JPS63118677A - Detection of magnetic field by optical fiber magnetic field sensor - Google Patents

Detection of magnetic field by optical fiber magnetic field sensor

Info

Publication number
JPS63118677A
JPS63118677A JP26473886A JP26473886A JPS63118677A JP S63118677 A JPS63118677 A JP S63118677A JP 26473886 A JP26473886 A JP 26473886A JP 26473886 A JP26473886 A JP 26473886A JP S63118677 A JPS63118677 A JP S63118677A
Authority
JP
Japan
Prior art keywords
light
magnetic field
optical fiber
made incident
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26473886A
Other languages
Japanese (ja)
Inventor
Masanobu Shimizu
正信 清水
Ryohei Miyake
了平 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP26473886A priority Critical patent/JPS63118677A/en
Publication of JPS63118677A publication Critical patent/JPS63118677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve the variance of Verdet's constant due to temperature by making two light beams different in wavelength incident on an optical fiber magnetic field sensor and detecting the Faraday rotation angle for each wavelength. CONSTITUTION:Light beams from a light source 1 which emits light having a wavelength lambda1 and a light source 2 emits light having a wavelength lambda2 are made incident on an optical fiber 4 through a multiplexer 3. They are converted to parallel rays of light by a rod lens 5 and are turned by a rectangular prism 6 and are made incident on a polarizing prism 7. The incident light is converted to linear light and is made incident on a Faraday rotating element 8. The exit light is divided into (x) and (y) components by a polarizing beam splitter prism 9. Light of the (y) component is made incident on an optical fiber 11 by a rod lens 10 and is inputted to a demultiplexer 12. This light is divided to light beams having wavelengths lambda1 and lambda2 again by the demultiplexer 12, and they are made incident on detectors 13 and 14. Light of the (x) component is turned by a rectangular prism 15 and is converted to parallel rays of light by a rod lens 16 and is made incident on an optical fiber 17 and is inputted to a demultiplexer 18. This light is divided into light beams having wavelengths lambda1 and lambda2 again by the demultiplexer 18, and they are made incident on detectors 19 and 20.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高圧線の電流等を測定するための光ファイバ磁
界センサを利用した磁界検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic field detection method using an optical fiber magnetic field sensor for measuring current, etc. in a high voltage line.

(従来技術) 光ファイバの電気絶縁性、耐電磁誘導性、耐環境性など
の利点を生かして、光ファイバを計測や制御などに利用
することが近年おこなわれている、中でも光ファイバと
光電気効果または光磁気効果を有する結晶とを組合せた
光ファイバ型磁界センナは、電力分野を主とした広い産
業分野において応用が期待され開発、製品化も進んでい
る。
(Prior art) In recent years, optical fibers have been used for measurement and control, taking advantage of their advantages such as electrical insulation, resistance to electromagnetic induction, and environmental resistance. Optical fiber type magnetic field sensors combined with crystals having optical or magneto-optical effects are expected to be applied in a wide range of industrial fields, mainly the electric power field, and are being developed and commercialized.

第3図は従来の光ファイバ型磁界センナの一例である。FIG. 3 shows an example of a conventional optical fiber type magnetic field sensor.

このセンサは発光素子lから入射した光は光ファイバ2
を通り、ロッドレンズ3により平行光に直され、直角プ
リズム4により曲げられて偏光プリズム5に入射する。
In this sensor, the light incident from the light emitting element 1 is transmitted through the optical fiber 2.
The light passes through the rod lens 3, is converted into parallel light, is bent by the right angle prism 4, and enters the polarizing prism 5.

この偏光プリズム5において入射光は直線偏光に直され
、ファラデー回転素子6に入る。このファラデー回転素
子6を通る直線偏光は素子の長さl、磁界の強さHに比
例してθ=VdH1で示される角度だけ偏光面が回転さ
せられる(Vdはベルデ定数)。
In this polarizing prism 5, the incident light is converted into linearly polarized light and enters the Faraday rotation element 6. The plane of polarization of the linearly polarized light passing through the Faraday rotation element 6 is rotated by an angle shown by θ=VdH1 in proportion to the length l of the element and the strength H of the magnetic field (Vd is the Verdet constant).

ファラデー回転素子6からの出射光は偏光ビーム・スプ
リッタプリズム7によりX成分とX成分に分けられ、y
I&分の光はロッドレンズ8により光ファイバ9に入射
して検出器10に導かれ、検出WIOでTL気出力P1
に変換される。X成分の光は直角プリズム11により曲
げられ、ロッドレンズ12で平行光とされ、光ファイバ
13を通して検出器14に導かれて検出器14で電気出
力P2に変換される。これらの電気出力P、、P2は夫
々次式で表わされる。
The light emitted from the Faraday rotation element 6 is divided into an X component and an X component by a polarizing beam splitter prism 7, and the
The light of I & minute is incident on the optical fiber 9 by the rod lens 8 and guided to the detector 10, and the TL output P1 is detected by the detection WIO.
is converted to The X component light is bent by a right angle prism 11, made into parallel light by a rod lens 12, guided to a detector 14 through an optical fiber 13, and converted into an electrical output P2 by the detector 14. These electrical outputs P, P2 are respectively expressed by the following equations.

P+ =に2 cog2 (45°十〇)P2 =に2
5in2 (45@十〇)このP、 、 P2について
次の信号処理を行なえばF= CP+ −P2 ) /
 CP+ +P2 )=coa (2θ+900) =srn2 θ 8=20    (ただしθ<< 1 )となり磁界H
に比例した出力電圧が得られる。
P+ = 2 cog2 (45°10) P2 = 2
5in2 (45@10) If you perform the following signal processing on this P, , P2, F= CP+ -P2) /
CP+ +P2 )=coa (2θ+900) =srn2 θ 8=20 (however, θ<<1), and the magnetic field H
An output voltage proportional to can be obtained.

このようにして磁界Hの強さをファラデー効果を用いて
光信号の変化により計測しているのが光ファイバ磁界セ
ンサである。
The optical fiber magnetic field sensor measures the strength of the magnetic field H using the Faraday effect based on changes in the optical signal.

(従来技術の問題点) これらの磁界センサに使用するファラデー回転素子6と
して必要な条件は次の通りである。
(Problems with the Prior Art) The conditions necessary for the Faraday rotation element 6 used in these magnetic field sensors are as follows.

イ、ベルデ定数の温度特性が小さいこと。B. The temperature characteristics of the Verdet constant are small.

ロ、ベルデ定数が大きいこと。B. The Verdet constant is large.

ハ、光の透過率が良いこと。C. Good light transmittance.

例えば鉛ガラスの場合はベルデ定数の温度特性は理論的
にないとされているが、ベルデ定数の値は0.04 (
i+iu 10e−cm)  (波長0−8 pm)と
小さい。
For example, in the case of lead glass, it is said that there is theoretically no temperature characteristic of the Verdet constant, but the value of the Verdet constant is 0.04 (
i+iu 10e-cm) (wavelength 0-8 pm).

一方、強磁性体のYIGではベルデ定数値は9(sin
 10e ・cm)(波長1.3 gm)と200倍も
大きくなっているが、温度特性は非常に大きい。
On the other hand, in the case of ferromagnetic YIG, the Verdet constant value is 9 (sin
10e cm) (wavelength 1.3 gm), which is 200 times larger, but its temperature characteristics are extremely large.

第4図にその温度特性の一例を示すように、−20〜1
20℃で16%程度存在する。
As shown in Figure 4, an example of its temperature characteristics is -20 to 1
It exists at about 16% at 20°C.

ファラデー回転角はθ=VdH1であるので、温度L1
でのベルデ定数をVd (t+)、温度し?でのベルデ
定数をVd (tz)とすると、夫々のファラデー回転
角θl、θ2は θ+ =Vd (t+ )Hl θ2 =Vd (F )Hl で表される。
Since the Faraday rotation angle is θ=VdH1, the temperature L1
What is the Verdet constant at Vd (t+) and temperature? When the Verdet constant at is Vd (tz), the respective Faraday rotation angles θl and θ2 are expressed as θ+ =Vd(t+)Hl θ2 =Vd(F)Hl.

このため、θのみ検出して温度の検出を行なわないと、
θ2 =Vd (t+ )H’ 1となるようなH′に
磁界が変化したと誤検出を行なうことになこれらの影響
を減少させるために、ファラデー回転角の温度変化と磁
界の温度変化が相殺されるような組成のファラデー回転
素子6を見い出すことにより、ベルデ定数の温度変化の
改善を行なうことができる0例えば一部の会社において
は(Tbo、uYa、a+) 3 Fe soum [
略し一’((YTb)IGX)の組成が開発されており
、これは第4図に示すように一20〜120℃で±1%
と良好な温度特性である。
Therefore, if only θ is detected and the temperature is not detected,
θ2 = Vd (t+)H' 1.In order to reduce these effects, the temperature change in the Faraday rotation angle and the temperature change in the magnetic field cancel each other out. By finding a Faraday rotator element 6 having a composition such that the temperature change of the Verdet constant can be improved, for example, in some companies (Tbo, uYa, a+) 3 Fe soum [
A composition of 1' ((YTb)IGX) has been developed, which has a temperature of ±1% at -20 to 120°C, as shown in Figure 4.
and good temperature characteristics.

(発明の目的) 本発明は従来のように組成のW整を行なわなくともベル
デ定数の温度変化の改善を行うことができるようにする
ことを目的とする。
(Objective of the Invention) An object of the present invention is to make it possible to improve the temperature change in the Verdet constant without having to adjust the W composition as in the conventional method.

(問題点を解決するための手段) 本発明の光ファイバ磁界センナによる磁界検出方法は、
光ファイバ磁界センサに異なった2波長入l、入2を入
射し、夫々の波長入l、入2での7アラデ一回転角を検
出し、その両回転角の比からファラデー回転素子8の温
度を求め、その温度を補正して磁界の強さを検出するよ
うにしたものである。
(Means for solving the problem) The magnetic field detection method using the optical fiber magnetic field sensor of the present invention is as follows:
Inject two different wavelengths of input 1 and 2 into an optical fiber magnetic field sensor, detect the rotation angle of 7 degrees at each wavelength of input 1 and input 2, and calculate the temperature of the Faraday rotator element 8 from the ratio of both rotation angles. The temperature is corrected to detect the strength of the magnetic field.

(発明の作用) 第1図は本発明の光ファイバ磁界センナの一実施例であ
る。
(Operation of the Invention) FIG. 1 shows an embodiment of the optical fiber magnetic field sensor of the present invention.

第1図においてλ重の光を出す光源l、入2の光を出す
光源2からの光は合波器3に入射し、光ファイバ4に入
射する。そしてロッドレンズ5により平行光にされ、直
角プリズム6により曲げられて偏光プリズム7に入射す
る。この偏光プリズム7で入射光は直線偏光に直され、
ファラデー回転素子8に入る。偏光面は磁界の強さHに
比例してO回転する。この出射光は偏光ビーム・スプリ
ッタ・プリズム9によりX成分、y成分に分けられる。
In FIG. 1, light from a light source 1 that emits λ-multiplexed light and a light source 2 that emits λ-multiplexed light enter a multiplexer 3 and then enter an optical fiber 4. The light is then made into parallel light by the rod lens 5, bent by the right angle prism 6, and incident on the polarizing prism 7. This polarizing prism 7 converts the incident light into linearly polarized light,
It enters the Faraday rotation element 8. The plane of polarization rotates by O in proportion to the strength H of the magnetic field. This emitted light is divided into an X component and a y component by a polarizing beam splitter prism 9.

y成分の光はロッドレンズ10により光ファイバ11に
入射して分波器12に入る0分波器12では再び波長入
1、入2に分けられ、検出器13.14に入射する。
The y-component light enters the optical fiber 11 through the rod lens 10 and enters the demultiplexer 12. In the 0 demultiplexer 12, it is again divided into wavelength input 1 and wavelength input 2, and enters the detectors 13 and 14.

X成分の光は直角プリズム15により曲げられ、ロッド
レンズ16で平行光とされて光ファイバ17に入射して
分波器18に入る0分波器18では再び波長入l、入2
に分けられ、検出器19.20に入射する。
The X component light is bent by a rectangular prism 15, converted into parallel light by a rod lens 16, enters an optical fiber 17, and enters a demultiplexer 18.
and enters the detector 19.20.

つまり、上記した本件発明は従来の磁界センサに入1、
入2の2波長を通し、夫々の波長におけるファラデー回
転を検出するものである。ファラデー回転の波長依存性
は第5図に示すようになっており、また夫々の波長での
ファデラー回転角は、ベルデ定数に温度特性があるので
次のように記すことができる。
In other words, the present invention described above can be applied to a conventional magnetic field sensor.
The Faraday rotation at each wavelength is detected by passing two wavelengths (input 2). The wavelength dependence of Faraday rotation is shown in FIG. 5, and the Faraday rotation angle at each wavelength can be written as follows since the Verdet constant has temperature characteristics.

θ入l =vd 入1 (t)・H拳 1θ入2 =v
d 入2 (t)・H−1今ここで夫々の波長でのファ
デラー回転角の比をとれば次式のようになる(第2図参
照)。
θ input l = vd input 1 (t)・H fist 1θ input 2 = v
d input 2 (t)·H-1 Now, if we take the ratio of the Faderer rotation angles at each wavelength, we get the following equation (see Figure 2).

K=θ入2/θ入1 =Vd  入2(t)/Vd  入I (1)(t:温
度) 従ってこの比は磁界の強さHとは無関係となり、Kはt
の関数となるので、−度、温度tを変化させてKの値を
測定しておけば、逆にKの値からファデラー回転素子8
の温度tを求めることが可俺である。
K = θ input 2 / θ input 1 = Vd input 2 (t) / Vd input I (1) (t: temperature) Therefore, this ratio is independent of the magnetic field strength H, and K is t
Therefore, if you measure the value of K by changing the temperature t by - degrees, you can conversely calculate the value of Faderer rotating element 8 from the value of K.
The easiest thing to do is to find the temperature t.

このようにしてファデラー回転素子8の温度が判明すれ
ば、θ入1=vd 入l (t)・HIllの式かられ
かるようにVd 入1 (t)が判る。素子の長さlも
既に判っており、θ入lは測定できるので、当然磁界の
強さHも測定することが可flとなる。
If the temperature of the Faderer rotation element 8 is determined in this manner, Vd input 1 (t) can be determined from the equation θ input 1=vd input 1 (t)·HIll. Since the length l of the element is already known and the θ input l can be measured, it is naturally possible to measure the magnetic field strength H as well.

従って本発明は従来の問題点であったファデラー回転素
子8の温度特性の影響を受けることがないので、特別に
m成を調整して温度特性を小さくしたファデラー回転材
料を用いなくてもよい。
Therefore, the present invention is not affected by the temperature characteristics of the Faderer rotating element 8, which was a problem in the prior art, so there is no need to use a Faderer rotating material whose temperature characteristics are reduced by specially adjusting the m-constituent.

例えばYIG、Bi :YIG等のベルデ定数は大きい
が、従来は温度特性において問題のあった材料も使用で
きる。
For example, materials such as YIG, Bi:YIG, etc., which have a large Verdet constant but have conventionally had problems in temperature characteristics, can also be used.

なお第1図において光源1,2を交互に発光させれば分
波器12.18を省くことが回走であり、そのようにす
れば2個の検出器13.14も1個に、また2個の検出
器19.20も1個に減らすごとができる。
In Fig. 1, if the light sources 1 and 2 are made to emit light alternately, the demultiplexer 12.18 can be omitted, and in this way, the two detectors 13.14 can also be reduced to one. The two detectors 19 and 20 can also be reduced to one.

(発明の効果) 本発明の磁界検出方法は次のような効果がある(1)フ
ァデラー回転素子8が温度特性の影響を受けることがな
いので、同回転素子8の組成を特別に調整して温度特性
を小さくしたファデラー回転材料を使用する必要がない
、このため光ファイバ磁界センサのファラデー回転素子
8として温度特性の良くない材料を使用することができ
る。
(Effects of the Invention) The magnetic field detection method of the present invention has the following effects (1) Since the Faderer rotating element 8 is not affected by temperature characteristics, the composition of the rotating element 8 is specially adjusted. There is no need to use a Faraday rotation material with low temperature characteristics, and therefore a material with poor temperature characteristics can be used as the Faraday rotation element 8 of the optical fiber magnetic field sensor.

(2)光ファイバ磁界センサの取付場所の温度も測定す
ることが回走なので、例えばケーブル等の異常加熱の監
視に好適である。
(2) Since the temperature at the installation location of the optical fiber magnetic field sensor is also measured in a circular motion, it is suitable for monitoring abnormal heating of cables, etc., for example.

4、図の簡単な説明 第1図は本発明の一例を示す説明図、第2図はベルデ定
数の比と温度との関係を示す説明図、第3図は従来の光
ファイバ磁界センサの説明図、第4図はファラデー回転
材料の温度特性の説明図。
4. Brief explanation of the figures Figure 1 is an explanatory diagram showing an example of the present invention, Figure 2 is an explanatory diagram showing the relationship between the ratio of Verdet constants and temperature, and Figure 3 is an explanation of a conventional optical fiber magnetic field sensor. FIG. 4 is an explanatory diagram of the temperature characteristics of Faraday rotation material.

第5図はファラデー回転材料の波長依存性の説明図であ
る。
FIG. 5 is an explanatory diagram of the wavelength dependence of a Faraday rotation material.

入l、λ2は波長 8はファラデー回転素子input l, λ2 is the wavelength 8 is Faraday rotation element

Claims (1)

【特許請求の範囲】[Claims] 光ファイバ磁界センサに異なった2波長を入射し、夫々
の波長のファラデー回転角を検出し、その両回転角の比
からファラデー回転素子の温度を求め、その温度を補正
して磁界の強さを検出するようにしたことを特徴とする
光ファイバ磁界センサによる磁界検出方法。
Two different wavelengths are incident on an optical fiber magnetic field sensor, the Faraday rotation angle of each wavelength is detected, the temperature of the Faraday rotation element is determined from the ratio of both rotation angles, and the temperature is corrected to determine the strength of the magnetic field. A magnetic field detection method using an optical fiber magnetic field sensor, characterized in that:
JP26473886A 1986-11-06 1986-11-06 Detection of magnetic field by optical fiber magnetic field sensor Pending JPS63118677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26473886A JPS63118677A (en) 1986-11-06 1986-11-06 Detection of magnetic field by optical fiber magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26473886A JPS63118677A (en) 1986-11-06 1986-11-06 Detection of magnetic field by optical fiber magnetic field sensor

Publications (1)

Publication Number Publication Date
JPS63118677A true JPS63118677A (en) 1988-05-23

Family

ID=17407485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26473886A Pending JPS63118677A (en) 1986-11-06 1986-11-06 Detection of magnetic field by optical fiber magnetic field sensor

Country Status (1)

Country Link
JP (1) JPS63118677A (en)

Similar Documents

Publication Publication Date Title
US5485079A (en) Magneto-optical element and optical magnetic field sensor
US5053617A (en) Instrument for concurrently optically measuring thermal and electric quantities
EP0210716B1 (en) Drift compensation technique for a magneto-optic current sensor
US6122415A (en) In-line electro-optic voltage sensor
US4560932A (en) Magneto-optical converter utilizing Faraday effect
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel&#39;s and Faraday effects
US4608535A (en) Magnetic field and current measuring device using a Faraday cell with a thin electrically conductive film substantially covering the Faraday cell
JPH05249207A (en) Photosensor
JP2005517961A (en) Method for manufacturing sensor head of photoelectric current sensor
JPS63118677A (en) Detection of magnetic field by optical fiber magnetic field sensor
JP2004525361A (en) Method for electro-optically measuring voltage in a temperature-compensated manner and apparatus for carrying out the method
JPS58140716A (en) Magnetic field-light transducer
Zhao et al. A heterodyne optical fiber current sensor based on a nanowire-grid in-line polarizer
JPS59107273A (en) Photocurrent and magnetic field sensor
CN111458553B (en) High-sensitivity all-fiber current measuring device and method with double-circulation structure
Chen et al. New Faraday Rotation Element TeO2-PbO-B2O3–SiO2 for Magneto-Optical Current Sensor
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JP3041637B2 (en) Optical applied DC current transformer
JPS59634A (en) Temperature measuring method using optical fiber preserving polarized wave surface
JPS62150184A (en) Magnetic field measuring apparatus
JPH04315073A (en) Optical magnetic field sensor
JPS5935156A (en) Optical current transformer
JPS5928628A (en) Temperature sensor by light
JPH0552917A (en) Magneto-optical sensor
JPS63196865A (en) Optical current measuring apparatus