す穴2が形成されてい
る。3は光線が入射されたり出射されたりする入出射
面、4a,4b,4cは反射面である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a magneto-optical element and a current measuring device according to the present invention will be described in detail. FIG. 1 is a front view of one embodiment of the magneto-optical element of the present invention. 1 is a hexagonal medium made of a material having a Faraday effect which is a magneto-optical effect,
A hole 2 through which the electric wire passes when measuring the current is formed at the center. Reference numeral 3 denotes an entrance / exit surface on which light rays enter or exit, and reference numerals 4a, 4b, and 4c denote reflection surfaces.

【0010】入射光5aが入出射面3に所定の角度で入
射されると、光線は媒体1の内部に入り、反射面4a,
4b,4cで順次反射されて、入出射面3の入射点と同
じ点または入射点に近い点から出射光5bとなって出射
される。この入出射面3には、入射光を効率よく媒体内
に入射させるために、反射防止膜を形成することができ
る。
When the incident light 5a is incident on the entrance / exit surface 3 at a predetermined angle, the light beam enters the inside of the medium 1 and the reflecting surfaces 4a,
The light is sequentially reflected by 4b and 4c, and is emitted as emission light 5b from the same point as the incident point on the entrance / exit surface 3 or a point close to the incident point. An anti-reflection film can be formed on the entrance / exit surface 3 in order to make incident light efficiently enter the medium.

【0011】図2は、反射面4a,4b,4cの拡大断
面図である。媒体1の反射面の表面(外面)には、多層
膜が形成されている。4aは屈折率Nで厚さD
第1の誘電体膜、4aは屈折率Nで厚さDの第2
の誘電体膜である。この誘電体膜4a,4aの上に
は、さらにこれと同じ第3,第4の誘電体膜4a,4
が形成され、この2種の誘電体膜を単位として多層
の誘電体膜が形成されている。なお、媒体1は屈折率N
を有する。
FIG. 2 is an enlarged sectional view of the reflecting surfaces 4a, 4b, 4c. On the surface (outer surface) of the reflection surface of the medium 1, a multilayer film is formed. 4a 1 first thickness D 1 at a refractive index N 1 is the dielectric film, 4a 2 second thickness D 2 at the refractive index N 2
Is a dielectric film. On the dielectric films 4a 1 and 4a 2 , the same third and fourth dielectric films 4a 3 and 4
a 4 is formed, the multilayer dielectric film is formed of the two dielectric films as a unit. The medium 1 has a refractive index N
Has zero .

【0012】媒体1内を透過してきた光が誘電体膜4a
に入射角Aで入射すると、一部は反射し、一部は誘
電体膜4aに入射する。誘電体膜4aに入射した光
は誘電体膜4aに入射角Aで入射し、一部はその境
界面で反射し、一部は誘電体膜4aに入射する。誘電
体膜4aに入射した光は誘電体膜4aに入射角A
で入射し、一部はその境界面で反射し、一部は誘電体膜
4aに入射する。このように、媒体1から多層膜に入
射した光線は点線の光路で示したような反射を繰り返し
て、媒体1に戻ってくる。各反射面で同様な反射が行わ
れる。
Light transmitted through the medium 1 is converted into a dielectric film 4a.
When an incident angle A 0 to 1, a portion is reflected, a portion is incident on the dielectric film 4a 1. The light incident on the dielectric film 4a 1 is incident at an incident angle A 1 into the dielectric film 4a 2, a portion thereof is reflected at the boundary surface, a portion is incident on the dielectric film 4a 2. The dielectric film 4a is the light incident on the second incident angle A 2 in the dielectric film 4a 3
In incident portion is reflected at the boundary surface, a portion is incident on the dielectric film 4a 3. As described above, the light beam incident on the multilayer film from the medium 1 returns to the medium 1 by repeating reflection as indicated by the dotted optical path. Similar reflection is performed on each reflection surface.

【0013】なお、この反射において、次のような式が
成立する。 NsinA=NsinA=NsinA
In this reflection, the following equation is established. N 0 sinA 0 = N 1 sinA 1 = N 2 sinA 2

【0014】図3は、所望の特性の磁気光学素子を設計
するために用いる図である。0から右側の横軸は、媒体
1から第1の誘電体膜4aに対する入射角Aのsi
n値、縦軸は第1の誘電体膜4aから第2の誘電体膜
4aに対する入射角Aのsin値、0から左側の横
軸は、第2の誘電体膜4aから第3の誘電体膜4a
に対する入射角Aのsin値である。
FIG. 3 is a diagram used to design a magneto-optical element having desired characteristics. The horizontal axis right from 0, si angle of incidence A 0 for the first dielectric film 4a 1 from the medium 1
n value, the vertical axis represents sin value of the angle of incidence A 1 of the first dielectric film 4a 1 to the second dielectric film 4a 2, the horizontal axis of the left from 0, the second dielectric film 4a 2 3 dielectric film 4a 3
Is a sin value of the angle of incidence A 2 against.

【0015】よく知られた屈折の法則により、媒体1と
第1の誘電体膜4aとの屈折の関係は直線0Q上にあ
り、第1の誘電体膜4aと第2の誘電体膜4aとの
屈折の関係は直線0S上にある。半径が1の半円Cは、
ブリュスター角に対応した入射角の条件である。半円C
に外接する長方形は、各境界反射面で全反射の臨界に対
応した条件である。
[0015] The well-known law of refraction, the relationship refraction between the medium 1 and the first dielectric film 4a 1 is on a straight line 0Q, first dielectric film 4a 1 second dielectric film relationship refraction and 4a 2 are on a straight line 0S. A semicircle C with a radius of 1 is
This is the condition of the incident angle corresponding to the Brewster angle. Semicircle C
The rectangle circumscribing is the condition corresponding to the criticality of total reflection at each boundary reflection surface.

【0016】この発明の条件を満たすためには、入射角
は、半円Cの外側で長方形の内側、すなわち線分PQお
よびRS上の入射角でなければならない。したがって、
条件を満たす入射角は、図3において、例えばA=B
(sinA=sinB)、A=B(sin
=sinB)、 A=B (sinA=s
inB)である。この条件と線分PQとの交点をX、
線分RSとの交点をYとすると、線分XYは横軸と平行
になる。
In order to satisfy the conditions of the present invention, the angle of incidence must be outside the semicircle C and inside the rectangle, that is, on the line segments PQ and RS. Therefore,
The incident angle satisfying the condition is, for example, A 0 = B in FIG.
0 (sinA 0 = sinB 0 ), A 1 = B 1 (sin
A 1 = sinB 1 ), A 2 = B 2 (sinA 2 = s
inB 2 ). The intersection of this condition with the line segment PQ is X,
Assuming that the intersection with the line segment RS is Y, the line segment XY is parallel to the horizontal axis.

【0017】図4は、本発明の磁気光学素子の具体的な
実施例を示すもので、軸対称の六角形の媒体1にSF6
ガラス(屈折率N=1.84)を用い、図のような角
度で光線(波長λ=633nm)を入射させ、反射させ
る。そして、第1(第3)の誘電体膜4aとして、S
iO(N=1.45),第2(第4)の誘電体膜4
としてTiO(N=2.25)を用いる。
FIG. 4 shows a specific embodiment of the magneto-optical element according to the present invention.
Using glass (refractive index N 0 = 1.84), a light beam (wavelength λ = 633 nm) is incident and reflected at an angle as shown in the figure. Then, as the dielectric film 4a 1 of the first (second 3), S
iO 2 (N 1 = 1.45), second (fourth) dielectric film 4
using TiO 2 (N 2 = 2.25) as a 2.

【0018】この条件において、各入射角は、B=5
0°とした場合、B=76.4°,B=38.8°
となる。このB0=50°は、媒体1と第1の誘電膜4
の境界反射面で、ブリュスター角=38.2°,臨
界角52.0°の範囲内にある。また、第1の誘電体膜
4aと第2の誘電体膜4aの境界反射面で、B
76.4°は、ブリュスター角57.1°、臨界角=9
0°の範囲内にある。この結果は、図3に示された要求
される条件を満たすものである。
Under these conditions, each incident angle is B 0 = 5
When 0 ° is set, B 1 = 76.4 ° and B 2 = 38.8 °
Becomes This B0 = 50 ° corresponds to the difference between the medium 1 and the first dielectric film 4.
In the boundary reflection surface of a 1, Brewster angle = 38.2 °, in the range of the critical angle 52.0 °. Further, in the first dielectric film 4a 1 and the boundary reflection surface of the second dielectric film 4a 2, B 1 =
76.4 ° is a Brewster angle of 57.1 ° and a critical angle = 9.
It is in the range of 0 °. This result satisfies the required conditions shown in FIG.

【0019】ここでさらに、各誘電体膜の膜厚におい
て、D=λ/(4NcosB)=463.27n
m、D=λ/(4NcosB)=90.19nm
とすると、各誘電体膜は4分の1波長となるので、各境
界反射面での部分反射光が強め合いの干渉を起こす。例
えば、誘電体膜の単位を8対とすると、振幅反射率係数
=1.0000,R=0.99997となり、偏
光を保持した反射が達成できる。
Here, in the thickness of each dielectric film, D 1 = λ / (4N 1 cosB 1 ) = 463.27n
m, D 2 = λ / (4N 2 cosB 2 ) = 90.19 nm
Then, since each of the dielectric films has a quarter wavelength, partially reflected light on each boundary reflection surface causes constructive interference. For example, when 8 pairs of units of the dielectric film, the amplitude reflectance factor R s = 1.0000, reflections held R p = 0.99997. Therefore, the polarization can be achieved.

【0020】図5は、この発明の磁気光学素子を使用し
た電流測定装置の構成図であり、磁気光学素子10の中
心部の穴12には、測定すべき電流を流す電線16が挿
入されている。レーザ光15は偏光子17を透過して磁
気光学素子10に入射し、上記に説明したように媒体内
を各反射面で内部反射して1周し、入射点と同じ点から
出射する。出射したレーザ光は、電線16に流れる電流
量に応じて偏光角が回転しており、この出射光は検光子
18を透過して光電気変換器からなる検出器19によっ
て検出される。この受光検出量は電線16の電流量に比
例する。検光子18の透過軸の方位は、出射時に端面透
過の際に受ける偏光方位に対して45°にすると、測定
感度が最大になる。
FIG. 5 is a block diagram of a current measuring device using the magneto-optical element of the present invention. An electric wire 16 for passing a current to be measured is inserted into a hole 12 at the center of the magneto-optical element 10. I have. The laser beam 15 is transmitted through the polarizer 17 and enters the magneto-optical element 10, internally reflected by the respective reflection surfaces in the medium as described above, makes one round, and exits from the same point as the incident point. The emitted laser light has its polarization angle rotated according to the amount of current flowing through the electric wire 16, and this emitted light passes through the analyzer 18 and is detected by the detector 19 composed of a photoelectric converter. The amount of detected light is proportional to the amount of current flowing through the wire 16. If the azimuth of the transmission axis of the analyzer 18 is set to 45 ° with respect to the polarization azimuth received at the time of transmission through the end face at the time of emission, the measurement sensitivity is maximized.

【0021】[0021]

【発明の効果】本発明によると、偏光が保持されるよう
な反射膜を形成した媒体内に光の閉回路を構成できるの
で、光路の全てにおいて光学的に等方的にすることがで
きる。また、このような磁気光学素子を電流測定に使用
すると、いかなる方向に流れる電流も極めて正確に測定
することができる。
According to the present invention, since a closed circuit of light can be formed in a medium in which a reflection film for retaining polarized light is formed, it is possible to make the entire optical path optically isotropic. When such a magneto-optical element is used for current measurement, a current flowing in any direction can be measured very accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気光学素子の一実施例の正面図であ
る。
FIG. 1 is a front view of one embodiment of a magneto-optical element according to the present invention.

【図2】図1の磁気光学素子の反射面の拡大断面図であ
る。
FIG. 2 is an enlarged sectional view of a reflection surface of the magneto-optical element of FIG.

【図3】所望の特性の磁気光学素子を設計するために用
いる図である。
FIG. 3 is a diagram used to design a magneto-optical element having desired characteristics.

【図4】図1の磁気光学素子の具体的な実施例を示す正
面図である。
FIG. 4 is a front view showing a specific example of the magneto-optical element of FIG. 1;

【図5】この発明の磁気光学素子を使用した電流測定装
置の構成図である。
FIG. 5 is a configuration diagram of a current measuring device using the magneto-optical element of the present invention.

【符号の説明】[Explanation of symbols]

1 磁気光学効果のある媒体 2 穴 3 入出射面 4a,4b,4c 反射面 5a 入射光 5b 出射光 10 磁気光学素子 12 穴 15 レーザ光 16 電線 17 偏光子 18 検光子 19 検出器 REFERENCE SIGNS LIST 1 medium having magneto-optical effect 2 hole 3 entrance / exit surface 4a, 4b, 4c reflection surface 5a incident light 5b exit light 10 magneto-optical element 12 hole 15 laser light 16 electric wire 17 polarizer 18 analyzer 19 detector 19

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁気光学効果を有する材料の媒体からな
り、媒体内部に入射した光が表面の複数の反射面で反射
されて入射個所近くから出射するように構成され、前記
反射面は誘電体の多層膜で形成されるとともに、反射面
に対する光の入射角度がブリュスター角以上かつ臨界角
以下になるように、媒体,誘電体の屈折率および前記入
射角を設定した磁気光学素子。
1. A medium made of a material having a magneto-optical effect, wherein light incident on the medium is reflected by a plurality of reflection surfaces on the surface and emitted from near an incident point, and the reflection surface is made of a dielectric material. And a refractive index of the medium and the dielectric and the incident angle are set so that the incident angle of light on the reflecting surface is not less than the Brewster angle and not more than the critical angle.
【請求項2】 請求項1に記載の磁気光学素子を用い、
媒体内を反射する光の光路で囲まれた空間内に電流の通
路を形成し、この通路を流れる電流量に応じて光の偏光
量を変化させ、この偏光量から電流量を測定するように
した電流測定装置。
2. Use of the magneto-optical element according to claim 1,
A current path is formed in a space surrounded by an optical path of light reflected in the medium, the amount of polarization of light is changed according to the amount of current flowing through the path, and the amount of current is measured from the amount of polarization. Current measuring device.
JP31554891A 1991-09-24 1991-09-24 Magneto-optical element and current measuring device using the same Expired - Fee Related JP3215861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31554891A JP3215861B2 (en) 1991-09-24 1991-09-24 Magneto-optical element and current measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31554891A JP3215861B2 (en) 1991-09-24 1991-09-24 Magneto-optical element and current measuring device using the same

Publications (2)

Publication Number Publication Date
JPH05196653A JPH05196653A (en) 1993-08-06
JP3215861B2 true JP3215861B2 (en) 2001-10-09

Family

ID=18066672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31554891A Expired - Fee Related JP3215861B2 (en) 1991-09-24 1991-09-24 Magneto-optical element and current measuring device using the same

Country Status (1)

Country Link
JP (1) JP3215861B2 (en)

Also Published As

Publication number Publication date
JPH05196653A (en) 1993-08-06

Similar Documents

Publication Publication Date Title
Azzam et al. General analysis and optimization of the four-detector photopolarimeter
US4492436A (en) Polarization independent beam splitter
US4084883A (en) Reflective polarization retarder and laser apparatus utilizing same
Compain et al. Broadband division-of-amplitude polarimeter based on uncoated prisms
JPS58129372A (en) Magnetic field-light converter
WO1982003914A1 (en) A temperature detector
US3506362A (en) Laser system which indicates the angular position of an optically anisotropic element
Dummer et al. High-quality Brewster’s angle polarizer for broadband infrared application
JP3153452B2 (en) Optical magnetic field sensor
US11892479B2 (en) Interference type optical magnetic field sensor device
CN110187525B (en) Electro-optic phase modulator with low residual amplitude modulation
JP3215861B2 (en) Magneto-optical element and current measuring device using the same
JPH024864B2 (en)
CN210005814U (en) electro-optic phase modulator with low residual amplitude modulation
GB2192070A (en) Optical attenuator
JPH0445813B2 (en)
JPS61212773A (en) Photosensor
Azzam Extinction of the p and s polarizations of a wave on reflection at the same angle from a transparent film on an absorbing substrate: applications to parallel-mirror crossed polarizers and a novel integrated polarimeter
EP0370071B1 (en) Partly transparent mirror for a ring laser gyro
RU2762886C1 (en) Faraday cell for measuring alternating current in high-voltage networks
Birich et al. Precision laser spectropolarimetry
Li et al. Determination of the fast axis with an infrared spectrometer for quartz and mica waveplates
JPH11304923A (en) Laser visibility meter
Azzam et al. Stokes-parameter photopolarimeter using an optically or mechanically rotatable two-detector assembly
JPH08146051A (en) Eo probe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees