JPH04315073A - Optical magnetic field sensor - Google Patents

Optical magnetic field sensor

Info

Publication number
JPH04315073A
JPH04315073A JP3079667A JP7966791A JPH04315073A JP H04315073 A JPH04315073 A JP H04315073A JP 3079667 A JP3079667 A JP 3079667A JP 7966791 A JP7966791 A JP 7966791A JP H04315073 A JPH04315073 A JP H04315073A
Authority
JP
Japan
Prior art keywords
magnetic field
magneto
optical
light
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3079667A
Other languages
Japanese (ja)
Inventor
Hidekazu Nishimura
英一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3079667A priority Critical patent/JPH04315073A/en
Publication of JPH04315073A publication Critical patent/JPH04315073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To obtain the title sensor capable of measuring the intensity of a magnetic field over a range from a low magnetic field to a high magnetic field with high accuracy. CONSTITUTION:Lights respectively linearly polarized are guided to first and second magnetic optical elements 22a, 22b mutually different in Verdet constant along the direction of a magnetic field to be measured. The planes of polarization of the polarized lights passing through the elements 22a, 22b are rotated by magnetic optical effect. The lights emitted from these magnetic optical elements 22a, 22b are guided to an analyzer 23 permitting the lights linearly polarized in a specific direction to transmit and the intensities of the transmitted lights are respectively detected by photodetectors 28a, 28b. On the basis of the detected values, the signal from the magnetic optical element larger in Verdet constant is used within a low magnetic field intensity range and the signal of the magnetic optical element lower in Verdet constant is used in a high magnetic field intensity range.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁気光学素子を用いた
光磁界センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field sensor using a magneto-optical element.

【0002】0002

【従来の技術及び発明が解決しようとする課題】従来、
磁気光学素子の有するファラデ−効果を利用した磁界セ
ンサが開発されている。ファラデ−効果は磁気光学素子
中を光が通過する際、その進行方向と同一方向に外部磁
界が加わると、偏光面が回転する現象をいう。
[Prior art and problems to be solved by the invention] Conventionally,
Magnetic field sensors that utilize the Faraday effect of magneto-optical elements have been developed. The Faraday effect is a phenomenon in which when light passes through a magneto-optical element, when an external magnetic field is applied in the same direction as the direction in which the light travels, the plane of polarization rotates.

【0003】このような磁界センサの原理を図3に示す
。図3に示すように、発光部1からの入射光2は、偏光
子3により直線偏光4となり、磁気光学素子5に導かれ
る。磁気光学素子5には光の進行方向に外部磁界Hが印
加されており、この磁界Hによってθだけ偏光面が回転
する。そして、検光子6により直線偏光4と45°の相
対角度差の偏光方向を有する出射光7が受光部8に導か
れる。この受光部8において検出された光強度を例えば
電流値に変換し、その値に基づいて磁界Hの大きさを求
めることができる。
The principle of such a magnetic field sensor is shown in FIG. As shown in FIG. 3, incident light 2 from the light emitting section 1 becomes linearly polarized light 4 by the polarizer 3, and is guided to the magneto-optical element 5. An external magnetic field H is applied to the magneto-optical element 5 in the direction in which the light travels, and the plane of polarization is rotated by θ due to this magnetic field H. Then, the output light 7 having a polarization direction with a relative angle difference of 45 degrees from the linearly polarized light 4 is guided to the light receiving section 8 by the analyzer 6 . The light intensity detected by the light receiving section 8 is converted into, for example, a current value, and the magnitude of the magnetic field H can be determined based on that value.

【0004】従来より実際に使用されている磁界センサ
の概略構成を図4に示す。発光素子17からの光は、光
ファイバ16aによってレンズ15aに導かれ、レンズ
15aを通過して偏光子11に入射される。偏光子11
を通過した直線偏光は磁気光学素子12に導かれ、そこ
で被測定磁界Hに応じて光の偏光面が回転し、さらに検
光子13に導かれる。検光子13を通過した光は反射ミ
ラ−14、レンズ15b、及び光ファイバ16bを介し
て受光素子18に導かれる。取り付けの都合上、図4に
示すように、入射ファイバ16aと出射ファイバ16b
とを同一方向に引き出すのが一般的である。
FIG. 4 shows a schematic configuration of a magnetic field sensor that has been actually used in the past. Light from the light emitting element 17 is guided to the lens 15a by the optical fiber 16a, passes through the lens 15a, and enters the polarizer 11. Polarizer 11
The linearly polarized light that has passed is guided to the magneto-optical element 12, where the plane of polarization of the light is rotated according to the magnetic field H to be measured, and further guided to the analyzer 13. The light passing through the analyzer 13 is guided to the light receiving element 18 via the reflecting mirror 14, the lens 15b, and the optical fiber 16b. For convenience of installation, as shown in FIG. 4, the input fiber 16a and the output fiber 16b are
It is common to pull them out in the same direction.

【0005】ファラデ−効果による偏光面の回転は、回
転角をθ、印加する磁界をH、磁気光学素子のベルデ定
数をV、素子の中の光が通過する部分の長さをlとする
と、θは以下の(1)式で表される。 θ=V・H・l………(1) P0 を磁界0の時の光強度、Pを検光子通過後の光強
度とすると、Pは以下の(2)式で表される。 P=P0 (1+sin2θ)………(2)
The rotation of the plane of polarization due to the Faraday effect is expressed as follows: where the rotation angle is θ, the applied magnetic field is H, the Verdet constant of the magneto-optical element is V, and the length of the part of the element through which light passes is l. θ is expressed by the following equation (1). θ=V・H・l (1) When P0 is the light intensity when the magnetic field is 0, and P is the light intensity after passing through the analyzer, P is expressed by the following equation (2). P=P0 (1+sin2θ)……(2)

【0006
】これらθとPとの関係を図3に示す。図3から明らか
なように、θが非常に小さい時には(2)式は以下の(
3)式で近似することができ、検出される光強度はθに
比例し、この光強度に基づいて磁界の大きさを求めるこ
とができる。 P=P0 (1+2θ)………(3) 従って、回転角がθ《45°と極めて小さい場合には、
直線性が極めて良好である。しかし、回転角が大きくな
るにつれて、以下の(4)式で表される非直線性誤差E
が大きくなる。 E=(2θ−Sin2θ)/2θ………(4)例えば、
非直線性誤差が1%以内であるのはθ≦7°の時である
0006
] The relationship between these θ and P is shown in FIG. As is clear from Figure 3, when θ is very small, equation (2) becomes the following (
It can be approximated by equation 3), the detected light intensity is proportional to θ, and the magnitude of the magnetic field can be determined based on this light intensity. P=P0 (1+2θ)……(3) Therefore, when the rotation angle is extremely small as θ《45°,
The linearity is extremely good. However, as the rotation angle increases, the nonlinearity error E expressed by the following equation (4)
becomes larger. E=(2θ−Sin2θ)/2θ……(4) For example,
The nonlinearity error is within 1% when θ≦7°.

【0007】従って、従来の光磁界センサにおいて低磁
界(低電流)を高精度で測定するためにはベルデ定数の
大きい磁気光学素子を使用するため高磁界(大電流)域
で非直線誤差が大きくなり、また逆に高磁界を高精度で
測定するためにはベルデ定数の小さい磁気光学素子を使
用するため低磁界(低電流)域では光強度変化が非常に
小さくS/N比が悪くなり、測定誤差が大きくなる。
Therefore, in order to measure low magnetic fields (low currents) with high precision in conventional optical magnetic field sensors, a magneto-optical element with a large Verdet constant is used, so non-linear errors are large in the high magnetic field (large current) region. Conversely, in order to measure high magnetic fields with high precision, a magneto-optical element with a small Verdet constant is used, so in the low magnetic field (low current) region, the change in light intensity is very small, resulting in a poor S/N ratio. Measurement error increases.

【0008】このため、低磁界から高磁界まで高精度で
測定しようとする場合には、ベルデ定数が大きな磁気光
学素子を備えた光磁界センサとベルデ定数が小さい磁気
光学素子を備えた光磁界センサとの2組必要であり、取
付けスペ−スが増加すると共に、コスト高になるという
問題があった。
Therefore, when measuring from low magnetic fields to high magnetic fields with high precision, a magneto-optical field sensor equipped with a magneto-optical element having a large Verdet constant and a magneto-optical field sensor equipped with a magneto-optical element having a small Verdet constant are used. This requires two sets, which increases the installation space and increases costs.

【0009】この発明はかかる事情に鑑みてなされたも
のであって、1台で低磁界から高磁界まで高精度で磁界
強度を測定することができる、広いダイナミックレンジ
を有する光磁界センサを提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an optical magnetic field sensor that has a wide dynamic range and can measure magnetic field strength with high precision from low magnetic fields to high magnetic fields with a single device. The purpose is to

【0010】0010

【課題を解決するための手段】この目的を達成するため
に、本発明は、直線偏光された光が測定すべき磁界の方
向に沿って導かれ、その中を通過する偏光の偏光面を前
記磁界による磁気光学効果により回転させる磁気光学手
段と、この磁気光学手段から出射された特定方向の直線
偏光を透過させる検光子と、検光子を透過した光の強度
を検出する検出手段とを有し、この検出値に基づいて前
記磁界の強度を測定する光磁界センサであって、前記磁
気光学手段は互いにベルデ定数の異なる第1及び第2の
磁気光学素子を有し、また前記検出手段は第1及び第2
の検出素子を有し、各磁気光学素子に前記第1の偏光を
導き、各磁気光学素子から夫々出射された2つの光を前
記検光子を介して夫々第1及び第2の検出素子に導くこ
とを特徴とする光磁界センサを提供する。
To achieve this object, the invention provides that linearly polarized light is guided along the direction of the magnetic field to be measured, and that the plane of polarization of the polarized light passing through it is It has a magneto-optical means that rotates due to the magneto-optic effect of a magnetic field, an analyzer that transmits linearly polarized light in a specific direction emitted from the magneto-optical means, and a detection means that detects the intensity of the light that has passed through the analyzer. , a magneto-optical field sensor that measures the intensity of the magnetic field based on the detected value, the magneto-optical means having first and second magneto-optical elements having different Verdet constants, and the detection means having a first magneto-optical element having different Verdet constants. 1st and 2nd
the first polarized light is guided to each magneto-optical element, and the two lights emitted from each magneto-optical element are guided to the first and second detection elements, respectively, via the analyzer. An optical magnetic field sensor is provided.

【0011】[0011]

【作用】この発明においては、ベルデ定数の異なる2つ
の磁気光学素子を用い、これらを通過した偏光を夫々異
なる検出素子により検出するので、測定しようとする磁
界強度に応じて適切に測定を行うことができる。従って
、低磁界から高磁界まで高精度で磁界強度を測定するこ
とができる。
[Operation] In this invention, two magneto-optical elements with different Verdet constants are used, and the polarized light passing through them is detected by a different detection element, so measurements can be carried out appropriately depending on the magnetic field strength to be measured. Can be done. Therefore, magnetic field strength can be measured with high precision from low magnetic fields to high magnetic fields.

【0012】0012

【実施例】以下、この発明の実施例について具体的に説
明する。
[Examples] Examples of the present invention will be described in detail below.

【0013】図1はこの発明の一実施例に係る光磁界セ
ンサを示す概略構成図である。発光素子27からの光は
、光ファイバ−26によってレンズ25に導かれ、平行
光にされるか又は集光されて偏光ビ−ムスプリッタ21
に入射される。この偏光ビ−ムスプリッタ21では入射
した光が2つの直交する直線偏光に分離される。分離さ
れた光の一方は反射ミラ−24で反射して磁気光学素子
22aに導かれ、他方は直接磁気光学素子22bに導か
れる。これら磁気光学素子22a,22bは、ベルデ定
数の異なる材料で形成されており、これらを通過する光
の方向は、測定しようとする磁界Hの方向と一致してい
る。
FIG. 1 is a schematic diagram showing a magneto-optical field sensor according to an embodiment of the present invention. The light from the light emitting element 27 is guided to the lens 25 by the optical fiber 26, and is made into parallel light or condensed and sent to the polarizing beam splitter 21.
is incident on the The polarizing beam splitter 21 separates the incident light into two orthogonal linearly polarized lights. One of the separated lights is reflected by the reflection mirror 24 and guided to the magneto-optical element 22a, and the other is directly guided to the magneto-optical element 22b. These magneto-optical elements 22a and 22b are made of materials having different Verdet constants, and the direction of light passing through them coincides with the direction of the magnetic field H to be measured.

【0014】これら磁気光学素子22a,22bにおけ
るファラデ−回転角θA 、θB は、素子22aのベ
ルデ定数をVA 、その光路長をlA とし、素子22
bのベルデ定数をVB 、その光路長をlB とすると
、夫々以下の(5),(6)で表すことができる。 θA =VA ・H・lA ………(5)θB =VB
 ・H・lB ………(6)
The Faraday rotation angles θA and θB in these magneto-optical elements 22a and 22b are calculated by setting the Verdet constant of the element 22a to VA and the optical path length to lA, and
When the Verdet constant of b is VB and its optical path length is IB, they can be expressed by the following (5) and (6), respectively. θA = VA ・H・lA ......(5) θB = VB
・H・LB……(6)

【0015】このように偏
光面が回転した2つの光は、特定の方向に直線偏光した
光(例えば、各磁気光学素子に入射された直交する2つ
の光の偏光方向に対し45°の角度を有する光)を透過
させる検光子23に導かれる。この検光子23を透過し
た光の強度PA 、PB は、夫々以下の式(7),(
8)で表わすことができる。 PA =P0A(1+sin2θA )………(7)P
B =P0B(1−sin2θB )………(8)
The two lights whose polarization planes have been rotated in this way are light linearly polarized in a specific direction (for example, at an angle of 45° with respect to the polarization direction of two orthogonal lights incident on each magneto-optical element). light) is guided to an analyzer 23 that transmits the light. The intensities PA and PB of the light transmitted through the analyzer 23 are expressed by the following equations (7) and (
8). PA =P0A(1+sin2θA)……(7)P
B = P0B (1-sin2θB)……(8)

【0
016】検光子23を通過した光は反射ミラ−34で反
射し、夫々レンズ35a,35b及び光ファイバ36a
,36bを介して受光素子28a,28bに導かれる。 これら受光素子28a,28bは、例えば光電変換素子
からなり、検出した光強度を電流信号として出力し、そ
の値に基づいて磁界強度を求める。
0
[016] The light passing through the analyzer 23 is reflected by a reflection mirror 34, and is connected to lenses 35a, 35b and an optical fiber 36a, respectively.
, 36b to the light receiving elements 28a, 28b. These light receiving elements 28a and 28b are composed of, for example, photoelectric conversion elements, output the detected light intensity as a current signal, and calculate the magnetic field intensity based on the value.

【0017】磁気光学素子22aとしてベルデ定数が大
きい物質(例えば希土類鉄ガ−ネット結晶)用い、素子
22bとしてベルデ定数が小さい物質(例えば鉛ガラス
)を用いた場合には、磁界強度と検光子を通過した光の
強度との関係は図2に示すようになる。
When a material with a large Verdet constant (for example, rare earth iron garnet crystal) is used as the magneto-optical element 22a, and a material with a small Verdet constant (for example, lead glass) is used as the element 22b, the magnetic field strength and the analyzer can be The relationship with the intensity of the transmitted light is shown in FIG.

【0018】磁界強度の測定を高精度で行うためには、
非直線性誤差を少なくする必要があるが、そのためには
、検出される光強度が、夫々P0A(1+2θA )、
P0B(1−2θB )で近似することができる範囲、
すなわち直線性が良好な範囲を用いる必要がある。また
、低磁界(低電流)を高精度で測定するためには光強度
変化が大きくする必要がある。従って、図2に示すよう
に、低磁界(低電流)領域aを測定する場合には磁気光
学素子22aからの光を用い、高磁界(大電流)領域b
を測定する場合には磁気光学素子22bからの光を用い
る。すなわち、領域aでは受光素子28aからの信号を
使用し、領域bでは受光素子28bからの信号を使用す
る。
In order to measure magnetic field strength with high precision,
It is necessary to reduce the nonlinearity error, but for this purpose, the detected light intensity must be P0A(1+2θA),
The range that can be approximated by P0B (1-2θB),
In other words, it is necessary to use a range with good linearity. Furthermore, in order to measure a low magnetic field (low current) with high precision, it is necessary to increase the change in light intensity. Therefore, as shown in FIG. 2, when measuring the low magnetic field (low current) region a, the light from the magneto-optical element 22a is used to measure the high magnetic field (large current) region b.
When measuring, light from the magneto-optical element 22b is used. That is, in region a, the signal from light receiving element 28a is used, and in region b, the signal from light receiving element 28b is used.

【0019】このように、ベルデ定数の異なる2つの磁
気光学素子を用い、これらを通過した偏光を夫々異なる
検出素子により検出するので、測定しようとする磁界強
度に応じて適切に測定を行うことができる。
In this way, two magneto-optical elements with different Verdet constants are used, and the polarized light that passes through them is detected by a different detection element, so it is possible to perform measurements appropriately depending on the magnetic field strength to be measured. can.

【0020】なお、測定する磁界強度の範囲に応じて、
磁気光学素子の材料(ベルデ定数)及び光路長を任意に
決定することができる。使用する磁気光学素子は、上述
のような鉛ガラス、希土類鉄ガ−ネット結晶に限らず、
ベルデ定数に差があり、従ってファラデ−回転角に差が
ある材料の組み合わせであれば良い。ベルデ定数が極め
て小さいものの例としては石英があり、ベルデ定数が比
較的大きなものの例としてはゲルマニウム酸ビスマス単
結晶などがある。なお、この発明のセンサは、ポッケル
ス効果を応用した光電圧センサに適用することも可能で
ある。
[0020] Depending on the range of magnetic field strength to be measured,
The material (Verdet constant) and optical path length of the magneto-optical element can be arbitrarily determined. The magneto-optical elements used are not limited to lead glass and rare earth iron garnet crystals as mentioned above.
Any combination of materials may be used as long as they have different Verdet constants and therefore different Faraday rotation angles. An example of a material with an extremely small Verdet constant is quartz, and an example of a material with a relatively large Verdet constant is a bismuth germanate single crystal. Note that the sensor of the present invention can also be applied to a photovoltage sensor to which the Pockels effect is applied.

【0021】[0021]

【発明の効果】この発明によれば、測定しようとする磁
界強度に応じて適切に測定を行うことができ、低磁界か
ら高磁界まで高精度で磁界強度を測定することができる
。従って、低磁界から高磁界まで測定するのに1台のセ
ンサでよく、取り付けスペ−スを節約できるとともに、
コストダウンを図ることができる。
According to the present invention, measurements can be made appropriately depending on the magnetic field strength to be measured, and magnetic field strengths can be measured with high precision from low magnetic fields to high magnetic fields. Therefore, only one sensor is required to measure from low to high magnetic fields, saving installation space and
Cost reduction can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施態様に係る光磁界センサの概略
構成図。
FIG. 1 is a schematic configuration diagram of a magneto-optical field sensor according to an embodiment of the present invention.

【図2】図1に示すセンサで求められる磁界強度と検出
された光強度との関係を示すグラフ図。
FIG. 2 is a graph diagram showing the relationship between the magnetic field strength determined by the sensor shown in FIG. 1 and the detected light intensity.

【図3】従来の光磁界センサの原理を説明するための図
FIG. 3 is a diagram for explaining the principle of a conventional optical magnetic field sensor.

【図4】従来の光磁界センサの概略構成図。FIG. 4 is a schematic configuration diagram of a conventional optical magnetic field sensor.

【図5】従来のセンサにおけるファラデ−回転角と検出
された光強度との関係を示すグラフ図。
FIG. 5 is a graph diagram showing the relationship between Faraday rotation angle and detected light intensity in a conventional sensor.

【符号の説明】[Explanation of symbols]

21;偏光ビ−ムスプリッタ、22a,22b;磁気光
学素子、23;検光子、24,34;反射ミラ−、25
,35a,35b;レンズ、26,36a,36b;光
ファイバ、27;発光素子、28a,28b;受光素子
21; Polarizing beam splitter, 22a, 22b; Magneto-optical element, 23; Analyzer, 24, 34; Reflection mirror, 25
, 35a, 35b; lens; 26, 36a, 36b; optical fiber; 27; light emitting element; 28a, 28b; light receiving element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  直線偏光された光が測定すべき磁界の
方向に沿って導かれ、その中を通過する偏光の偏光面を
前記磁界による磁気光学効果により回転させる磁気光学
手段と、この磁気光学手段から出射された特定方向の直
線偏光を透過させる検光子と、検光子を透過した光の強
度を検出する検出手段とを有し、この検出値に基づいて
前記磁界の強度を測定する光磁界センサであって、前記
磁気光学手段は互いにベルデ定数の異なる第1及び第2
の磁気光学素子を有し、また前記検出手段は第1及び第
2の検出素子を有し、各磁気光学素子に前記第1の偏光
を導き、各磁気光学素子から夫々出射された2つの光を
前記検光子を介して夫々第1及び第2の検出素子に導く
ことを特徴とする光磁界センサ。
1. A magneto-optic means in which linearly polarized light is guided along the direction of a magnetic field to be measured, and the plane of polarization of the polarized light passing therethrough is rotated by the magneto-optic effect caused by the magnetic field; An optical magnetic field that has an analyzer that transmits linearly polarized light in a specific direction emitted from the means, and a detection means that detects the intensity of the light that has passed through the analyzer, and that measures the strength of the magnetic field based on the detected value. In the sensor, the magneto-optical means has first and second magnets having different Verdet constants.
The detecting means has a first and second detecting element, and guides the first polarized light to each magneto-optical element to detect two lights emitted from each magneto-optical element. An optical magnetic field sensor, characterized in that the optical magnetic field sensor is guided through the analyzer to the first and second detection elements, respectively.
JP3079667A 1991-04-12 1991-04-12 Optical magnetic field sensor Pending JPH04315073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3079667A JPH04315073A (en) 1991-04-12 1991-04-12 Optical magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3079667A JPH04315073A (en) 1991-04-12 1991-04-12 Optical magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH04315073A true JPH04315073A (en) 1992-11-06

Family

ID=13696528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3079667A Pending JPH04315073A (en) 1991-04-12 1991-04-12 Optical magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH04315073A (en)

Similar Documents

Publication Publication Date Title
US6122415A (en) In-line electro-optic voltage sensor
US6301400B1 (en) Fiber optic current sensor having rotation immunity
US4560932A (en) Magneto-optical converter utilizing Faraday effect
US5053617A (en) Instrument for concurrently optically measuring thermal and electric quantities
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects
JP3144928B2 (en) Optical sensor
JPS5897669A (en) Magnetic field-light converter
CN110007125A (en) Double light path optical current sensor
JPH04315073A (en) Optical magnetic field sensor
JPH06100642B2 (en) Optical applied magnetic field sensor
JPS59107273A (en) Photocurrent and magnetic field sensor
JPH04315074A (en) Optical magnetic field sensor
JPS58140716A (en) Magnetic field-light transducer
JPS63196865A (en) Optical current measuring apparatus
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JP3148614B2 (en) Optical fiber current / magnetic field sensor
JPS6296875A (en) Optical magnetometer
CN115616462A (en) High-precision temperature compensation method for optical fiber current sensor
JPS60375A (en) Measuring device of magnetic field
JPH07198757A (en) Photomagnetic sensor
JPH01187476A (en) Magnetic field sensor device
JPH07301644A (en) Electromagnetic field sensor
JPH05119075A (en) Optical voltage sensor
JPH0843454A (en) Overcurrent detection method and device
JPS63118677A (en) Detection of magnetic field by optical fiber magnetic field sensor