JP4674789B2 - Membrane electrode element manufacturing method, membrane electrode element and fuel cell - Google Patents

Membrane electrode element manufacturing method, membrane electrode element and fuel cell Download PDF

Info

Publication number
JP4674789B2
JP4674789B2 JP2004101836A JP2004101836A JP4674789B2 JP 4674789 B2 JP4674789 B2 JP 4674789B2 JP 2004101836 A JP2004101836 A JP 2004101836A JP 2004101836 A JP2004101836 A JP 2004101836A JP 4674789 B2 JP4674789 B2 JP 4674789B2
Authority
JP
Japan
Prior art keywords
electrode
membrane electrode
membrane
fuel
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004101836A
Other languages
Japanese (ja)
Other versions
JP2005285709A (en
Inventor
実 梅田
二郎 大内
正寿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Ricoh Co Ltd
Original Assignee
Tohoku Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Ricoh Co Ltd filed Critical Tohoku Ricoh Co Ltd
Priority to JP2004101836A priority Critical patent/JP4674789B2/en
Publication of JP2005285709A publication Critical patent/JP2005285709A/en
Application granted granted Critical
Publication of JP4674789B2 publication Critical patent/JP4674789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、膜電極素子の製造方法、膜電極素子及び燃料電池に関する。   The present invention relates to a method for manufacturing a membrane electrode element, a membrane electrode element, and a fuel cell.

燃料電池は、環境に問題となる有害な排出物が非常に少ないこと及びエネルギー密度がLiイオン電池(現在、エネルギー密度の最高値を有する)よりも大きいことから、新たなエネルギー源として開発されている。   Fuel cells have been developed as a new energy source because they have very few harmful emissions that cause environmental problems and their energy density is higher than Li-ion batteries (which currently have the highest energy density). Yes.

このような燃料電池としては、燃料として水素ガスを用いる燃料電池や、DMFC(ダイレクトメタノール型燃料電池)に代表されるようなアルコール系溶液を用いる直接アルコール型と呼ばれる燃料電池等がある。携帯機器用の燃料電池としては、現在、DMFCが主として開発されている。このような携帯機器用の燃料電池は、自動車用の燃料電池に比べた場合、出力当たりのコストが少々高くても市場に受け入れられる可能性があることから、自動車用の燃料電池よりも早く市場が開けると予測されている。   As such a fuel cell, there are a fuel cell using hydrogen gas as a fuel, a fuel cell called a direct alcohol type using an alcohol-based solution represented by DMFC (direct methanol fuel cell), and the like. Currently, DMFC is mainly developed as a fuel cell for portable devices. Such a fuel cell for portable devices is likely to be accepted by the market even if the cost per output is slightly higher than the fuel cell for automobiles. Is expected to open.

燃料電池の構造としては、自動車用のような大型の燃料電池に主として採用されている単セルを積層するスタックタイプの構造と、単セルを平面に複数並べこれらを直列接続する平面型の構造とがある。スタックタイプの燃料電池は、各単セル間に燃料及び空気の供給路を設ける必要があることや各単セル間の絶縁のためにセパレータが必要なこと等から、大型でコストが高くなるため、小型化を実現する必要がある携帯機器用の燃料電池として適当ではない。一方、平面型の燃料電池は、スタックタイプに必要な層間のセパレータや、層間の燃料及び空気の供給路等が不要なことから小型化が可能な燃料電池として有望視されており、携帯機器用として適している。   As the structure of the fuel cell, a stack type structure in which single cells mainly used in large fuel cells such as those for automobiles are stacked, and a planar type structure in which a plurality of single cells are arranged in a plane and these are connected in series. There is. Stack type fuel cells are large and costly because it is necessary to provide a fuel and air supply path between each single cell and because a separator is required for insulation between each single cell. It is not suitable as a fuel cell for a portable device that needs to be downsized. On the other hand, planar fuel cells are promising as fuel cells that can be miniaturized because they do not require interlayer separators and interlayer fuel and air supply paths required for the stack type. Suitable as

このような平面型の燃料電池の構成例について図7及び図8を参照して説明する。図7に示すように、燃料電池100は、燃料供給路(図示せず)を有する燃料供給路体101と、その燃料供給路体101の上に設けられ複数の単セルである膜電極接合体102を平面状に並べて有する膜電極素子である電極ユニット103とを備えている。隣接する膜電極接合体102の間には、絶縁性を有する絶縁材等のシール材104が設けられている。また、電極ユニット103には、それを覆う筺体(図示せず)が設けられている。膜電極接合体102は、電解質膜105を電極である空気極106と燃料極107とにより挟み込むことで形成されている。電解質膜105は、複数の膜電極接合体102を通る単一の膜である。複数の膜電極接合体102は、同じ種類の電極が同じ側に位置するように配置されており、燃料極107側が燃料供給路体101に接続され、空気極106側が外側に位置付けられている。このような複数の膜電極接合体102は、図8に示すように、それらの間を金属端子等の電流端子108により接続することで電気的に直列接続されている。この電流端子108は電解質膜105を貫通して設けられている。このような構成で、燃料電池100は、燃料極107に供給されるアルコール溶液と、空気極106に触れる空気中の酸素との化学反応により電気を発生させる。このような燃料電池100はセパレータ等が不要な構成となっており、小型化が図れる燃料電池とされている。   A configuration example of such a planar fuel cell will be described with reference to FIGS. As shown in FIG. 7, the fuel cell 100 includes a fuel supply passage body 101 having a fuel supply passage (not shown), and a membrane electrode assembly that is provided on the fuel supply passage body 101 and is a plurality of single cells. And an electrode unit 103 which is a membrane electrode element having 102 arranged in a plane. Between the adjacent membrane electrode assemblies 102, a sealing material 104 such as an insulating material having an insulating property is provided. The electrode unit 103 is provided with a casing (not shown) that covers it. The membrane electrode assembly 102 is formed by sandwiching an electrolyte membrane 105 between an air electrode 106 and a fuel electrode 107 which are electrodes. The electrolyte membrane 105 is a single membrane that passes through the plurality of membrane electrode assemblies 102. The plurality of membrane electrode assemblies 102 are arranged such that the same type of electrodes are located on the same side, the fuel electrode 107 side is connected to the fuel supply path body 101, and the air electrode 106 side is located outside. As shown in FIG. 8, the plurality of membrane electrode assemblies 102 are electrically connected in series by connecting them with a current terminal 108 such as a metal terminal. The current terminal 108 is provided through the electrolyte membrane 105. With such a configuration, the fuel cell 100 generates electricity by a chemical reaction between the alcohol solution supplied to the fuel electrode 107 and oxygen in the air that touches the air electrode 106. Such a fuel cell 100 does not require a separator or the like, and is a fuel cell that can be miniaturized.

このような構造の燃料電池100においては、複数の膜電極接合体(単セル)102を直列接続する場合、電解質膜105に貫通する穴を形成し、その穴に電流端子108を通す必要がある。このように電解質膜105に穴を形成すると、その穴から液体燃料がしみ込み易いため、電極間のクロスオーバーが発生し、電極間の絶縁を取り難くなる等の問題が生じる。これを解決するため、特許文献1では、電解質膜105の一部のみをプロトン伝導体とし、その他の部分をプロトン絶縁体とする方法が提案されている。   In the fuel cell 100 having such a structure, when a plurality of membrane electrode assemblies (single cells) 102 are connected in series, it is necessary to form a hole penetrating the electrolyte membrane 105 and pass the current terminal 108 through the hole. . When holes are formed in the electrolyte membrane 105 in this way, liquid fuel is likely to penetrate through the holes, causing problems such as crossover between the electrodes and difficulty in insulation between the electrodes. In order to solve this, Patent Document 1 proposes a method in which only a part of the electrolyte membrane 105 is a proton conductor and the other part is a proton insulator.

特許第2894378号公報Japanese Patent No. 2894378

しかしながら、特許文献1のような方法は、電解質膜105の一部を電気化学的に処理する必要があるため大量生産には向いていない。また、平面型の燃料電池100を実現するための低コストの製造方法については、実例が少なく、低コストで平面型の燃料電池100の大量生産を実現する有効な製造方法は提案されていない。   However, the method as disclosed in Patent Document 1 is not suitable for mass production because part of the electrolyte membrane 105 needs to be electrochemically processed. Further, there are few examples of low-cost manufacturing methods for realizing the planar fuel cell 100, and no effective manufacturing method for realizing mass production of the planar fuel cell 100 at low cost has been proposed.

本発明の目的は、低コストで平面型の燃料電池の大量生産を実現し、電気的絶縁性及びプロトン絶縁性の良好な燃料電池を提供することである。   An object of the present invention is to provide a fuel cell that realizes mass production of a planar fuel cell at low cost and has good electrical insulation and proton insulation.

請求項1記載の発明の燃料電池に備えられる膜電極素子の製造方法は、絶縁性を有する絶縁性基板に複数の第1貫通孔を形成する工程と、複数の前記第1貫通孔に前記絶縁性基板と同じ厚さの電解質膜を設ける工程と、前記電解質膜を電極で挟持する複数の膜電極接合体を設ける工程と、隣接する前記膜電極接合体の間に介在させて絶縁性のシール材を前記絶縁性基板の表裏面に設ける工程と、隣接する前記膜電極接合体の間の位置で前記絶縁性基板及び前記シール材に複数の第2貫通孔を形成し、前記第2貫通孔内を通過して、前記絶縁性基板の表裏で隣接する前記膜電極接合体を電気的に接続する電極接続部を設けることで、複数の前記膜電極接合体を電気的に接続する工程と、を具備する。 According to a first aspect of the present invention, there is provided a method of manufacturing a membrane electrode element provided in a fuel cell, comprising: forming a plurality of first through holes in an insulating substrate having an insulating property; and insulating the plurality of first through holes. A step of providing an electrolyte membrane having the same thickness as the conductive substrate, a step of providing a plurality of membrane electrode assemblies sandwiching the electrolyte membrane between electrodes, and an insulating seal interposed between the adjacent membrane electrode assemblies A plurality of second through holes are formed in the insulating substrate and the sealing material at a position between the step of providing a material on the front and back surfaces of the insulating substrate and between the adjacent membrane electrode assemblies, and the second through hole Electrically connecting a plurality of the membrane electrode assemblies by providing an electrode connection portion that passes through the inside and electrically connects the membrane electrode assemblies adjacent on the front and back of the insulating substrate; It comprises.

請求項記載の発明は、請求項1載の膜電極素子の製造方法において、刷により前記電極及び前記電解質膜を形成するようにした。
According to a second aspect of the invention, in the method according to claim 1 Symbol placement of the membrane electrode device, and to form the electrode and the electrolyte membrane by printing.

請求項記載の発明は、請求項記載の膜電極素子の製造方法において、前記印刷はエマルジョンインクで前記電極を形成する。
According to a third aspect of the present invention, in the method for manufacturing a membrane electrode element according to the second aspect , the printing is performed by forming the electrode with an emulsion ink.

請求項記載の発明は、請求項1載の膜電極素子の製造方法において、ャスト製膜により前記電解質膜を形成するようにした。
The invention of claim 4, wherein, in the method according to claim 1 Symbol placement of the membrane electrode device, and to form the electrolyte membrane by casts made film.

請求項記載の発明の膜電極素子は、請求項1ないしのいずれか一記載の膜電極素子の製造方法により形成されている。 A membrane electrode element according to a fifth aspect of the present invention is formed by the method for manufacturing a membrane electrode element according to any one of the first to fourth aspects.

請求項記載の発明の燃料電池は、請求項記載の膜電極素子を備え、その膜電極素子が備える前記膜電極接合体に燃料を供給することで発電する。 A fuel cell according to a sixth aspect of the invention includes the membrane electrode element according to the fifth aspect , and generates power by supplying fuel to the membrane electrode assembly included in the membrane electrode element.

請求項1記載の発明によれば、絶縁性基板の厚さを変化させるだけで、電解質膜の厚さを制御することが可能になるため、高い精度で電解質膜を形成することができる。また、絶縁性基板に第2貫通孔を形成して使用するため、従来のように電解質膜に貫通する穴を設ける必要はなくなり、その穴を通しての液体燃料の漏れやしみ込みがなく、電気的絶縁性及びイオン絶縁性が良好な燃料電池を得ることができる。 According to the first aspect of the present invention, the thickness of the electrolyte membrane can be controlled only by changing the thickness of the insulating substrate. Therefore, the electrolyte membrane can be formed with high accuracy. Further, since the second through hole is formed and used in the insulating substrate, there is no need to provide a hole penetrating the electrolyte membrane as in the prior art, there is no leakage or penetration of liquid fuel through the hole, and electrical A fuel cell having good insulation and ion insulation can be obtained.

請求項記載の発明によれば、印刷により複数の膜電極接合体が容易に形成されるため、低コストで平面型の燃料電池を大量生産することができる。
According to the second aspect of the present invention, since a plurality of membrane electrode assemblies can be easily formed by printing, it is possible to mass-produce flat fuel cells at low cost.

請求項記載の発明によれば、エマルジョンインクを用いることから、高価な触媒を広く面積に分散させることが可能になり、高価な触媒の使用量を低減し、低コストを実現することができる。
According to the invention described in claim 3 , since the emulsion ink is used, it becomes possible to disperse the expensive catalyst over a wide area, thereby reducing the amount of the expensive catalyst used and realizing low cost. .

請求項記載の発明によれば、キャスト製膜により複数の電解質膜が容易に形成されるため、低コストで平面型の燃料電池を大量生産することができる。
According to the fourth aspect of the present invention, since a plurality of electrolyte membranes are easily formed by cast film formation, it is possible to mass-produce flat fuel cells at low cost.

請求項記載の発明によれば、膜電極素子は、請求項1ないしのいずれか一記載の膜電極素子の製造方法により形成されていることから、低コストで大量生産が可能な平面型の燃料電池であって、電気的絶縁性及びプロトン絶縁性の良好な燃料電池を提供することができる。 According to the invention described in claim 5 , since the membrane electrode element is formed by the method for manufacturing a membrane electrode element according to any one of claims 1 to 4 , it is a flat type capable of mass production at low cost. It is possible to provide a fuel cell with good electrical insulation and proton insulation.

請求項記載の発明によれば、請求項記載の発明と同様な効果を奏する。
According to invention of Claim 6 , there exists an effect similar to the invention of Claim 5 .

本発明の第1の参考形態を図1ないし図に基づいて説明する。
A first referential embodiment of the present onset bright be described with reference to FIGS.

参考形態の平面型の燃料電池1の構成の一例について図1及び図2を参照して説明する。図1は本参考形態の燃料電池1の構成を概略的に示す外観斜視図、図2はその縦断側面図である。
An example of a flat type fuel cell 1 constituted of this preferred embodiment will be described with reference to FIGS. Figure 1 is an external perspective view showing the configuration of the fuel cell 1 of this preferred embodiment schematically, FIG. 2 is a vertical sectional side view.

図1及び図2に示すように、燃料電池1は、燃料供給路(図示せず)を有する燃料供給路体2と、その燃料供給路体2の上に設けられ複数の単セルである膜電極接合体(MEA)3を平面状に並べて有する膜電極素子である電極ユニット4とを備えている。   As shown in FIGS. 1 and 2, a fuel cell 1 includes a fuel supply passage 2 having a fuel supply passage (not shown), and a membrane that is a plurality of single cells provided on the fuel supply passage 2. And an electrode unit 4 which is a membrane electrode element having electrode assemblies (MEA) 3 arranged in a plane.

電極ユニット4は、平板状に形成され絶縁性を有する絶縁性基板5を有している。この絶縁性基板5には、長方形状に形成された第1貫通孔である複数の貫通孔6が等間隔で設けられている。これらの貫通孔6内には、それぞれ膜電極接合体3が設けられている。このような電極ユニット4には、それを覆う筺体(図示せず)が設けられている。ただし、その筺体と膜電極接合体3の表面との間には、膜電極接合体3の表面に空気を供給するため、スペース(空間)が設けられている。なお、ここでは、貫通孔6は長方形状に形成されているが、これに限るものでなく、例えば円形状や正方形状に形成されても良い。   The electrode unit 4 has an insulating substrate 5 which is formed in a flat plate shape and has insulating properties. The insulating substrate 5 is provided with a plurality of through holes 6 which are first through holes formed in a rectangular shape at equal intervals. Membrane electrode assemblies 3 are respectively provided in these through holes 6. Such an electrode unit 4 is provided with a casing (not shown) for covering it. However, a space is provided between the housing and the surface of the membrane electrode assembly 3 in order to supply air to the surface of the membrane electrode assembly 3. In addition, although the through-hole 6 is formed in the rectangular shape here, it is not restricted to this, For example, you may form in circular shape or square shape.

膜電極接合体3は、イオン伝導体である電解質膜7を電極である空気極8と燃料極9とにより挟み込むことで形成されている。空気極8及び燃料極9は、それぞれ電解質膜7側に触媒層(図示せず)を有している。このような膜電極接合体3は絶縁性基板5に複数設けられている。複数の膜電極接合体3は、同じ種類の電極が同じ側に位置するように配置されており、燃料極9側が燃料供給路体2に接続され、空気極8側が外側(外面)に位置付けられている。   The membrane electrode assembly 3 is formed by sandwiching an electrolyte membrane 7 that is an ionic conductor between an air electrode 8 and a fuel electrode 9 that are electrodes. Each of the air electrode 8 and the fuel electrode 9 has a catalyst layer (not shown) on the electrolyte membrane 7 side. A plurality of such membrane electrode assemblies 3 are provided on the insulating substrate 5. The plurality of membrane electrode assemblies 3 are arranged such that the same type of electrodes are located on the same side, the fuel electrode 9 side is connected to the fuel supply path body 2, and the air electrode 8 side is located on the outer side (outer surface). ing.

複数の膜電極接合体3は、図2に示すように、導電性を有する電極接続部10により電気的に直列接続されている。電極接続部10は、隣接する2つの膜電極接合体3において、互いの燃料極9と空気極8とを接続している。なお、絶縁性基板5には、第2貫通孔であるスルホール11が設けられており、電極接続部10はそのスルホール11内を通過して、隣接する2つの膜電極接合体3を電気的に接続している。このような電極接続部10では、膜電極接合体3に重なる部分は、燃料が通過できる拡散性材料で形成されている。すなわち、空気極8に重なる部分は、空気が通過できる拡散性材料で形成されており、燃料極9に重なる部分は、アルコール溶液等の燃料が通過できる拡散性材料で形成されている。   As shown in FIG. 2, the plurality of membrane electrode assemblies 3 are electrically connected in series by a conductive electrode connection portion 10. The electrode connecting portion 10 connects the fuel electrode 9 and the air electrode 8 to each other in two adjacent membrane electrode assemblies 3. The insulating substrate 5 is provided with a through hole 11 as a second through hole, and the electrode connecting portion 10 passes through the through hole 11 to electrically connect two adjacent membrane electrode assemblies 3 electrically. Connected. In such an electrode connection part 10, the part which overlaps with the membrane electrode assembly 3 is formed with the diffusible material which a fuel can pass. That is, the portion overlapping the air electrode 8 is formed of a diffusible material through which air can pass, and the portion overlapping the fuel electrode 9 is formed of a diffusible material through which fuel such as an alcohol solution can pass.

燃料供給路体2は、燃料容器(図示せず)から供給された燃料であるアルコール溶液を毛細管現象により燃料極9に供給する部材である。これにより、燃料極9には、アルコール溶液が供給される。一方、膜電極接合体3の表面、すなわち空気極8の表面と筺体との間には、スペースが存在するため、空気極8は絶えず空気に接触している。これにより、空気極8には、空気(酸素)が供給される。   The fuel supply path body 2 is a member that supplies an alcohol solution, which is fuel supplied from a fuel container (not shown), to the fuel electrode 9 by capillary action. As a result, the alcohol solution is supplied to the fuel electrode 9. On the other hand, since there is a space between the surface of the membrane electrode assembly 3, that is, the surface of the air electrode 8 and the housing, the air electrode 8 is constantly in contact with air. As a result, air (oxygen) is supplied to the air electrode 8.

ここで、絶縁性基板5としては、例えば、ガラスエポキシ基材、SEM材及びプラスチックフィルム基材等の基板が用いられる。なお、絶縁性基板5としては、イオン絶縁性及び電気絶縁性を有する基材であれば、どのような基板が用いられても良い。このような絶縁性基板5の上には、燃料電池1に必要となる電気配線パターンや電気回路等が形成されても良い。また、電解質膜7は、ナフィオン膜の溶液状の材料で形成されているが、これに限るものではなく、例えば、キャスト製膜が可能な、強酸系あるいはポリマーブレンド材料による溶液で形成されても良い。絶縁性基板5の厚さは数mm程度の厚さに、すなわち電極(空気極8及び燃料極9)を含めた厚さに設定されている。なお、電解質膜7の厚さは例えば20〜100μm程度であるが、その電解質膜7の厚さに絶縁性基板5の厚さを合わせるようにしても良い。これにより、高精度の膜厚で電解質膜7を製造することができる。   Here, as the insulating substrate 5, for example, a substrate such as a glass epoxy base material, an SEM material, and a plastic film base material is used. In addition, as the insulating substrate 5, any substrate may be used as long as it is a base material having ion insulating properties and electrical insulating properties. On such an insulating substrate 5, an electric wiring pattern, an electric circuit, and the like necessary for the fuel cell 1 may be formed. The electrolyte membrane 7 is formed of a Nafion membrane solution-like material, but is not limited to this. For example, the electrolyte membrane 7 may be formed of a strong acid-based or polymer blend material solution that can be cast. good. The thickness of the insulating substrate 5 is set to a thickness of about several mm, that is, the thickness including the electrodes (the air electrode 8 and the fuel electrode 9). The thickness of the electrolyte membrane 7 is, for example, about 20 to 100 μm, but the thickness of the insulating substrate 5 may be matched with the thickness of the electrolyte membrane 7. Thereby, the electrolyte membrane 7 can be manufactured with a highly accurate film thickness.

このような構成において、燃料電池1は、その電極ユニット4の膜電極接合体3に供給される燃料により電気を発生させる。詳しくは、燃料電池1は、膜電極接合体3において燃料極9に供給されるアルコール溶液と、空気極8に取り込まれる空気中の酸素とを化学反応させて電気を発生させ、その電気を負荷に供給する。   In such a configuration, the fuel cell 1 generates electricity by the fuel supplied to the membrane electrode assembly 3 of the electrode unit 4. Specifically, the fuel cell 1 generates electricity by chemically reacting an alcohol solution supplied to the fuel electrode 9 in the membrane electrode assembly 3 and oxygen in the air taken into the air electrode 8, and loads the electricity. To supply.

次に、本参考形態の電極ユニット4の製造方法について図3及び図4を参照して説明する。図3及び図4は本参考形態の電極ユニット4の製造工程の一部を概略的に示す斜視図である。
Next, the manufacturing method of the electrode unit 4 of this reference form is demonstrated with reference to FIG.3 and FIG.4. 3 and 4 are a perspective view schematically showing part of the reference embodiment of the electrode unit 4 of the manufacturing process.

図3に示すように、電極ユニット4の製造方法では、絶縁性を有する絶縁性基板5に第1貫通孔である複数の貫通孔6を形成し(図3(a)参照)、それらの貫通孔6に複数の膜電極接合体3をそれぞれ設ける(図3(b)〜図3(d)参照)。膜電極接合体3は、電極(空気極8及び燃料極9)で電解質膜7を挟持するようにそれらを積層することで形成され、貫通孔6に設けられる。次に、図4に示すように、絶縁性基板5に設けられた複数の膜電極接合体3を電気的に接続する(図4(a)及び図4(b)参照)。これにより、電極ユニット4が完成する。   As shown in FIG. 3, in the manufacturing method of the electrode unit 4, a plurality of through holes 6 as first through holes are formed in an insulating substrate 5 having insulating properties (see FIG. 3A), and the through holes 6 are formed. A plurality of membrane electrode assemblies 3 are respectively provided in the holes 6 (see FIGS. 3B to 3D). The membrane electrode assembly 3 is formed by laminating the electrolyte membrane 7 so as to sandwich the electrode (the air electrode 8 and the fuel electrode 9), and is provided in the through hole 6. Next, as shown in FIG. 4, a plurality of membrane electrode assemblies 3 provided on the insulating substrate 5 are electrically connected (see FIGS. 4A and 4B). Thereby, the electrode unit 4 is completed.

複数の貫通孔6を形成する工程では、絶縁性基板5に例えば長方形状の複数の貫通孔6を並べて形成する。これらの長方形状の貫通孔6は、例えばその短手方向に並べて形成されている。貫通孔6の形成方法としては、例えば抜型による切断等が用いられる。なお、ここでは、貫通孔6を長方形状に形成しているが、これに限るものでなく、例えば円形状や正方形状に形成しても良い。   In the step of forming the plurality of through holes 6, for example, a plurality of rectangular through holes 6 are formed side by side on the insulating substrate 5. These rectangular through holes 6 are formed side by side in the short direction, for example. As a method for forming the through-hole 6, for example, cutting by die cutting or the like is used. Here, the through hole 6 is formed in a rectangular shape, but the present invention is not limited to this, and may be formed in, for example, a circular shape or a square shape.

複数の膜電極接合体3を設ける工程では、絶縁性基板5を載置台(図示せず)等に載置し、載置した絶縁性基板5の貫通孔6内に、燃料極9を設け(図3(b)参照)、その燃料極9の上に電解質膜7を積層し(図3(c)参照)、さらに、その電解質膜7の上に空気極8を積層する(図3(d)参照)。なお、空気極8及び燃料極9は、それぞれ電解質膜7側に触媒層(図示せず)を有している。ここでは、印刷によりそれらの燃料極9、電解質膜7及び空気極8を形成する。このとき同時に、燃料電池1の膜電極接合体3に対して必要となる電気配線パターンや電気回路等が形成されても良い。   In the step of providing the plurality of membrane electrode assemblies 3, the insulating substrate 5 is mounted on a mounting table (not shown) or the like, and the fuel electrode 9 is provided in the through hole 6 of the mounting insulating substrate 5 ( 3B), an electrolyte membrane 7 is laminated on the fuel electrode 9 (see FIG. 3C), and an air electrode 8 is laminated on the electrolyte membrane 7 (FIG. 3D). )reference). Each of the air electrode 8 and the fuel electrode 9 has a catalyst layer (not shown) on the electrolyte membrane 7 side. Here, the fuel electrode 9, the electrolyte membrane 7, and the air electrode 8 are formed by printing. At the same time, an electric wiring pattern, an electric circuit, or the like necessary for the membrane electrode assembly 3 of the fuel cell 1 may be formed.

印刷は、例えば、絶縁性基板5の貫通孔6以外の部分にマスクを施し、シルク印刷等により行われる。なお、印刷としては、シルク印刷に限るものではなく、例えばインクジェット方式の印刷が行われても良い。また、ここでは、エマルジョンインク(emulsion ink)で空気極8及び燃料極9を形成する。このエマルジョンインクは、空気極8や燃料極9等の電極作製用のカーボンや触媒をエマルジョン化して分散させることで形成されている。   The printing is performed, for example, by applying a mask to portions other than the through holes 6 of the insulating substrate 5 and performing silk printing or the like. Note that printing is not limited to silk printing, and for example, ink jet printing may be performed. Further, here, the air electrode 8 and the fuel electrode 9 are formed by emulsion ink. This emulsion ink is formed by emulsifying and dispersing carbon and a catalyst for producing electrodes such as the air electrode 8 and the fuel electrode 9.

載置台は燃料極9が接着しない材料で形成されているため、絶縁性基板5は設置台から容易に移動させることができる。また、燃料極9が接着しない載置台を用いず、燃料極9が接着しない材料で形成されたフィルム等を載置台の上に設けるようにしても良い。   Since the mounting table is made of a material to which the fuel electrode 9 does not adhere, the insulating substrate 5 can be easily moved from the mounting table. Further, instead of using a mounting table to which the fuel electrode 9 does not adhere, a film or the like formed of a material to which the fuel electrode 9 does not adhere may be provided on the mounting table.

複数の膜電極接合体3を電気的に接続する工程では、絶縁性基板5に第2貫通孔である複数のスルホール11を形成し(図4(a)参照)、そのスルホール11を通過して隣接する膜電極接合体3を電気的に接続する電極接続部10を設ける(図4(b)参照)。これにより、図2に示すように、隣接する2つの膜電極接合体3では、互いの燃料極9と空気極8とが電極接続部10により接続される。したがって、複数の膜電極接合体3は電気的に直列接続される。これにより、電極ユニット4が完成する。   In the step of electrically connecting the plurality of membrane electrode assemblies 3, a plurality of through holes 11 as second through holes are formed in the insulating substrate 5 (see FIG. 4A), and the through holes 11 are passed through. An electrode connecting portion 10 for electrically connecting adjacent membrane electrode assemblies 3 is provided (see FIG. 4B). Thereby, as shown in FIG. 2, in the two adjacent membrane electrode assemblies 3, the fuel electrode 9 and the air electrode 8 are connected by the electrode connecting portion 10. Therefore, the plurality of membrane electrode assemblies 3 are electrically connected in series. Thereby, the electrode unit 4 is completed.

このように本参考形態では、絶縁性基板5の貫通孔6に燃料極9、電解質膜7及び空気極8を積層することで、簡単に複数の膜電極接合体3を形成することが可能になるため、低コストで平面型の燃料電池1の大量生産を実現することができる。さらに、複数の膜電極接合体3毎に電解質膜7が設けられており、すなわち、隣接する膜電極接合体3における電解質膜7は分断されており、電極間のクロスオーバーの発生を抑えることが可能になる。これにより、電気的絶縁性及びプロトン絶縁性の良好な燃料電池を提供することができる。さらに、印刷により複数の燃料極9や電解質膜7、空気極8を一括して形成することが可能になり、平面型の燃料電池1を確実に低コストで大量生産することができる。
As described above, in this reference embodiment, the through hole 6 of the insulating substrate 5 fuel electrode 9, by stacking the electrolyte membrane 7 and the air electrode 8, it is possible to easily form a plurality of membrane electrode assemblies 3 Therefore, mass production of the planar fuel cell 1 can be realized at low cost. Further, the electrolyte membrane 7 is provided for each of the plurality of membrane electrode assemblies 3, that is, the electrolyte membrane 7 in the adjacent membrane electrode assembly 3 is divided, and the occurrence of crossover between the electrodes can be suppressed. It becomes possible. As a result, a fuel cell with good electrical insulation and proton insulation can be provided. Furthermore, a plurality of fuel electrodes 9, electrolyte membranes 7, and air electrodes 8 can be collectively formed by printing, and the flat fuel cell 1 can be reliably mass-produced at low cost.

特に、絶縁性基板5にスルホール11を形成して使用するため、従来のように電解質膜7に貫通する穴を設ける必要はなくなり、その穴を通しての液体燃料の漏れやしみ込みがなく、電気的絶縁性及びイオン絶縁性が良好な燃料電池1を得ることができる。また、従来のように電解質膜7に貫通する穴を設ける場合には、この穴からの液体燃料の漏れを防止するためのシール材が必要であり、シール材を設けるとその分だけ燃料電池1が大型化してしまう。しかし、本参考形態では、複数の膜電極接合体3毎に電解質膜7が設けられているため、シール材を設ける必要がなく、燃料電池1の小型化を実現することができる。
In particular, since the through hole 11 is formed in the insulating substrate 5 and used, it is not necessary to provide a hole penetrating the electrolyte membrane 7 as in the prior art, and there is no leakage or penetration of liquid fuel through the hole, and electrical A fuel cell 1 having good insulation and ion insulation can be obtained. Further, when a hole penetrating the electrolyte membrane 7 is provided as in the conventional case, a sealing material for preventing leakage of liquid fuel from the hole is necessary, and when the sealing material is provided, the fuel cell 1 correspondingly is provided. Will become larger. However, in this reference embodiment, since the electrolyte membrane 7 to the plurality of membrane electrode assemblies each 3 is provided, it is not necessary to provide a sealing material, it is possible to reduce the size of the fuel cell 1.

さらに、絶縁性基板5上に電気配線パターンや電気回路等を設けることで、複数の膜電極接合体3間の電気的接続が容易になり、加えて低コストで行うことができる。例えば、膜電極接合体3毎に保護回路や安定化回路を有する燃料電池1を低コストで製造することができる。   Furthermore, by providing an electrical wiring pattern, an electrical circuit, or the like on the insulating substrate 5, electrical connection between the plurality of membrane electrode assemblies 3 is facilitated, and in addition, it can be performed at low cost. For example, the fuel cell 1 having a protection circuit and a stabilization circuit for each membrane electrode assembly 3 can be manufactured at low cost.

なお、本参考形態では、印刷により電解質膜7を形成しているが、これに限るものではなく、例えばキャスト製膜により電解質膜7を形成しても良い。この場合には、電解質膜7は、キャスト製膜が可能な材料である溶液を貫通孔6内にキャスト(注入)することで形成される。ここで、キャスト製膜に使用する材料として、絶縁性基板5との密着性が高い特性を有する材料を使用することで、より電極間のクロスオーバーが少ない燃料電池1を製造することができる。
In the present reference embodiment, although an electrolyte membrane 7 by printing, not limited to this, for example, by cast film may be an electrolyte membrane 7. In this case, the electrolyte membrane 7 is formed by casting (injecting) a solution, which is a material capable of casting into a film, into the through hole 6. Here, by using a material having high adhesion to the insulating substrate 5 as a material used for casting, the fuel cell 1 with less crossover between the electrodes can be manufactured.

また、本参考形態では、絶縁性基板5の貫通孔6内に、燃料極9、電解質膜7及び空気極8をその順番で積層して設けるが(図3(b)〜図3(d)参照)、これに限るものではない。ここで、本発明の実施の形態電極ユニット4の製造方法について図5を参照して説明する。図5は本実施の形態電極ユニット4の製造工程の一部を概略的に示す斜視図である。
Further, in this reference embodiment, in the through hole 6 of the insulating substrate 5, the fuel electrode 9, although the electrolyte membrane 7 and the air electrode 8 provided by laminating in this order (FIG. 3 (b) ~ FIG 3 (d) See), but not limited to this. Here, the manufacturing method of the electrode unit 4 of embodiment of this invention is demonstrated with reference to FIG. FIG. 5 is a perspective view schematically showing a part of the manufacturing process of the electrode unit 4 of the present embodiment.

図5に示すように、本実施の形態の電極ユニット4の製造方法では、まず、絶縁性を有する絶縁性基板5aに複数の貫通孔6を形成し(図5(a)参照)、複数の貫通孔6内に電解質膜7を設ける(図5(b)参照)。次に、空気極8と燃料極9とで電解質膜7を挟持するように電解質膜7に空気極8と燃料極9とを積層して設ける(図5(c)参照)。このとき、空気極8と燃料極9とは、例えば印刷により形成される。これにより、複数の膜電極接合体3が形成される。最後に、複数の膜電極接合体3が形成された絶縁性基板5aの表裏面に、絶縁性基板5aと同様な絶縁性を有するシール材20を設ける(図5d参照)。
ここで、絶縁性基板5aとシール材20とが絶縁性基板5を構成している。その後、絶縁性基板5に設けられた複数の膜電極接合体3を電気的に接続する(図4(a)及び図4(b)参照)。これにより、電極ユニット4が完成する。
As shown in FIG. 5, in the manufacturing method of the electrode unit 4 of the present embodiment , first, a plurality of through holes 6 are formed in an insulating substrate 5a having an insulating property (see FIG. 5A). An electrolyte membrane 7 is provided in the through hole 6 (see FIG. 5B). Next, the air electrode 8 and the fuel electrode 9 are stacked on the electrolyte membrane 7 so as to sandwich the electrolyte membrane 7 between the air electrode 8 and the fuel electrode 9 (see FIG. 5C). At this time, the air electrode 8 and the fuel electrode 9 are formed by printing, for example. Thereby, a plurality of membrane electrode assemblies 3 are formed. Finally, the sealing material 20 having the same insulating property as that of the insulating substrate 5a is provided on the front and back surfaces of the insulating substrate 5a on which the plurality of membrane electrode assemblies 3 are formed (see FIG. 5d).
Here, the insulating substrate 5 a and the sealing material 20 constitute the insulating substrate 5. Thereafter, the plurality of membrane electrode assemblies 3 provided on the insulating substrate 5 are electrically connected (see FIGS. 4A and 4B). Thereby, the electrode unit 4 is completed.

このような電極ユニット4の製造方法でも、前述したような効果と同様な効果を奏する。さらに、絶縁性基板5aの貫通孔6に電解質膜7を設けることから、絶縁性基板5aの厚さを変化させるだけで、電解質膜7の厚さを制御することが可能になるため、高い精度で電解質膜7を形成することができる。例えば、所望の電解質膜7の厚さが50μmである場合には、絶縁性基板5aの厚さを50μmに設定することで、高い精度で厚さが50μmの電解質膜7を形成することができる。   Such a manufacturing method of the electrode unit 4 also has the same effect as described above. Further, since the electrolyte membrane 7 is provided in the through hole 6 of the insulating substrate 5a, it is possible to control the thickness of the electrolyte membrane 7 only by changing the thickness of the insulating substrate 5a. Thus, the electrolyte membrane 7 can be formed. For example, when the desired thickness of the electrolyte membrane 7 is 50 μm, the thickness of the insulating substrate 5a is set to 50 μm, whereby the electrolyte membrane 7 having a thickness of 50 μm can be formed with high accuracy. .

本発明を実施するための第2の参考形態について図6を参照して説明する。
A second reference embodiment for carrying out the present invention will be described with reference to FIG.

参考形態は、第1の参考形態と基本的に略同じであるが、本参考形態が第1の参考形態と異なる点は、本参考形態の電極ユニット4の製造方法が第1の参考形態の電極ユニット4の製造方法と異なることである。なお、第1の参考形態と同一部分は同一符号で示し、その説明も省略する。ここで、図6は本参考形態の膜電極接合体3の製造工程の一部を概略的に示す斜視図である。
This preferred embodiment, the first reference embodiment basically has substantially the same, this preferred embodiment differs from the first reference embodiment, a manufacturing method of the electrode unit 4 in this preferred embodiment the first referential embodiment This is different from the manufacturing method of the electrode unit 4. The same parts as those in the first reference embodiment are denoted by the same reference numerals, and the description thereof is also omitted. Here, FIG. 6 is a perspective view schematically showing part of the membrane electrode assembly 3 of the manufacturing process of this preferred embodiment.

図6に示すように、本参考形態の電極ユニット4の製造方法では、絶縁性を有する3枚の絶縁性基板5aにそれぞれ第1貫通孔である複数の貫通孔6を形成し(図6(a)参照)、2枚の絶縁性基板5aの複数の貫通孔6内に電極である空気極8及び燃料極9をそれぞれ設け、1枚の絶縁性基板5aの複数の貫通孔6内に電解質膜7を設ける(図6(b)参照)。最後に、複数の空気極8が貫通孔6内に設けられた絶縁性基板5aと、燃料極9が貫通孔6内に設けられた絶縁性基板5aと、複数の電解質膜7が貫通孔6内に設けられた絶縁性基板5aとを、空気極8と燃料極9とで電解質膜7を挟持する複数の膜電極接合体3を形成するように積層する(図6(c)参照)。その後、第1の参考形態と同様に、絶縁性基板5に設けられた複数の膜電極接合体3を電気的に接続する(図4(a)及び図4(b)参照)。これにより、電極ユニット4が完成する。
As shown in FIG. 6, in the manufacturing method of the electrode unit 4 of this preferred embodiment is to form a plurality of through holes 6 are first through-hole each three insulating substrate 5a having an insulating property (FIG. 6 ( a) see) The air electrode 8 and the fuel electrode 9 as electrodes are respectively provided in the plurality of through holes 6 of the two insulating substrates 5a, and the electrolyte is provided in the plurality of through holes 6 of the one insulating substrate 5a. A film 7 is provided (see FIG. 6B). Finally, an insulating substrate 5a in which a plurality of air electrodes 8 are provided in the through-hole 6, an insulating substrate 5a in which the fuel electrode 9 is provided in the through-hole 6, and a plurality of electrolyte membranes 7 are provided in the through-hole 6 The insulating substrate 5a provided therein is laminated so as to form a plurality of membrane electrode assemblies 3 that sandwich the electrolyte membrane 7 between the air electrode 8 and the fuel electrode 9 (see FIG. 6C). Thereafter, similarly to the first reference embodiment, the plurality of membrane electrode assemblies 3 provided on the insulating substrate 5 are electrically connected (see FIGS. 4A and 4B). Thereby, the electrode unit 4 is completed.

複数の貫通孔6を形成する工程では、絶縁性基板5aに例えば長方形状の複数の貫通孔6を並べて形成する。なお、ここでは、3枚の絶縁性基板5aを積層して、それらの絶縁性基板5aに一度に複数の貫通孔6を形成する。これにより、複数の貫通孔6は3枚の絶縁性基板5aにおける同じ位置に形成される。これらの長方形状の貫通孔6は、例えばその短手方向に並べて形成されている。貫通孔6の形成方法としては、例えば抜型による切断等が用いられる。なお、ここでは、貫通孔6を長方形状に形成しているが、これに限るものでなく、例えば円形状や正方形状に形成しても良い。   In the step of forming the plurality of through holes 6, for example, a plurality of rectangular through holes 6 are formed side by side on the insulating substrate 5a. Here, three insulating substrates 5a are stacked, and a plurality of through holes 6 are formed in these insulating substrates 5a at a time. Thereby, the plurality of through holes 6 are formed at the same position in the three insulating substrates 5a. These rectangular through holes 6 are formed side by side in the short direction, for example. As a method for forming the through-hole 6, for example, cutting by die cutting or the like is used. Here, the through hole 6 is formed in a rectangular shape, but the present invention is not limited to this, and may be formed in, for example, a circular shape or a square shape.

貫通孔6内に空気極8、燃料極9又は電解質膜7を設ける工程では、絶縁性基板5aを載置台(図示せず)等に載置し、載置した絶縁性基板5の貫通孔6内に、印刷又はキャスト製膜により燃料極9、電解質膜7又は空気極8を形成する。なお、印刷としては、例えばシルク印刷やインクジェット方式の印刷が行われる。   In the step of providing the air electrode 8, the fuel electrode 9 or the electrolyte membrane 7 in the through hole 6, the insulating substrate 5 a is mounted on a mounting table (not shown) and the through hole 6 of the mounted insulating substrate 5. Inside, the fuel electrode 9, the electrolyte membrane 7, or the air electrode 8 is formed by printing or cast film formation. As printing, for example, silk printing or ink jet printing is performed.

載置台は空気極8、燃料極9又は電解質膜7が接着しない材料で形成されているため、絶縁性基板5は設置台から容易に移動させることができる。また、空気極8、燃料極9又は電解質膜7が接着しない載置台を用いず、空気極8、燃料極9又は電解質膜7が接着しない材料で形成されたフィルム等を載置台の上に設けるようにしても良い。   Since the mounting table is formed of a material to which the air electrode 8, the fuel electrode 9, or the electrolyte membrane 7 does not adhere, the insulating substrate 5 can be easily moved from the installation table. In addition, a film or the like formed of a material to which the air electrode 8, the fuel electrode 9, or the electrolyte film 7 is not bonded is provided on the mounting table without using the mounting table to which the air electrode 8, the fuel electrode 9, or the electrolyte film 7 is not bonded. You may do it.

3枚の絶縁性基板5を積層する工程では、燃料極9が貫通孔6内に設けられた絶縁性基板5a上に、複数の電解質膜7が貫通孔6内に設けられた絶縁性基板5aを積層し、その上に、複数の空気極8が貫通孔6内に設けられた絶縁性基板5aを積層する。このとき、3枚の絶縁性基板5では、それぞれの貫通孔6の位置が合わせられて積層される。これにより、空気極8と燃料極9とで電解質膜7を挟持する複数の膜電極接合体3が形成される。なお、3枚の絶縁性基板5aが一体になり、参考形態の絶縁性基板5を構成している。
In the step of stacking the three insulating substrates 5, an insulating substrate 5 a in which a plurality of electrolyte membranes 7 are provided in the through hole 6 on the insulating substrate 5 a in which the fuel electrode 9 is provided in the through hole 6. And an insulating substrate 5a in which a plurality of air electrodes 8 are provided in the through hole 6 is laminated thereon. At this time, the three insulating substrates 5 are stacked such that the positions of the respective through holes 6 are aligned. As a result, a plurality of membrane electrode assemblies 3 that sandwich the electrolyte membrane 7 between the air electrode 8 and the fuel electrode 9 are formed. The three insulating substrates 5a are integrated to form the insulating substrate 5 of the reference form.

このような膜電極接合体3の製造方法でも、第1の参考形態と同様な効果を奏する。
さらに、本参考形態では、3枚の絶縁性基板5a毎に空気極8、電解質膜7及び燃料極9を設けることから、絶縁性基板5aの厚さを変化させるだけで、空気極8、電解質膜7及び燃料極9の各厚さを制御することが可能になるため、精度良く空気極8、電解質膜7及び燃料極9を形成することができる。
Such a manufacturing method of the membrane electrode assembly 3 also has the same effect as the first reference embodiment.
Furthermore, in this preferred embodiment, since the provision of the air electrode 8, the electrolyte membrane 7 and the fuel electrode 9 every three insulating substrate 5a, only varying the thickness of the insulating substrate 5a, the air electrode 8, the electrolyte Since the thicknesses of the membrane 7 and the fuel electrode 9 can be controlled, the air electrode 8, the electrolyte membrane 7 and the fuel electrode 9 can be formed with high accuracy.

本発明の第1の参考形態の燃料電池の構成を概略的に示す外観斜視図である。1 is an external perspective view schematically showing a configuration of a fuel cell according to a first reference embodiment of the present invention. 本発明の第1の参考形態の燃料電池の構成を概略的に示す縦断側面図である。It is a vertical side view which shows roughly the structure of the fuel cell of the 1st reference form of this invention. 本発明の第1の参考形態の電極ユニットの製造工程の一部を概略的に示す斜視図である。It is a perspective view which shows roughly a part of manufacturing process of the electrode unit of the 1st reference form of this invention. 本発明の第1の参考形態の電極ユニットの製造工程の一部を概略的に示す斜視図である。It is a perspective view which shows roughly a part of manufacturing process of the electrode unit of the 1st reference form of this invention. 本発明実施の形態電極ユニットの製造工程の一部を概略的に示す斜視図である。A part of the process of manufacturing the embodiment of the electrode unit of the present invention is a perspective view schematically showing. 本発明の第2の参考形態の電極ユニットの製造工程の一部を概略的に示す斜視図である。It is a perspective view which shows roughly a part of manufacturing process of the electrode unit of the 2nd reference form of this invention. 従来の燃料電池の構成を概略的に示す外観斜視図である。It is an external appearance perspective view which shows the structure of the conventional fuel cell roughly. 従来の燃料電池の構成を概略的に示す縦断側面図である。It is a vertical side view which shows the structure of the conventional fuel cell roughly.

符号の説明Explanation of symbols

1 燃料電池
3 膜電極接合体
4 膜電極素子(電極ユニット)
5 絶縁性基板
5a 絶縁性基板
6 第1貫通孔(貫通孔)
7 電解質膜
8 電極(空気極)
9 電極(燃料極)
10 電極接続部
11 第2貫通孔(スルホール)

1 Fuel Cell 3 Membrane Electrode Assembly 4 Membrane Electrode Element (Electrode Unit)
5 Insulating substrate 5a Insulating substrate 6 First through hole (through hole)
7 Electrolyte membrane 8 Electrode (Air electrode)
9 Electrode (fuel electrode)
10 Electrode connection portion 11 Second through hole (through hole)

Claims (6)

燃料電池に備えられる膜電極素子の製造方法において、
絶縁性を有する絶縁性基板に複数の第1貫通孔を形成する工程と、
複数の前記第1貫通孔に前記絶縁性基板と同じ厚さの電解質膜を設ける工程と、
前記電解質膜を電極で挟持する複数の膜電極接合体を設ける工程と、
隣接する前記膜電極接合体の間に介在させて絶縁性のシール材を前記絶縁性基板の表裏面に設ける工程と、
隣接する前記膜電極接合体の間の位置で前記絶縁性基板及び前記シール材に複数の第2貫通孔を形成し、前記第2貫通孔内を通過して、前記絶縁性基板の表裏で隣接する前記膜電極接合体を電気的に接続する電極接続部を設けることで、複数の前記膜電極接合体を電気的に接続する工程と、
を具備する膜電極素子の製造方法。
In a method for manufacturing a membrane electrode element provided in a fuel cell,
Forming a plurality of first through holes in an insulating substrate having insulating properties;
Providing an electrolyte membrane having the same thickness as the insulating substrate in the plurality of first through holes;
Providing a plurality of membrane electrode assemblies for sandwiching the electrolyte membrane with electrodes;
A step of providing an insulating sealing material on the front and back surfaces of the insulating substrate , interposing between the adjacent membrane electrode assemblies ;
A plurality of second through holes are formed in the insulating substrate and the sealing material at a position between the adjacent membrane electrode assemblies, pass through the second through holes, and are adjacent on the front and back of the insulating substrate. Electrically connecting a plurality of the membrane electrode assemblies by providing an electrode connection portion that electrically connects the membrane electrode assemblies;
The manufacturing method of the membrane electrode element which comprises this.
印刷により前記電極及び前記電解質膜を形成するようにした請求項1記載の膜電極素子の製造方法。   The method for manufacturing a membrane electrode element according to claim 1, wherein the electrode and the electrolyte membrane are formed by printing. 前記印刷はエマルジョンインクで前記電極を形成する請求項2記載の膜電極素子の製造方法。   The method for producing a membrane electrode element according to claim 2, wherein the printing is performed by forming the electrode with an emulsion ink. キャスト製膜により前記電解質膜を形成するようにした請求項1記載の膜電極素子の製造方法。   The method for manufacturing a membrane electrode element according to claim 1, wherein the electrolyte membrane is formed by cast film formation. 請求項1ないしのいずれか一記載の膜電極素子の製造方法により形成された膜電極素子。 The membrane electrode element formed by the manufacturing method of the membrane electrode element as described in any one of Claim 1 thru | or 4 . 請求項記載の膜電極素子を備え、その膜電極素子が備える前記膜電極接合体に燃料を供給することで発電する燃料電池。 A fuel cell comprising the membrane electrode element according to claim 5 and generating electricity by supplying fuel to the membrane electrode assembly provided in the membrane electrode element.
JP2004101836A 2004-03-31 2004-03-31 Membrane electrode element manufacturing method, membrane electrode element and fuel cell Expired - Fee Related JP4674789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101836A JP4674789B2 (en) 2004-03-31 2004-03-31 Membrane electrode element manufacturing method, membrane electrode element and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101836A JP4674789B2 (en) 2004-03-31 2004-03-31 Membrane electrode element manufacturing method, membrane electrode element and fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008272397A Division JP5047122B2 (en) 2008-10-22 2008-10-22 Membrane electrode element manufacturing method, membrane electrode element and fuel cell

Publications (2)

Publication Number Publication Date
JP2005285709A JP2005285709A (en) 2005-10-13
JP4674789B2 true JP4674789B2 (en) 2011-04-20

Family

ID=35183844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101836A Expired - Fee Related JP4674789B2 (en) 2004-03-31 2004-03-31 Membrane electrode element manufacturing method, membrane electrode element and fuel cell

Country Status (1)

Country Link
JP (1) JP4674789B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804531B2 (en) 2017-10-11 2020-10-13 Unist(Ulsan National Institute Of Science And Technology) Manufacturing method of anode for secondary battery and anode for secondary battery manufactured thereby

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872308B2 (en) * 2005-10-27 2012-02-08 株式会社エクォス・リサーチ Fuel cell device
JP2007323938A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Fuel cell and fuel cell module
KR100853015B1 (en) * 2007-04-10 2008-08-19 삼성전기주식회사 Fuel cell and manufacturing method thereof
JP2009224330A (en) * 2008-03-17 2009-10-01 Samsung Electro Mech Co Ltd Cell unit for fuel battery and its manufacturing method
JP5442481B2 (en) * 2009-03-30 2014-03-12 三洋電機株式会社 Composite membrane, fuel cell, and method for producing composite membrane
JP5617491B2 (en) * 2010-09-29 2014-11-05 大日本印刷株式会社 Membrane-electrode assembly intermediate, and membrane-electrode assembly intermediate, membrane-electrode assembly, and method for producing polymer electrolyte fuel cell
KR101909890B1 (en) 2016-09-01 2018-10-19 울산과학기술원 Rechargeable battery module using ion containing solution
CN112886041B (en) * 2021-01-15 2022-12-13 苏州泰仑电子材料有限公司 Membrane electrode preparation system of fuel cell

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200666A (en) * 1986-02-27 1987-09-04 Mitsubishi Electric Corp Fuel cell
JPS632264A (en) * 1986-06-20 1988-01-07 Mitsubishi Electric Corp Fuel cell
JPH06349512A (en) * 1993-06-08 1994-12-22 Murata Mfg Co Ltd Fuel cell
JPH09180740A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Solid high-molecular fuel cell and manufacture and device thereof
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2002203580A (en) * 2000-12-28 2002-07-19 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2002280049A (en) * 2001-03-19 2002-09-27 Hitachi Cable Ltd Integrated type fuel cell
JP2002329500A (en) * 2001-03-02 2002-11-15 National Institute Of Advanced Industrial & Technology Electrode catalyst for fuel electrode of low temperature fuel cell
JP2003100315A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Fuel cell power generator and unit using its generator
JP2003142111A (en) * 2001-11-02 2003-05-16 Honda Motor Co Ltd Electrode for solid high polymer type fuel cell and its manufacturing method
JP2003168449A (en) * 2001-09-19 2003-06-13 Asahi Glass Co Ltd Manufacturing method of film electrode conjugate for solid polymer-type fuel cell
JP2003197225A (en) * 2001-12-28 2003-07-11 Dainippon Printing Co Ltd High polymer electrolyte fuel cell
JP2003203646A (en) * 2001-12-27 2003-07-18 Hyundai Motor Co Ltd Manufacturing method of fuel cell membrane-electrode- gasket joint body and fuel cell containing the same
JP2003264003A (en) * 2002-03-11 2003-09-19 Yuasa Corp Direct-type fuel cell
JP2004281067A (en) * 2003-03-12 2004-10-07 Tohoku Ricoh Co Ltd Electrodes for fuel cell, and manufacturing method for both

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200666A (en) * 1986-02-27 1987-09-04 Mitsubishi Electric Corp Fuel cell
JPS632264A (en) * 1986-06-20 1988-01-07 Mitsubishi Electric Corp Fuel cell
JPH06349512A (en) * 1993-06-08 1994-12-22 Murata Mfg Co Ltd Fuel cell
JPH09180740A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Solid high-molecular fuel cell and manufacture and device thereof
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2002203580A (en) * 2000-12-28 2002-07-19 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2002329500A (en) * 2001-03-02 2002-11-15 National Institute Of Advanced Industrial & Technology Electrode catalyst for fuel electrode of low temperature fuel cell
JP2002280049A (en) * 2001-03-19 2002-09-27 Hitachi Cable Ltd Integrated type fuel cell
JP2003168449A (en) * 2001-09-19 2003-06-13 Asahi Glass Co Ltd Manufacturing method of film electrode conjugate for solid polymer-type fuel cell
JP2003100315A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Fuel cell power generator and unit using its generator
JP2003142111A (en) * 2001-11-02 2003-05-16 Honda Motor Co Ltd Electrode for solid high polymer type fuel cell and its manufacturing method
JP2003203646A (en) * 2001-12-27 2003-07-18 Hyundai Motor Co Ltd Manufacturing method of fuel cell membrane-electrode- gasket joint body and fuel cell containing the same
JP2003197225A (en) * 2001-12-28 2003-07-11 Dainippon Printing Co Ltd High polymer electrolyte fuel cell
JP2003264003A (en) * 2002-03-11 2003-09-19 Yuasa Corp Direct-type fuel cell
JP2004281067A (en) * 2003-03-12 2004-10-07 Tohoku Ricoh Co Ltd Electrodes for fuel cell, and manufacturing method for both

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804531B2 (en) 2017-10-11 2020-10-13 Unist(Ulsan National Institute Of Science And Technology) Manufacturing method of anode for secondary battery and anode for secondary battery manufactured thereby
US10938024B2 (en) 2017-10-11 2021-03-02 Unist (Ulsan National Institute Of Science And Technology) Manufacturing method of anode for secondary battery and anode for secondary battery manufactured thereby

Also Published As

Publication number Publication date
JP2005285709A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US10644343B2 (en) Dummy cell and fuel cell stack
US7632599B2 (en) Separator for fuel cell and fuel cell using the same
JP5234446B2 (en) Structure to improve stackability of metal separator for fuel cell stack
JP2009535786A (en) System and method for stacking fuel cells
JP2012212678A (en) Fuel cell
US8153285B2 (en) Micro fuel cell
JP2009093825A (en) Current-collecting composite plate for fuel cell, and fuel cell
JP4674789B2 (en) Membrane electrode element manufacturing method, membrane electrode element and fuel cell
US10818938B2 (en) Fuel cell stack having laminated cells
US10050286B2 (en) Fuel cell flow plate
US20100009237A1 (en) Fuel cell module and its use
US20090117413A9 (en) Micro fuel cell
JP5047122B2 (en) Membrane electrode element manufacturing method, membrane electrode element and fuel cell
JP4872287B2 (en) Separator assembly and planar polymer electrolyte fuel cell for planar polymer electrolyte fuel cell
CN110534787B (en) Terminal plate for fuel cell
JP5865346B2 (en) Fuel cell and fuel cell manufacturing method
JP2005243286A (en) Fuel cell stack
JP4872286B2 (en) Separator assembly and planar polymer electrolyte fuel cell for planar polymer electrolyte fuel cell
JP4083599B2 (en) Fuel cell and manufacturing method thereof
US9455452B2 (en) Fuel cell and method of manufacture thereof
JP2008159305A (en) Electrolyte membrane-electrode assembly, its manufacturing method, and fuel cell using it
JP2007213830A (en) Membrane-electrode assembly for fuel cell and manufacturing method of the same
JP4083600B2 (en) Fuel cell
JP4862258B2 (en) Flat type polymer electrolyte fuel cell separator
JP2005216535A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees