JPH09180740A - Solid high-molecular fuel cell and manufacture and device thereof - Google Patents

Solid high-molecular fuel cell and manufacture and device thereof

Info

Publication number
JPH09180740A
JPH09180740A JP7353457A JP35345795A JPH09180740A JP H09180740 A JPH09180740 A JP H09180740A JP 7353457 A JP7353457 A JP 7353457A JP 35345795 A JP35345795 A JP 35345795A JP H09180740 A JPH09180740 A JP H09180740A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrode
fuel cell
electrolyte membrane
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7353457A
Other languages
Japanese (ja)
Inventor
Tsutomu Seki
務 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7353457A priority Critical patent/JPH09180740A/en
Publication of JPH09180740A publication Critical patent/JPH09180740A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To evenly form a thin high-molecular electrolyte film with excellent adhesiveness so as to provide a solid high-molecular fuel cell having high performance by screen-printing one surface of an electrode with the solution of high- molecular electrolyte. SOLUTION: An electrode 21, which is formed by forming a catalyst layer 22 on a gas diffusion layer, is placed in a recessed part of a supporting base 19 having a peripheral edge 20. As this gas diffusion layer, a carbon paper or a water repellent carbon paper is desirable. The catalyst layer 22 contains the catalyst, which is composed of the carbon powder carrying platinum, and the electrolyte, and furthermore, it desirably contains the water repellent agent at need. This electrode 21 is screen-printed with the printing liquid 25 through a squeegee 24 by using a screen 23, which is formed of a film 27 and a screen part S, so as to manufacture an electrolyte film 26. As the printing liquid 25, the printing liquid at the appropriate viscosity, which is obtained by using the high-molecular electrolyte composed of the resin of perfluorocarbon sulfonic acid, is used. After drying this electrolyte film 26, other electrode is provided thereon to obtain a cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池、その製造方法及び装置に関し、より詳しくは固体
高分子電解質膜の膜厚を薄くでき、しかも高い電池性能
を有する固体高分子型燃料電池、その製造方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer type fuel cell, a manufacturing method and an apparatus therefor, and more specifically, a solid polymer type electrolyte membrane having a thin solid polymer electrolyte membrane and high cell performance. The present invention relates to a fuel cell, its manufacturing method and device.

【0002】[0002]

【従来の技術】固体高分子型燃料電池はイオン伝導体す
なわち電解質が固体で且つ高分子である点に特徴を有す
るものであるが、その固体高分子電解質としては具体的
にはイオン交換樹脂等の膜が使用され、この高分子電解
質膜を挟んで負極(アノード=燃料極)及び正極(カソ
ード=酸素極又は空気極)の両電極を配置し、例えば負
極側に燃料としての水素ガスを、また正極側には酸素又
は空気を供給して電気化学反応を起こさせることにより
電気を発生させるものである。
2. Description of the Related Art A polymer electrolyte fuel cell is characterized in that an ionic conductor, that is, an electrolyte is a solid and a polymer. The solid polymer electrolyte is specifically an ion exchange resin or the like. Is used, and both electrodes of a negative electrode (anode = fuel electrode) and a positive electrode (cathode = oxygen electrode or air electrode) are arranged with the polymer electrolyte membrane sandwiched therebetween. For example, hydrogen gas as a fuel is placed on the negative electrode side, In addition, electricity is generated by supplying oxygen or air to the positive electrode side to cause an electrochemical reaction.

【0003】この装置にはこれまで各種態様のものがあ
るが、図1は、この固体高分子型燃料電池の一態様を説
明するための概略図である。図1中、1は高分子電解質
膜、2はカソード電極(正極=酸素極又は空気極)、3
はアノード電極(負極=燃料極)であり、高分子電解質
膜1は相対するこの正負両電極2、3間に当接して配置
されている。また4はカソード電極側集電体、5はアノ
ード電極側集電体であり、それぞれ正負の電極2及び3
に当接されている。
Although there are various modes of this device, FIG. 1 is a schematic view for explaining one mode of this polymer electrolyte fuel cell. In FIG. 1, 1 is a polymer electrolyte membrane, 2 is a cathode electrode (positive electrode = oxygen electrode or air electrode), 3
Is an anode electrode (negative electrode = fuel electrode), and the polymer electrolyte membrane 1 is disposed in contact with the opposing positive and negative electrodes 2 and 3. Further, 4 is a cathode electrode side current collector, 5 is an anode electrode side current collector, and the positive and negative electrodes 2 and 3 respectively.
Is in contact with

【0004】このうちカソード電極側集電体4の電極2
側には酸素又は空気供給用の溝が設けられ、同じくアノ
ード電極側集電体5の電極3側には燃料(水素等)供給
用の溝が設けられ、正極側集電体4の溝は酸素又は空気
供給管6に、負極側集電体5の溝は燃料(水素等)供給
管7に連通している。また、8は正極側集電体4に当接
して設けられたカソード端子板、9は負極側集電体5に
当接して設けられたアノード端子板であり、電池の作動
中にこれらを通して電力が取り出される。
Of these, the electrode 2 of the cathode electrode side current collector 4
A groove for supplying oxygen or air is provided on the side, a groove for supplying fuel (hydrogen etc.) is provided on the side of the electrode 3 of the anode electrode side current collector 5, and a groove for the positive electrode side current collector 4 is The groove of the negative electrode side current collector 5 communicates with the oxygen or air supply pipe 6 and the fuel (hydrogen or the like) supply pipe 7. Further, 8 is a cathode terminal plate provided in contact with the positive electrode side current collector 4, 9 is an anode terminal plate provided in contact with the negative electrode side current collector 5, and power is supplied through these during operation of the battery. Is taken out.

【0005】10は上部枠体(上部フレーム)、11は
下部枠体(下部フレーム)であり、これら上下両枠体1
0、11により高分子電解質膜1からカソード端子板8
及びアノード端子板9までの電池本体を被って固定され
ている。これら上下両枠体10、11間には、高分子電
解質膜1からカソード端子板8及びアノード端子板9ま
での電池本体の周縁部を囲ってパッキン(ガスケット)
12が設けられ、これによってその電池本体の周縁部を
密に固定してシールし、特に高分子電解質膜1及び正負
両電極2、3に対してガスシールされている。なお図1
中、13及び14は冷却水供給管であり、これらはそれ
ぞれ上部枠体10及び下部枠体11の内面に設けられた
溝(閉じた通路)に連通し、その冷却水によりカソード
端子板8の背面及びアノード端子板9の背面から間接的
に冷却するようになっている。
Reference numeral 10 denotes an upper frame body (upper frame), 11 denotes a lower frame body (lower frame).
0 and 11 from the polymer electrolyte membrane 1 to the cathode terminal plate 8
And the battery body up to the anode terminal plate 9 is fixed. A packing (gasket) is provided between the upper and lower frames 10 and 11 so as to surround the periphery of the battery main body from the polymer electrolyte membrane 1 to the cathode terminal plate 8 and the anode terminal plate 9.
12 is provided, thereby tightly fixing and sealing the peripheral portion of the battery body, and particularly gas-sealing the polymer electrolyte membrane 1 and the positive and negative electrodes 2 and 3. FIG. 1
Inside, 13 and 14 are cooling water supply pipes, which communicate with the grooves (closed passages) provided on the inner surfaces of the upper frame body 10 and the lower frame body 11, respectively, and the cooling water supplies the cooling water to the cathode terminal plate 8. The cooling is performed indirectly from the back surface and the back surface of the anode terminal plate 9.

【0006】以上は、電池本体が単一の場合であるが、
この電池本体を二つ以上積み重ねて構成することも行わ
れる。この場合には、二つ以上の各電池本体間にセパレ
ータを介在させ、これにも適宜冷却水用の溝等を設ける
必要はあるが、電池本体の周縁部を囲ってパッキンを設
け、その電池本体の周縁部を密に固定してシールし、高
分子電解質膜1及び正負両電極2、3に対してガスシー
ルをすること等を含めて、基本的には上述単一の電池本
体の場合と同じである。この場合にはパッキン12等の
締め付けはセパレータをも介して行われる。
[0006] The above is the case of a single battery body,
In some cases, two or more battery bodies are stacked. In this case, it is necessary to interpose a separator between each of the two or more battery bodies, and also to provide a groove for cooling water, etc., as appropriate, but a packing is provided to surround the peripheral edge of the battery body. Basically, in the case of the single battery body described above, including tightly fixing and sealing the peripheral portion of the body and gas-sealing the polymer electrolyte membrane 1 and both the positive and negative electrodes 2 and 3. Is the same as. In this case, the packing 12 and the like are tightened via the separator.

【0007】ところで、このような固体高分子型燃料電
池における電池本体は上記のとおり高分子電解質膜とこ
れを両側から挟んで当接、固定された負極(アノード=
燃料極)及び正極(カソード=酸素極又は空気極)とか
らなるが、図2はこの構成の一例を示す概略図であり、
図2中、符号15、16はそれぞれ正極2(空気極)を
構成するガス拡散層及び触媒層、17、18はそれぞれ
負極3(燃料極)を構成するガス拡散層及び触媒層であ
る。図示のとおり、高分子電解質膜1を挟んで正極2
(=酸素極又は空気極)及び負極3(=燃料極)が固定
される。
By the way, the cell body in such a polymer electrolyte fuel cell has a negative electrode (anode = anode) fixed and abutting with the polymer electrolyte membrane sandwiched from both sides as described above.
A fuel electrode) and a positive electrode (cathode = oxygen electrode or air electrode), and FIG. 2 is a schematic diagram showing an example of this configuration.
In FIG. 2, reference numerals 15 and 16 are a gas diffusion layer and a catalyst layer that respectively configure the positive electrode 2 (air electrode), and 17 and 18 are a gas diffusion layer and a catalyst layer that respectively configure the negative electrode 3 (fuel electrode). As shown, the positive electrode 2 is sandwiched by the polymer electrolyte membrane 1.
(= Oxygen electrode or air electrode) and the negative electrode 3 (= fuel electrode) are fixed.

【0008】この場合、その固定は正負両極はその触媒
層側(16及び18)が高分子電解質膜面に当接するよ
うに配置され、その固定は通常ホットプレスすることに
より行われる。しかしこのような電池本体を構成するに
際して、予め製膜された高分子電解質膜を使用する場
合、その膜厚はそれ自体の取り扱い上の問題や電極の当
接、固定に際してのホットプレスによる熱の影響がある
こと等のため、あまり薄くできない。またこのような手
法では電極と電解質膜の接触面も二次元的になり高い電
池性能が得られなかった。
In this case, the fixing is performed by arranging the positive and negative electrodes so that their catalyst layer sides (16 and 18) are in contact with the polymer electrolyte membrane surface, and the fixing is usually performed by hot pressing. However, when using a pre-formed polymer electrolyte membrane in constructing such a battery body, the thickness of the polymer electrolyte membrane depends on the handling problems of itself and the heat generated by hot pressing when abutting and fixing the electrodes. It cannot be made too thin because of the influence. Further, with such a method, the contact surface between the electrode and the electrolyte membrane is two-dimensional, and high battery performance cannot be obtained.

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明では、
上記のように電極とは別個に高分子電解質膜を予め製膜
しておくのではなく、高分子電解質膜を電極面に対して
製膜することにより、上記問題点ないしは欠点を改善、
改良し、高分子電解質膜を薄く形成することができ、高
い電池性能を有する固体高分子電解質型燃料電池、その
製造方法及び装置を提供することを目的とする。
Therefore, in the present invention,
As described above, instead of preliminarily forming a polymer electrolyte membrane separately from the electrode, by forming a polymer electrolyte membrane on the electrode surface, the above problems or drawbacks are improved,
It is an object of the present invention to provide a solid polymer electrolyte fuel cell, which is improved and can form a thin polymer electrolyte membrane, and has high cell performance, a method for manufacturing the same, and an apparatus for producing the same.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、正
負両電極間に高分子電解質膜を配置した形式の固体高分
子型燃料電池において、該高分子電解質膜が電極の一面
に対して高分子電解質の溶液をスクリーン印刷により製
膜されてなることを特徴とする固体高分子型燃料電池を
提供するものである。
[Means for Solving the Problems] That is, the present invention provides a polymer electrolyte fuel cell of a type in which a polymer electrolyte membrane is arranged between positive and negative electrodes, the polymer electrolyte membrane being higher than one surface of the electrode. It is intended to provide a polymer electrolyte fuel cell characterized in that a solution of a molecular electrolyte is formed into a film by screen printing.

【0011】また本発明は、正負両電極間に高分子電解
質膜を配置した形式の固体高分子型燃料電池の製造方法
において、該高分子電解質膜を電極面に対して高分子電
解質の溶液をスクリーン印刷により塗布して製膜するこ
とを特徴とする固体高分子型燃料電池の製造方法を提供
し、さらに本発明は、正負両電極間に高分子電解質膜を
配置した形式の固体高分子型燃料電池の製造装置であっ
て、該高分子電解質膜を電極面に対して高分子電解質の
溶液をスクリーン及びスキージを用いたスクリーン印刷
により塗布して製膜するようにしてなることを特徴とす
る固体高分子型燃料電池の製造装置を提供するものであ
る。
The present invention also provides a method for producing a polymer electrolyte fuel cell in which a polymer electrolyte membrane is arranged between positive and negative electrodes, and a polymer electrolyte solution is applied to the electrode surface of the polymer electrolyte membrane. Provided is a method for producing a polymer electrolyte fuel cell, which comprises coating by screen printing to form a membrane, and the present invention further provides a polymer electrolyte membrane of a type in which a polymer electrolyte membrane is disposed between positive and negative electrodes. A fuel cell manufacturing apparatus, characterized in that the polymer electrolyte membrane is applied to the electrode surface by screen printing using a screen and a squeegee to form a membrane. An apparatus for producing a polymer electrolyte fuel cell is provided.

【0012】[0012]

【発明の実施の形態】固体高分子型燃料電池用の電解質
膜としては、当初のフェノールスルフォン酸とホルム
アルデヒドとの縮合合成膜から逐次改善、改良され、こ
れまで部分的にスルフォン化したポリスチレン膜、
スチレンージビニルベンゼンをフルオロカーボンのマト
リックスにクロスリンクさせた後スルフォン化した膜、
、の膜でαCーH結合を含まない膜、トリフルオ
ロスチレンスルフォン酸の重合膜、フルオロカーボン
マトリックスにトリフルオロエチレンをグラフト化した
膜、パーフルオロカーボンスルフォン酸系の樹脂膜等
が提案されている。
BEST MODE FOR CARRYING OUT THE INVENTION As an electrolyte membrane for a polymer electrolyte fuel cell, a polystyrene membrane which has been gradually improved and improved from the initial condensation synthetic membrane of phenolsulfonic acid and formaldehyde and has been partially sulfonated,
Membrane sulfonated after cross-linking styrene-divinylbenzene to a fluorocarbon matrix,
, A film containing no αC—H bond, a polymer film of trifluorostyrene sulfonic acid, a film obtained by grafting trifluoroethylene on a fluorocarbon matrix, a perfluorocarbon sulfonic acid resin film, and the like have been proposed.

【0013】本発明においては、これら例示の電解質膜
とは限らず、高分子電解質膜の種類如何を問わず適用す
ることができるが、特にパーフルオロカーボンスルフ
ォン酸系の樹脂膜について特に有効に適用することがで
きる。このパーフルオロカーボンスルフォン酸系の樹脂
膜はその優れた電気的特性に加え、化学的にも物理的に
もきわめて安定で、機械的も大きいこと等から、現在主
としてこの樹脂膜が使用されている。この膜は予め成膜
され、厚さ50〜200μm程度の膜として使用され
(厚さ80μm程度を下回ると、強度等上必ずしも十分
ではないが)、この膜厚でも単位面積当りの電気抵抗は
0.1〜0.5Ω程度で電池の内部抵抗の主な原因とは
なり得ないほど小さいが、本発明によればその膜厚の下
限50μmよりさらに薄く成膜することができ、その膜
厚数10μm程度に構成してもホットプレスによる熱の
影響も少なくでき、有効な電池特性を得ることができ
る。
The present invention is not limited to these exemplified electrolyte membranes and can be applied regardless of the type of polymer electrolyte membrane, but is particularly effectively applied to perfluorocarbon sulfonic acid type resin membranes. be able to. This perfluorocarbon sulfonic acid-based resin film is mainly used at present because it has excellent electrical characteristics, is extremely stable chemically and physically, and is mechanically large. This film is formed in advance and is used as a film having a thickness of about 50 to 200 μm (when the thickness is less than about 80 μm, it is not necessarily sufficient in terms of strength, etc.), and even with this thickness, the electric resistance per unit area is 0. 1 to 0.5Ω is so small as not to be a main cause of the internal resistance of the battery, but according to the present invention, it is possible to form a film thinner than the lower limit of the film thickness of 50 μm. Even if the thickness is set to about 10 μm, the influence of heat due to hot pressing can be reduced and effective battery characteristics can be obtained.

【0014】また、本発明における上記電極としては、
固体高分子型燃料電池用の電極として適用しえる電極で
あれば使用することができる。特に高分子電解質膜用の
材質としてパーフルオロカーボンスルフォン酸系の樹脂
を使用する場合には、好ましくはガス拡散層上に触媒層
を形成した電極が使用される。このガス拡散層は電極自
体の基材ともなるもので、この材料としては各種材質か
らなる多孔性のペーパー又はシート(本明細書中、両者
を含めて適宜「ペーパー」と指称している)、或いはこ
れらを適宜撥水化して用いることができるが、好ましく
はカーボンペーパーや撥水化カーボンペーパーを使用す
ることができる。このうち撥水化カーボンペーパーは所
定の気孔率及び厚さを有するカーボンペーパーに対して
ポリテトラフルオロエチレン系のディスパージョンを含
浸させた後、熱処理をして撥水化したものである。ここ
でポリテトラフルオロエチレン系ポリマーとは、ポリテ
トラフルオロエチレン(PTFE)のほか、テトラフル
オロエチレンーヘキサフルオロプロピレン共重合体その
他その誘導体等をも含む意味である。
Further, as the above-mentioned electrode in the present invention,
Any electrode that can be applied as an electrode for a polymer electrolyte fuel cell can be used. In particular, when a perfluorocarbon sulfonic acid-based resin is used as the material for the polymer electrolyte membrane, an electrode having a catalyst layer formed on the gas diffusion layer is preferably used. This gas diffusion layer also serves as a base material of the electrode itself, and as this material, a porous paper or sheet made of various materials (in this specification, both are appropriately referred to as "paper"), Alternatively, these can be appropriately water repellent and used, but carbon paper or water repellent carbon paper can be preferably used. Among these, the water repellent carbon paper is obtained by impregnating a carbon paper having a predetermined porosity and thickness with a polytetrafluoroethylene-based dispersion and then heat-treating it to make it water repellent. Here, the polytetrafluoroethylene-based polymer is meant to include not only polytetrafluoroethylene (PTFE) but also tetrafluoroethylene-hexafluoropropylene copolymer and other derivatives thereof.

【0015】また、上記触媒層は、触媒粉末及び電解
質、或いはこれら両成分に加えて撥水化剤を含むもの
で、これらの材料によりガス拡散層の面に対して加圧濾
過法その他の手法で層状に形成される。その触媒粉末と
しては白金ブラック粉末、白金合金粉末、白金又はパラ
ジウム担持のカーボンブラック粉末、パラジウムブラッ
ク粉末等が使用できる。上記電解質としては、各種イオ
ン交換樹脂等が使用できるが、特にその固体高分子電解
質膜としてパーフルオロカーボンスルホン酸系の樹脂膜
を用いる場合には、同系統のパーフルオロカーボンスル
ホン酸樹脂系のものを用いるのが好ましい。また上記撥
水化剤としては特に限定はないが、ポリテトラフルオロ
エチレン系ポリマーであるのが望ましい。ここでポリテ
トラフルオロエチレン系ポリマーとは、ポリテトラフル
オロエチレンのほか、テトラフルオロエチレンーヘキサ
フルオロプロピレン共重合体その他その誘導体等をも含
む意味である。
The catalyst layer contains a water repellent agent in addition to the catalyst powder and the electrolyte, or both of these components. With these materials, a pressure filtration method or other method is applied to the surface of the gas diffusion layer. Are formed in layers. As the catalyst powder, platinum black powder, platinum alloy powder, carbon black powder supporting platinum or palladium, palladium black powder and the like can be used. As the electrolyte, various ion exchange resins and the like can be used. In particular, when using a perfluorocarbon sulfonic acid type resin membrane as the solid polymer electrolyte membrane, use a perfluorocarbon sulfonic acid resin type of the same type. Is preferred. The water repellent agent is not particularly limited, but is preferably a polytetrafluoroethylene-based polymer. Here, the polytetrafluoroethylene-based polymer is meant to include tetrafluoroethylene-hexafluoropropylene copolymer and other derivatives thereof in addition to polytetrafluoroethylene.

【0016】本発明においては、例えば上記のような電
極の触媒層側の面に対して高分子電解質を含む印刷液を
スクリーン印刷により印刷、塗布して製膜する。この印
刷液の粘度は、その塗布後流動拡散することなく且つス
キージにより膜厚等を制御し得る粘性を備えていれば足
り、またその必要があるが、好ましくは1000〜10
000cp(センチポイズ)程度である。
In the present invention, for example, a printing liquid containing a polymer electrolyte is printed and applied by screen printing on the surface of the above-mentioned electrode on the catalyst layer side to form a film. The viscosity of the printing liquid is sufficient if it has a viscosity such that the film thickness and the like can be controlled by a squeegee without flowing and diffusing after the application, but it is preferably 1000 to 10
It is about 000 cp (centipoise).

【0017】図3は、本発明のスクリーン印刷形式の塗
布方式による高分子電解質膜の製造態様を説明するため
の模式図である。図3(a)中、19は電極21を載置
する支持台、21は電解質膜が印刷される電極であり、
22はその触媒層を示している。電解質膜の面積は通常
電極面の面積より広く構成する必要があり、このため支
持台19は、電極21を載置する凹部とこの凹部に載置
された電極21の触媒層22側上面と同一レベルに構成
された周縁部20とを備えている。これにより電解質膜
は電極21の触媒層22側の表面及び支持台19の周縁
部20の表面上に形成され、そして電極の触媒層側の表
面に密接一体に接着される。
FIG. 3 is a schematic view for explaining the production mode of the polymer electrolyte membrane by the screen printing type coating method of the present invention. In FIG. 3A, 19 is a support table on which an electrode 21 is placed, 21 is an electrode on which an electrolyte membrane is printed,
Reference numeral 22 indicates the catalyst layer. The area of the electrolyte membrane is usually required to be larger than the area of the electrode surface. Therefore, the support base 19 has the same recess as the electrode 21 and the upper surface of the electrode 21 on the catalyst layer 22 side mounted in this recess. And a peripheral portion 20 configured in a level. As a result, the electrolyte membrane is formed on the surface of the electrode 21 on the catalyst layer 22 side and the surface of the peripheral portion 20 of the support 19, and is adhered to the surface of the electrode on the catalyst layer side in close contact with each other.

【0018】23はスクリーン、24はスキージ、25
は電解質膜とする印刷液、26は印刷により形成された
電解質膜であり、図3(a)中の矢印(→)はスキージ
24の操作による印刷方向を示している。また図3
(b)はスクリーン23の平面図であり、図3(b)
中、27は版膜、すなわちマスキングされたスクリー
ン、Sは露出したスクリーン部分である。露出したスク
リーン部分Sは図3(b)では長方形に示しているが、
この露出スクリーン部分Sの形状及び大きさ(広さ)は
電解質膜の所望形状及び大きさ(広さ)に対応して設定
される。印刷液25により印刷された電解質膜26はこ
の露出空間部分Sに形成される。
23 is a screen, 24 is a squeegee, and 25
Is a printing liquid serving as an electrolyte membrane, 26 is an electrolyte membrane formed by printing, and an arrow (→) in FIG. 3A indicates a printing direction by operating the squeegee 24. FIG.
3B is a plan view of the screen 23, and FIG.
In the figure, 27 is a plate film, that is, a masked screen, and S is an exposed screen portion. Although the exposed screen portion S is shown as a rectangle in FIG. 3B,
The shape and size (width) of the exposed screen portion S are set according to the desired shape and size (width) of the electrolyte membrane. The electrolyte membrane 26 printed with the printing liquid 25 is formed in the exposed space S.

【0019】この装置の操作態様としては、図示のとお
りスクリーン23とスキージ24との間に印刷液25を
供給し、スキージ24を図3(a)中の矢印(→)の方
向に移動させる。これによって電極面22上に所定厚の
電解質膜26が均一に印刷、形成される。印刷液25
は、このようにして電極面22上に印刷され電解質膜2
6となるが、このため印刷液25は所定粘度である必要
があり、この粘度は前述のとおり1000〜10000
cp(センチポイズ)程度で適用することができる。ま
た本発明によればスクリーン23の厚さを選定すること
により10μmから100μmにわたる所望厚さの電解
質膜を自由に形成することができる。
As an operation mode of this apparatus, the printing liquid 25 is supplied between the screen 23 and the squeegee 24 as shown in the figure, and the squeegee 24 is moved in the direction of the arrow (→) in FIG. 3A. As a result, the electrolyte membrane 26 having a predetermined thickness is uniformly printed and formed on the electrode surface 22. Printing liquid 25
Are printed on the electrode surface 22 in this way, and the electrolyte membrane 2
However, for this reason, the printing liquid 25 needs to have a predetermined viscosity, and this viscosity is 1,000 to 10,000 as described above.
It can be applied in the order of cp (centipoise). Further, according to the present invention, by selecting the thickness of the screen 23, it is possible to freely form an electrolyte membrane having a desired thickness ranging from 10 μm to 100 μm.

【0020】次に、本発明の具体的手順の一態様につい
て述べると、以下(1)〜(5)のとおりである。
(1)電解質の溶液(溶媒=アルコール等)を温度50
℃程度に加熱して溶媒を蒸発させ、粘度が1000cp
程度以上になるように調製する。(2)予め作製した電
極(空気極)をスクリーン印刷装置に置き、スクリーン
23に(1)で得られた電解質溶液を入れる。スキージ
24をスクリーン23上に移動させ、電解質溶液を例え
ば厚さ30〜100μm程度となるように印刷塗布す
る。(3)電解質溶液を印刷した電極を真空乾燥等によ
り処理し、溶媒(アルコール等)を除去する。(4)こ
うしてその一面に電解質膜を形成し、乾燥した電極の電
解質膜側に予め予め作製しておいた電極(燃料極)を当
接させ、プレスして電池とする。
Next, an aspect of a specific procedure of the present invention is as follows (1) to (5).
(1) The electrolyte solution (solvent = alcohol, etc.) is heated to a temperature of 50.
Viscosity is 1000 cp
Prepare so that the amount is at least as good. (2) The electrode (air electrode) prepared in advance is placed on the screen printing device, and the electrolyte solution obtained in (1) is put on the screen 23. The squeegee 24 is moved onto the screen 23, and the electrolyte solution is applied by printing so as to have a thickness of, for example, about 30 to 100 μm. (3) The electrode printed with the electrolyte solution is processed by vacuum drying or the like to remove the solvent (alcohol, etc.). (4) In this way, an electrolyte membrane is formed on one surface thereof, and an electrode (fuel electrode) prepared in advance is brought into contact with the electrolyte membrane side of the dried electrode and pressed to obtain a battery.

【0021】[0021]

【実施例】以下、本発明の実施例を説明するが、本発明
がこの実施例に限定されないことは勿論である。使用装
置としては図3に示すような装置を使用した。
EXAMPLES Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to these examples. As the apparatus used, the apparatus shown in FIG. 3 was used.

【0022】(1)まず、電極としては、表面積100
cm2 (10cm×10cm)、気孔率80%、厚さ
0.4mmのカーボンペーパーにネオフロン(テトラフ
ルオロエチレンーヘキサフルオロプロピレン共重合体、
ダイキン工業社製、商品名)のディスパージョンで撥水
化したカーボンペーパー上に、電解質としてNAFIO
Nー117(パーフルオロカーボンスルホン酸樹脂、D
u Pont社製、商品名)のアルコール溶液でコーテ
ィングした白金50重量%担持の触媒粒子(担体:カー
ボンブラック)にポリテトラフルオロエチレンのディス
パージョンを加えた懸濁液を堆積させて作製したものを
使用した。
(1) First, the electrode has a surface area of 100
cm 2 (10 cm × 10 cm), 80% porosity, 0.4 mm thick carbon paper with neoflon (tetrafluoroethylene-hexafluoropropylene copolymer,
NAFIO as an electrolyte on carbon paper which is made water repellent by the dispersion of Daikin Industries, Ltd.)
N-117 (perfluorocarbon sulfonic acid resin, D
A product prepared by depositing a suspension obtained by adding a dispersion of polytetrafluoroethylene to catalyst particles (carrier: carbon black) supporting 50% by weight of platinum coated with an alcohol solution of u Pont Co., Ltd. used.

【0023】(2)次に高分子電解質として市販のパー
フルオロカーボンスルホン酸樹脂のエタノール溶液を温
度50℃に加熱して溶媒を蒸発させ、その粘度が200
0cp程度になるように調製した。(3)上記(1)の
予め作製した電極(空気極)を図3(a)に示すスクリ
ーン印刷装置の支持台19の凹部に置き、スクリーン2
3に上記(2)で得た電解質溶液を入れた。スクリーン
23上をスキージ24を移動させ、電解質溶液を面積1
44cm2 (12cm×12cm)、厚さ約50μmと
なるように印刷塗布した。
(2) Next, a commercially available ethanol solution of perfluorocarbon sulfonic acid resin as a polymer electrolyte is heated to a temperature of 50 ° C. to evaporate the solvent, and the viscosity thereof becomes 200.
It was prepared to be about 0 cp. (3) The electrode (air electrode) prepared in advance in (1) above is placed in the recess of the support base 19 of the screen printing apparatus shown in FIG.
The electrolyte solution obtained in (2) above was put in 3. Move the squeegee 24 on the screen 23 and apply the electrolyte solution to an area of 1
It was applied by printing so as to have a thickness of 44 cm 2 (12 cm × 12 cm) and a thickness of about 50 μm.

【0024】(4)上記(3)で電解質溶液を印刷した
電極を真空乾燥させ、溶媒であるエタノールを蒸発除去
した。(5)こうしてその一面に高分子電解質膜を形成
し、乾燥した電極の電解質膜側の面に上記(1)のとお
り予め作製しておいた電極(燃料極)を当接させ、温度
140℃、圧力100kgf/cm2 の加圧下、60秒
間プレスした後、これを図1のように燃料電池用枠内に
組み込んでセットし、導線、ガス管等を接続して実施例
供試用電池とした。
(4) The electrode printed with the electrolyte solution in the above (3) was vacuum dried to remove the solvent ethanol by evaporation. (5) Thus, a polymer electrolyte membrane is formed on one surface thereof, and the electrode (fuel electrode) prepared in advance as in the above (1) is brought into contact with the surface of the dried electrode on the electrolyte membrane side, and the temperature is 140 ° C. After pressing under a pressure of 100 kgf / cm 2 for 60 seconds, this was assembled and set in a fuel cell frame as shown in FIG. 1, and a lead wire, a gas pipe, etc. were connected to obtain a test battery for an example. .

【0025】《比較例》一方、上記(1)のとおり作製
した2枚の電極間に固体高分子電解質膜として厚さ80
μmのパーフルオロカーボンスルホン酸樹脂膜を、両電
極の触媒層を膜面に当接させて挟み、実施例の場合と同
じく温度140℃、圧力100kgf/cm2 の加圧
下、60秒間プレスした後、これを図1のように燃料電
池用枠内に組み込んでセットし、導線、ガス管等を接続
して比較例供試用電池とした。
Comparative Example On the other hand, a solid polymer electrolyte membrane having a thickness of 80 is formed between the two electrodes prepared as described in (1) above.
A μm perfluorocarbon sulfonic acid resin membrane was sandwiched by bringing the catalyst layers of both electrodes into contact with the membrane surfaces, and pressed at a temperature of 140 ° C. under a pressure of 100 kgf / cm 2 for 60 seconds in the same manner as in the example. This was assembled and set in a fuel cell frame as shown in FIG. 1, and a lead wire, a gas pipe and the like were connected to obtain a comparative test battery.

【0026】以上のとおり製作した各種供試用電池を使
用し、燃料として水素を使用し、これをアノード側に供
給する一方、カソード側には空気を供給した。この両ガ
スの供給圧力はともに2atmとし、水素は95℃で、
空気については80℃で加湿し、また電池の温度を80
℃に保って操作して測定した。図4は以上の各供試電池
について測定した電流密度とセル電圧との関係を示すも
のである。
Using the various test batteries produced as described above, hydrogen was used as the fuel, and this was supplied to the anode side, while air was supplied to the cathode side. The supply pressure of both gases is 2 atm, and hydrogen is 95 ° C.
Humidify the air at 80 ° C and keep the battery temperature at 80 ° C.
The measurement was performed by keeping the temperature at ℃. FIG. 4 shows the relationship between the cell density and the current density measured for each of the above test batteries.

【0027】図4のとおり、比較例供試電池では、電流
密度の増加に対してセル電圧は可成りの傾斜で低下して
いるが、実施例供試電池においては、その低下傾向はき
わめて緩慢であり、高い電池性能が得られていることが
分かる。本発明によるこの効果は電解質膜が薄く、しか
も電極面に対する高分子電解質膜の密着性がよいことに
基づくものであり(さらに両者の当接面での三次元化が
行われているものと推認される)、このように本発明に
よれば、電池特性をさらに有効に改善することができ
る。
As shown in FIG. 4, in the comparative test battery, the cell voltage decreases with a considerable slope as the current density increases, but in the test battery of the embodiment, the decreasing tendency is extremely slow. It can be seen that high battery performance is obtained. This effect according to the present invention is based on the fact that the electrolyte membrane is thin and the adhesion of the polymer electrolyte membrane to the electrode surface is good (further, it is presumed that the contact surfaces of both are made three-dimensional. Thus, according to the present invention, the battery characteristics can be improved more effectively.

【0028】[0028]

【発明の効果】以上のとおり、本発明によれば、高分子
電解質膜の膜厚を例えば20μmとか30μm程度とい
うように薄く形成することができ、しかも電極面に対す
る高分子電解質膜の密着性がよいため、さらに高い性能
を有する電池を得ることができる。また大面積であって
もその膜厚を薄く、しかも均一にすることができるだけ
でなく、電解質膜の所望最適厚みを自由に決定できる。
As described above, according to the present invention, the thickness of the polymer electrolyte membrane can be formed as thin as about 20 μm or 30 μm, and the adhesion of the polymer electrolyte membrane to the electrode surface can be improved. Since it is good, a battery having higher performance can be obtained. Further, not only can the film thickness be thin and uniform even in a large area, but the desired optimum thickness of the electrolyte membrane can be freely determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体高分子型燃料電池の一態様を説明するため
の概略図。
FIG. 1 is a schematic view illustrating one embodiment of a polymer electrolyte fuel cell.

【図2】図1における電池本体を示す図。FIG. 2 is a diagram showing a battery main body in FIG.

【図3】本発明に係る電池製造方法及び装置の一態様を
示す図。
FIG. 3 is a diagram showing one embodiment of a battery manufacturing method and device according to the present invention.

【図4】実施例及び比較例で製造した各供試電池につい
て測定した電流密度とセル電圧との関係を示す図。
FIG. 4 is a diagram showing the relationship between the measured current density and cell voltage of each test battery manufactured in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 高分子電解質膜 2 カソード電極(正極) 3 アノード電極(負極) 4、5 集電体 6 空気供給管 7 水素供給管 8、9 端子板 10、11 枠体(フレーム) 12 パッキン 13、14 冷却水供給管 15 正極2(空気極)2のガス拡散層 16 正極2(空気極)2の触媒層 17 負極3(燃料極)のガス拡散層 18 負極3(燃料極)の触媒層 19 電極21を載置する支持台 20 支持台19の周縁部 21 電解質膜が印刷される電極 22 電極21の触媒層 23 スクリーン 24 スキージ 25 電解質膜とする印刷液 26 印刷により形成された電解質膜 27 版膜(=マスキングされたスクリーン) S 露出したスクリーン部分 1 Polymer Electrolyte Membrane 2 Cathode Electrode (Positive Electrode) 3 Anode Electrode (Negative Electrode) 4, 5 Current Collector 6 Air Supply Pipe 7 Hydrogen Supply Pipe 8, 9 Terminal Plate 10, 11 Frame (Frame) 12 Packing 13, 14 Cooling Water supply pipe 15 Gas diffusion layer of positive electrode 2 (air electrode) 2 16 Catalyst layer of positive electrode 2 (air electrode) 17 Gas diffusion layer of negative electrode 3 (fuel electrode) 18 Catalyst layer of negative electrode 3 (fuel electrode) 19 Electrode 21 The support base 20 on which the substrate is mounted 21 The peripheral portion of the support base 21 The electrode on which the electrolyte membrane is printed 22 The catalyst layer of the electrode 21 23 The screen 24 The squeegee 25 The printing liquid used as the electrolyte membrane 26 The electrolyte membrane formed by printing 27 The plate membrane = Masked screen) S Exposed screen part

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年4月16日[Submission date] April 16, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図 1】 [Fig. 1]

【図 2】 FIG. 2

【図 3】 [Fig. 3]

【図 4】 [Fig. 4]

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】正負両電極間に高分子電解質膜を配置した
形式の固体高分子型燃料電池において、該高分子電解質
膜が電極の一面に対して高分子電解質の溶液をスクリー
ン印刷により製膜されてなることを特徴とする固体高分
子型燃料電池。
1. A polymer electrolyte fuel cell of the type in which a polymer electrolyte membrane is arranged between positive and negative electrodes, wherein the polymer electrolyte membrane is formed by screen printing a solution of the polymer electrolyte on one surface of the electrode. A polymer electrolyte fuel cell, characterized by comprising:
【請求項2】上記高分子電解質がパーフルオロカーボン
スルフォン酸系の樹脂である請求項1記載の固体高分子
型燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the polymer electrolyte is a perfluorocarbon sulfonic acid type resin.
【請求項3】上記電極がガス拡散層上に、(A)触媒粉
末及び電解質を含む触媒層、または(B)触媒粉末、電
解質及び撥水化剤を含む触媒層を形成してなる電極であ
る請求項1又は2記載の固体高分子型燃料電池。
3. An electrode comprising the gas diffusion layer on which a catalyst layer containing (A) catalyst powder and an electrolyte or (B) a catalyst layer containing a catalyst powder, an electrolyte and a water repellent agent is formed. The polymer electrolyte fuel cell according to claim 1 or 2.
【請求項4】上記ガス拡散層がカーボンペーパー又は撥
水化カーボンペーパーからなるガス拡散層である請求項
3記載の固体高分子型燃料電池。
4. The polymer electrolyte fuel cell according to claim 3, wherein the gas diffusion layer is a gas diffusion layer made of carbon paper or water repellent carbon paper.
【請求項5】上記触媒粉末が白金を担持したカーボン粉
末である請求項3又は4記載の固体高分子型燃料電池。
5. The polymer electrolyte fuel cell according to claim 3, wherein the catalyst powder is carbon powder supporting platinum.
【請求項6】正負両電極間に高分子電解質膜を配置した
形式の固体高分子型燃料電池の製造方法において、該高
分子電解質膜を電極面に対して高分子電解質の溶液をス
クリーン印刷により塗布して製膜することを特徴とする
固体高分子型燃料電池の製造方法。
6. A method for producing a polymer electrolyte fuel cell of the type in which a polymer electrolyte membrane is arranged between positive and negative electrodes, the polymer electrolyte membrane being applied to a surface of the polymer electrolyte solution by screen printing. A method for producing a polymer electrolyte fuel cell, which comprises coating and forming a film.
【請求項7】上記高分子電解質がパーフルオロカーボン
スルフォン酸系の樹脂である請求項6記載の固体高分子
型燃料電池の製造方法。
7. The method for producing a polymer electrolyte fuel cell according to claim 6, wherein the polymer electrolyte is a perfluorocarbon sulfonic acid resin.
【請求項8】正負両電極間に高分子電解質膜を配置した
形式の固体高分子型燃料電池の製造装置であって、該高
分子電解質膜を電極面に対して高分子電解質の溶液をス
クリーン及びスキージを用いたスクリーン印刷により塗
布して製膜するようにしてなることを特徴とする固体高
分子型燃料電池の製造装置。
8. A polymer electrolyte fuel cell manufacturing apparatus in which a polymer electrolyte membrane is arranged between positive and negative electrodes, wherein a polymer electrolyte solution is screened against the electrode surface of the polymer electrolyte membrane. An apparatus for producing a polymer electrolyte fuel cell, characterized by being applied by screen printing using a squeegee to form a film.
【請求項9】上記高分子電解質がパーフルオロカーボン
スルフォン酸系の樹脂である請求項8記載の固体高分子
型燃料電池の製造装置。
9. The apparatus for producing a polymer electrolyte fuel cell according to claim 8, wherein the polymer electrolyte is a perfluorocarbon sulfonic acid-based resin.
JP7353457A 1995-12-27 1995-12-27 Solid high-molecular fuel cell and manufacture and device thereof Pending JPH09180740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7353457A JPH09180740A (en) 1995-12-27 1995-12-27 Solid high-molecular fuel cell and manufacture and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7353457A JPH09180740A (en) 1995-12-27 1995-12-27 Solid high-molecular fuel cell and manufacture and device thereof

Publications (1)

Publication Number Publication Date
JPH09180740A true JPH09180740A (en) 1997-07-11

Family

ID=18430982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7353457A Pending JPH09180740A (en) 1995-12-27 1995-12-27 Solid high-molecular fuel cell and manufacture and device thereof

Country Status (1)

Country Link
JP (1) JPH09180740A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
WO2002019454A1 (en) * 2000-08-30 2002-03-07 Sanyo Electric Co., Ltd. Fuel cell unit and its manufacturing method
FR2826781A1 (en) * 2001-06-29 2003-01-03 Commissariat Energie Atomique BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD
WO2003047018A1 (en) * 2001-11-30 2003-06-05 Honda Giken Kogyo Kabushiki Kaisha Method for manufacturing electrode for fuel cell
WO2003079477A1 (en) * 2002-03-15 2003-09-25 Kabushiki Kaisha Riken Cell unit of solid polymeric electrolyte type fuel cell
JP2005285709A (en) * 2004-03-31 2005-10-13 Minoru Umeda Film electrode element, manufacturing method thereof, and fuel cell
JP2006059540A (en) * 2004-08-17 2006-03-02 Toyota Central Res & Dev Lab Inc Sol state proton conductive electrolyte and fuel cell
JP2009016364A (en) * 2008-10-22 2009-01-22 Minoru Umeda Membrane electrode element manufacturing method, membrane electrode element, and fuel cell
JP2011187436A (en) * 2010-03-10 2011-09-22 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell, method of manufacturing the same, fuel cell system, and stack for fuel cell
CN109830696A (en) * 2019-01-09 2019-05-31 安徽明天氢能科技股份有限公司 A kind of fuel cell membrane electrode preparation process
CN111146450A (en) * 2019-12-26 2020-05-12 一汽解放汽车有限公司 Device and method for continuously preparing gas diffusion layer of fuel cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
US6855178B2 (en) 2000-07-06 2005-02-15 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP3668478B2 (en) * 2000-07-06 2005-07-06 松下電器産業株式会社 Method for producing membrane electrode assembly and method for producing polymer electrolyte fuel cell
WO2002019454A1 (en) * 2000-08-30 2002-03-07 Sanyo Electric Co., Ltd. Fuel cell unit and its manufacturing method
FR2826781A1 (en) * 2001-06-29 2003-01-03 Commissariat Energie Atomique BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD
WO2003003490A3 (en) * 2001-06-29 2004-01-22 Commissariat Energie Atomique Fuel cell assembly with a two-layer diffuser and production method of same
WO2003047018A1 (en) * 2001-11-30 2003-06-05 Honda Giken Kogyo Kabushiki Kaisha Method for manufacturing electrode for fuel cell
WO2003079477A1 (en) * 2002-03-15 2003-09-25 Kabushiki Kaisha Riken Cell unit of solid polymeric electrolyte type fuel cell
JP2005285709A (en) * 2004-03-31 2005-10-13 Minoru Umeda Film electrode element, manufacturing method thereof, and fuel cell
JP4674789B2 (en) * 2004-03-31 2011-04-20 実 梅田 Membrane electrode element manufacturing method, membrane electrode element and fuel cell
JP2006059540A (en) * 2004-08-17 2006-03-02 Toyota Central Res & Dev Lab Inc Sol state proton conductive electrolyte and fuel cell
JP4552183B2 (en) * 2004-08-17 2010-09-29 株式会社豊田中央研究所 Sol-like proton conducting electrolyte and fuel cell
JP2009016364A (en) * 2008-10-22 2009-01-22 Minoru Umeda Membrane electrode element manufacturing method, membrane electrode element, and fuel cell
JP2011187436A (en) * 2010-03-10 2011-09-22 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell, method of manufacturing the same, fuel cell system, and stack for fuel cell
US8735017B2 (en) 2010-03-10 2014-05-27 Samsung Sdi Co., Ltd Membrane-electrode assembly for fuel cell, method of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system
CN109830696A (en) * 2019-01-09 2019-05-31 安徽明天氢能科技股份有限公司 A kind of fuel cell membrane electrode preparation process
CN109830696B (en) * 2019-01-09 2022-03-22 安徽明天氢能科技股份有限公司 Preparation process of fuel cell membrane electrode
CN111146450A (en) * 2019-12-26 2020-05-12 一汽解放汽车有限公司 Device and method for continuously preparing gas diffusion layer of fuel cell

Similar Documents

Publication Publication Date Title
US8119302B2 (en) One-step method of bonding and sealing a fuel cell membrane electrode assembly
KR100493991B1 (en) Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
US9899685B2 (en) Method of making a proton exchange membrane using a gas diffusion electrode as a substrate
US20070209758A1 (en) Method and process for unitized mea
US8168025B2 (en) Methods of making components for electrochemical cells
JP2011124238A (en) Edge-protected catalyst-coated membrane electrode assembly
JPH08162132A (en) Polymer solid electrolyte-electrode joined body
JPH07176317A (en) Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body
JPH09180740A (en) Solid high-molecular fuel cell and manufacture and device thereof
JP2000090944A (en) Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
EP1825549A2 (en) Fuel cell component storage or shipment
JP4896393B2 (en) Method for producing fuel cell electrode paste, method for producing fuel cell electrode, method for producing membrane electrode assembly of fuel cell, and method for producing fuel cell system
EP1429408A1 (en) Electrolyte membrane/electrode union for fuel cell and process for producing the same
JP2004303627A (en) Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell
JP2004214045A (en) Fuel cell and its manufacturing method
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP2003303596A (en) Polymer electrolyte type fuel cell and manufacturing method thereof
JP2001057217A (en) Polymer electrolyte type fuel cell
EP1059686A2 (en) Polymer electrolyte fuel cell
JPH0684528A (en) Solid high polymer electrolyte type fuel cell
JP2013109950A (en) Manufacturing method for membrane electrode assembly for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell
JP2004296216A (en) Manufacturing method of membrane electrode jointed body of solid polymer fuel cell
US20130126072A1 (en) Fabrication of catalyst coated electrode substrate with low loadings using direct spray method
JP4262942B2 (en) Polymer solid electrolyte / electrode assembly for lithium battery and method for producing the same
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane