JP4862258B2 - Flat type polymer electrolyte fuel cell separator - Google Patents

Flat type polymer electrolyte fuel cell separator Download PDF

Info

Publication number
JP4862258B2
JP4862258B2 JP2004292269A JP2004292269A JP4862258B2 JP 4862258 B2 JP4862258 B2 JP 4862258B2 JP 2004292269 A JP2004292269 A JP 2004292269A JP 2004292269 A JP2004292269 A JP 2004292269A JP 4862258 B2 JP4862258 B2 JP 4862258B2
Authority
JP
Japan
Prior art keywords
supply side
separator
side separator
unit conductive
conductive substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004292269A
Other languages
Japanese (ja)
Other versions
JP2006107900A (en
Inventor
徹 芹澤
泰弘 内田
高徳 前田
裕 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004292269A priority Critical patent/JP4862258B2/en
Priority to DE112005000131T priority patent/DE112005000131T5/en
Priority to US10/584,902 priority patent/US8039168B2/en
Priority to KR1020067013595A priority patent/KR100755211B1/en
Priority to PCT/JP2005/018715 priority patent/WO2006038701A1/en
Publication of JP2006107900A publication Critical patent/JP2006107900A/en
Priority to US13/232,605 priority patent/US20120003567A1/en
Application granted granted Critical
Publication of JP4862258B2 publication Critical patent/JP4862258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池に関し、特に、平面型の高分子電解質型燃料電池用のセパレータに関する。   The present invention relates to a fuel cell, and more particularly to a separator for a planar polymer electrolyte fuel cell.

燃料電池は、簡単には、外部より燃料(還元剤)と酸素または空気(酸化剤)を連続的に供給し、電気化学的に反応させて電気エネルギーを取り出す装置で、その作動温度、使用燃料の種類、用途などで分類される。また、最近では、主に使用される電解質の種類によって、大きく、固体酸化物型燃料電池、溶融炭酸塩型燃料電池、りん酸型燃料電池、高分子電解質型燃料電池、アルカリ水溶液型燃料電池の5種類に分類させるのがー般的である。
これらの燃料電池は、メタン等から生成された水素ガスを燃料とするものであるが、最近では、燃料としてメタノール水溶液をダイレクトに用いるダイレクトメタノール型燃料電池(以下、DMFCとも言う)も知られている。
なかでも、固体高分子膜を2種類の電極で挟み込み、更に、これらの部材をセパレータで挟んだ構成の固体高分子型燃料電池(以下、PEFCとも言う)が注目されている。
A fuel cell is simply a device that continuously supplies fuel (reducing agent) and oxygen or air (oxidant) from the outside, and reacts electrochemically to extract electrical energy. It is classified by type, use, etc. In recent years, depending on the type of electrolyte used, it is largely divided into solid oxide fuel cells, molten carbonate fuel cells, phosphoric acid fuel cells, polymer electrolyte fuel cells, and alkaline aqueous fuel cells. Generally, it is classified into 5 types.
These fuel cells use hydrogen gas generated from methane or the like as a fuel. Recently, a direct methanol fuel cell (hereinafter also referred to as DMFC) that directly uses an aqueous methanol solution as a fuel is also known. Yes.
In particular, a polymer electrolyte fuel cell (hereinafter also referred to as PEFC) having a structure in which a solid polymer membrane is sandwiched between two kinds of electrodes and these members are sandwiched between separators has attracted attention.

このPEFCにおいては、固体高分子膜の両側に、それぞれ、電極を配置した単位セルを複数個積層し、その起電力を目的に応じて大きくした、スタック構造のものが一般的である。単位セル間に配設されるセパレータは、一般に、そのー方の側面に、隣接するー方の単位セルに燃料ガスを供給するための燃料ガス供給用溝が形成されている。このようなセパレータでは、セパレータ面に沿って、燃料ガス、酸化剤ガスが供給される。
PEFCのセパレータとしては、グラファイト板を削り出して溝加工を施したセパレータ、樹脂にカーボンを練り込んだカーボンコンパウンドのモールド製セパレータ、エッチングなどで溝加工を施した金属製セパレータ、金属材料の表面部を耐食性の樹脂で覆ったセパレータ等が知られている。これらのセパレータは、いずれも必要に応じて、燃料ガス供給用溝、及び/または、酸化剤ガス供給用溝が形成されている。
In this PEFC, a stack structure is generally used in which a plurality of unit cells each having an electrode are stacked on both sides of a solid polymer film, and the electromotive force is increased according to the purpose. In general, the separator disposed between the unit cells is provided with a fuel gas supply groove for supplying fuel gas to the adjacent unit cell on the side surface. In such a separator, fuel gas and oxidant gas are supplied along the separator surface.
As PEFC separators, a graphite plate is cut and grooved, a carbon compound mold separator made by kneading carbon into a resin, a metal separator that is grooved by etching, etc. A separator or the like in which is covered with a corrosion-resistant resin is known. Each of these separators is formed with a groove for supplying fuel gas and / or a groove for supplying oxidant gas as required.

このスタック構造の燃料電池の他に、例えば、携帯端末用の燃料電池等のように、起電力をそれほど必要としないで、平面型で、できるだけ薄い事が要求される場合もある。しかし、平面状に単位セルを複数配列させ、これらを電気的に直列に接続する平面型の場合には、燃料及び酸素の供給が場所により不均一となるという問題もあった。
そこで、この燃料供給の不均一性を改善するために、膜電極複合体(MEA)に接しているセパレータの面に対して、垂直方向に多数の貫通孔を形成し、この貫通孔から燃料及び酸素を供給する構造のセパレータが考えられている(特許文献1)。
尚、本発明においては、燃料電池の燃料供給側セパレータと酸素供給側のセパレータとの間に位置する電極部を含む複合体、例えば、順に、集電体層、燃料電極、高分子電解質、酸素極、集電体層が積層されてなる膜等のような複合体を、膜電極複合体(MEA)と言う。
特開2003−203647号公報
In addition to this stack structure fuel cell, there is a case where it is required to be as thin as possible with a flat type without requiring an electromotive force as much as a fuel cell for a portable terminal, for example. However, in the case of a planar type in which a plurality of unit cells are arranged in a plane and these are electrically connected in series, there is a problem that the supply of fuel and oxygen becomes uneven depending on the location.
Therefore, in order to improve the non-uniformity of the fuel supply, a large number of through holes are formed in the direction perpendicular to the surface of the separator in contact with the membrane electrode assembly (MEA). A separator having a structure for supplying oxygen has been considered (Patent Document 1).
In the present invention, a composite including an electrode portion positioned between the fuel supply side separator and the oxygen supply side separator of the fuel cell, for example, a current collector layer, a fuel electrode, a polymer electrolyte, oxygen A composite such as a film in which electrodes and current collector layers are laminated is called a membrane electrode composite (MEA).
JP 2003-203647 A

しかしながら、上記のような構造のセパレータは、単位セル間を電気的に直列に接続するための配線形成が困難であったり、工程が複雑であり、また、配線接続による接触抵抗の増大という問題もあった。
本発明は、上記のような実情に鑑みてなされたものであり、軽量であり、接触抵抗により電池の内部抵抗を高めることなく単位セル間を電気的に直列に接続することが容易なセパレータを提供することを目的とする。
However, in the separator having the above structure, it is difficult to form wiring for electrically connecting unit cells in series, the process is complicated, and there is a problem that contact resistance is increased due to wiring connection. there were.
The present invention has been made in view of the above circumstances, and is a lightweight separator that can be easily connected in series between unit cells without increasing the internal resistance of the battery by contact resistance. The purpose is to provide.

このような目的を達成するために、本発明は、単位セルを平面的に配列した平面型の高分子電解質型燃料電池用のセパレータにおいて、燃料もしくは酸素を通過させるための複数の貫通孔を有する単位導電性基板が空隙部を介して平面的にn個(nは2以上の整数)配列された集電部と、前記単位導電性基板の配列位置に対応したn個の開口部を有し前記集電部を挟持するように一体化された一対の絶縁性枠体と、を備えた燃料供給側セパレータおよび酸素供給側セパレータからなり、燃料供給側セパレータおよび酸素供給側セパレータの一方の前記集電部を構成するn個の単位導電性基板のうち、配列方向の一方の端部の1番目から(n−1)番目までの各単位導電性基板と、燃料供給側セパレータおよび酸素供給側セパレータの他方の前記集電部を構成するn個の単位導電性基板のうち、配列方向の一方の端部の2番目からn番目までの各単位導電性基板とが、(n−1)個の接続用ヒンジ部を介して順次連結され、該接続用ヒンジ部で折り曲げて、前記燃料供給側セパレータと前記酸素供給側セパレータとが膜電極複合体を挟持するように対向可能であるような構成とした。 In order to achieve such an object, the present invention has a plurality of through holes for allowing fuel or oxygen to pass through in a separator for a planar type polymer electrolyte fuel cell in which unit cells are arranged in a plane. A current collector portion in which unit conductive substrates are arranged in a plane (n is an integer of 2 or more) through a gap portion, and n openings corresponding to the arrangement positions of the unit conductive substrates. A fuel supply side separator and an oxygen supply side separator provided with a pair of insulating frames integrated so as to sandwich the current collector, and the collector of one of the fuel supply side separator and the oxygen supply side separator. Among the n unit conductive substrates constituting the electric part, each of the unit conductive substrates from the first to (n-1) th one end in the arrangement direction, the fuel supply side separator, and the oxygen supply side separator Before the other Of the n unit conductive substrates constituting the current collector, each of the second to nth unit conductive substrates at one end in the arrangement direction is (n−1) hinge portions for connection. are sequentially connected via a bent in the connecting hinges, and the fuel supply-side separator and the oxygen supply side separator was opposable der so that structure so as to sandwich the membrane electrode assembly.

本発明の他の態様として、燃料供給側セパレータおよび酸素供給側セパレータの一方は、前記集電部を構成するn個の単位導電性基板のうち、配列方向の一方の端部の1番目から(n−1)番目までの単位導電性基板が、隣接する単位導電性基板方向に張り出している張出部材を隅部に有し、前記配列方向の前記端部の2番目からn番目までの単位導電性基板が、配列方向上流側に隣接する単位導電性基板の前記張出部材に対応し、かつ、前記張出部材との間に空隙部が形成される形状の切欠き部位を隅部に有し、前記張出部材を有する(n−1)個の単位導電性基板は、単位導電性基板の配列方向と略直交する方向に突出した前記接続用ヒンジ部を各張出部材に備え、(n−1)個の該接続用ヒンジ部を介して、燃料供給側セパレータおよび酸素供給側セパレータの他方の前記集電部を構成するn個の単位導電性基板のうち、配列方向の一方の端部の2番目からn番目までの単位導電性基板が、前記張出部材に連結されているような構成とした。   As another aspect of the present invention, one of the fuel supply side separator and the oxygen supply side separator is the first unit at one end in the arrangement direction among n unit conductive substrates constituting the current collector ( The n-1) th unit conductive substrate has a projecting member projecting in the direction of the adjacent unit conductive substrate at the corner, and the second to nth units at the end in the arrangement direction A conductive substrate corresponds to the projecting member of the unit conductive substrate adjacent to the upstream side in the arrangement direction, and a notch portion having a shape in which a gap is formed between the projecting member and the projecting member is formed at the corner. (N-1) unit conductive substrates having the projecting members each provided with the connecting hinge portion protruding in a direction substantially orthogonal to the arrangement direction of the unit conductive substrates, The fuel supply side separator and the (n-1) connecting hinge portions Among the n unit conductive substrates constituting the other current collector of the oxygen supply side separator, the second to nth unit conductive substrates at one end in the arrangement direction are attached to the projecting member. It was set as the structure connected.

本発明の他の態様として、燃料供給側セパレータの集電部を構成するn個の単位導電性基板と、酸素供給側セパレータの集電部を構成するn個の単位導電性基板とにおいて、それぞれ配列方向の端部に位置し、かつ、前記接続ヒンジ部が接続されていない単位導電性基板に電極端子を備えているような構成とした。   As another aspect of the present invention, each of n unit conductive substrates constituting a current collector of a fuel supply side separator and n unit conductive substrates constituting a current collector of an oxygen supply side separator, It was set as the structure which is equipped with the electrode terminal in the unit electroconductive board | substrate which is located in the edge part of an arrangement | sequence direction and the said connection hinge part is not connected.

本発明のセパレータは、燃料電池の膜電極複合体(MEA)を挟持するように、燃料供給側セパレータおよび酸素供給側セパレータを接続用ヒンジ部で折り曲げて対向一体化したときに、1つの単位セルを構成する一方のセパレータの単位導電性基板の張出部材が、隣接する単位セル領域内に張り出し、この張出部材が、隣接する単位セルの他方のセパレータの単位導電性基板と接続用ヒンジ部で連結されているので、n個の単位セルは、配線形成を行うことなく電気的に直列に接続された状態となり、このようにして得られた燃料電池は、接続部での接触抵抗がないため、内部抵抗が低く軽量で薄型であるという効果が奏される。   The separator of the present invention has one unit cell when the fuel supply side separator and the oxygen supply side separator are bent and integrated with each other so as to sandwich the membrane electrode assembly (MEA) of the fuel cell. The projecting member of the unit conductive substrate of one separator constituting the projecting unit projects into an adjacent unit cell region, and this projecting member is connected to the unit conductive substrate of the other separator of the adjacent unit cell and the hinge portion for connection The n unit cells are electrically connected in series without forming a wiring, and the fuel cell thus obtained has no contact resistance at the connection portion. Therefore, the effect that the internal resistance is low, lightweight and thin is achieved.

以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明の平面型の高分子電解質型燃料電池用のセパレータの一実施形態を示す斜視図であり、図2は図1に示されるセパレータのA−A線矢視断面図であり、図3は図1に示されるセパレータを構成する各部材を離間させた状態を示す斜視図である。図1〜図3において、本発明の平面型の高分子電解質型燃料電池用のセパレータ1は、燃料供給側セパレータ11と酸素供給側セパレータ21からなる。尚、本発明では、便宜的に燃料供給側セパレータ11と酸素供給側セパレータ21として説明するが、何れが燃料供給側セパレータ、酸素供給側セパレータであってもよい。また、図1〜図3では、矢印aで示される方向を、後述する単位導電性基板の配列方向とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of a separator for a planar polymer electrolyte fuel cell according to the present invention, and FIG. 2 is a cross-sectional view taken along line AA of the separator shown in FIG. FIG. 3 is a perspective view showing a state in which each member constituting the separator shown in FIG. 1 is separated. 1 to 3, a separator 1 for a planar polymer electrolyte fuel cell according to the present invention includes a fuel supply side separator 11 and an oxygen supply side separator 21. In the present invention, the fuel supply side separator 11 and the oxygen supply side separator 21 will be described for the sake of convenience, but any of them may be a fuel supply side separator or an oxygen supply side separator. Moreover, in FIGS. 1-3, let the direction shown by the arrow a be an arrangement direction of the unit conductive substrate mentioned later.

燃料供給側セパレータ11は、複数の貫通孔12aを有する長方形状の単位導電性基板12A,12B,12Cが空隙部17を介して平面的に3個配列された集電部12と、この集電部12を挟持するように一体化された一対の絶縁性枠体15,16と、を備えたものである。絶縁性枠体15,16は、それぞれ単位導電性基板12A,12B,12Cの配列位置に対応した3個の開口部15A,15B,15Cと16A,16B,16Cを有している。そして、各開口部15A,15B,15Cと16A,16B,16Cには、複数の貫通孔12aが形成された単位導電性基板12A,12B,12Cが露出した構造となっている。   The fuel supply side separator 11 includes a current collector 12 in which three rectangular unit conductive substrates 12A, 12B, and 12C having a plurality of through holes 12a are arranged in a plane via a gap 17, and the current collector 12 And a pair of insulating frames 15 and 16 integrated so as to sandwich the portion 12. The insulating frames 15 and 16 have three openings 15A, 15B and 15C and 16A, 16B and 16C corresponding to the arrangement positions of the unit conductive substrates 12A, 12B and 12C, respectively. Each of the openings 15A, 15B, 15C and 16A, 16B, 16C has a structure in which unit conductive substrates 12A, 12B, 12C in which a plurality of through holes 12a are formed are exposed.

また、酸素供給側セパレータ21も、複数の貫通孔22aを有する長方形状の単位導電性基板22A,22B,22Cが空隙部27を介して平面的に3個配列された集電部22と、この集電部22を挟持するように一体化された一対の絶縁性枠体25,26と、を備えたものである。各絶縁性枠体25,26は、それぞれ単位導電性基板22A,22B,22Cの配列位置に対応した3個の開口部25A,25B,25Cと26A,26B,26Cを有している。そして、各開口部25A,25B,25Cと26A,26B,26Cには、複数の貫通孔22aが形成された単位導電性基板22A,22B,22Cが露出した構造となっている。   The oxygen supply-side separator 21 also includes a current collector 22 in which three rectangular unit conductive substrates 22A, 22B, and 22C having a plurality of through holes 22a are arranged in a plane via a gap 27, and And a pair of insulating frames 25 and 26 which are integrated so as to sandwich the current collector 22. Each insulating frame 25, 26 has three openings 25A, 25B, 25C and 26A, 26B, 26C corresponding to the arrangement positions of the unit conductive substrates 22A, 22B, 22C, respectively. Each of the openings 25A, 25B, 25C and 26A, 26B, 26C has a structure in which unit conductive substrates 22A, 22B, 22C having a plurality of through holes 22a are exposed.

上記の燃料供給側セパレータ11では、集電部12を構成する長方形状の3個の単位導電性基板のうち、配列方向(矢印a方向)の一方の端部(図面右側)の1番目から2番目までの単位導電性基板12A,12Bが、それぞれ隣接する単位導電性基板(12B,12C)方向に張り出している張出部材13を隅部に有している。また、配列方向(矢印a方向)の端部(図面右側)の2番目から3番目までの単位導電性基板12B,12Cが、配列方向上流側に隣接する単位導電性基板(12A,12B)の張出部材13との間に空隙部18を残すように、かつ、張出部材13に対応する形状の切欠き部位14を隅部に有している。   In the fuel supply-side separator 11, among the three rectangular unit conductive substrates constituting the current collector 12, the first to second one end portions (right side in the drawing) in the arrangement direction (arrow a direction). The unit conductive substrates 12A and 12B up to the th have protruding members 13 protruding in the direction of the adjacent unit conductive substrates (12B and 12C) at the corners. Further, the second to third unit conductive substrates 12B and 12C at the end (right side in the drawing) in the arrangement direction (arrow a direction) are adjacent to the unit conductive substrates (12A and 12B) adjacent to the upstream side in the arrangement direction. A notch portion 14 having a shape corresponding to the projecting member 13 is provided at a corner so as to leave a gap 18 between the projecting member 13 and the projecting member 13.

また、酸素供給側セパレータ21を構成する単位導電性基板22A,22B,22Cは、上記の張出部材13、切欠き部位14が形成されていない点を除いて、単位導電性基板12A,12B,12Cと同等の形状であり、同等の大きさの空隙部27を介して配列され集電部22を構成している。
さらに、上記の燃料供給側セパレータ11を構成する集電部12の単位導電性基板12A,12Bは、単位導電性基板12A,12B,12Cの配列方向(矢印a方向)と略直交する方向に突出する接続用ヒンジ部31を各張出部材13に備えている。そして、この2個の接続用ヒンジ部31を介して、酸素供給側セパレータ21の集電部22を構成する3個の単位導電性基板22A,22B,22Cのうち、配列方向(矢印a方向)の端部の2番目から3番目までの単位導電性基板22B,22Cが、上記の単位導電性基板12A,12Bの張出部材13にそれぞれ連結されている。
Further, the unit conductive substrates 22A, 22B, and 22C constituting the oxygen supply side separator 21 are unit conductive substrates 12A, 12B, and 12B, except that the protruding member 13 and the cutout portion 14 are not formed. The current collecting part 22 is configured in the same shape as that of 12C and arranged through gaps 27 having the same size.
Further, the unit conductive substrates 12A and 12B of the current collector 12 constituting the fuel supply side separator 11 protrude in a direction substantially perpendicular to the arrangement direction (arrow a direction) of the unit conductive substrates 12A, 12B and 12C. Each overhanging member 13 is provided with a connecting hinge portion 31 to be connected. And among these three unit conductive substrates 22A, 22B, 22C constituting the current collector 22 of the oxygen supply side separator 21 via the two connection hinges 31, the arrangement direction (direction of arrow a) The second to third unit conductive substrates 22B and 22C at the end of the unit are connected to the protruding members 13 of the unit conductive substrates 12A and 12B, respectively.

また、上記の燃料供給側セパレータ11を構成する集電部12は、3個の単位導電性基板12A,12B,12Cのうち、配列方向(矢印a方向)の端部に位置し、かつ、張出部材13を有していない単位導電性基板12Cに電極端子19を備えている。一方、酸素供給側セパレータ21を構成する集電部22は、3個の単位導電性基板22A,22B,22Cのうち、配列方向(矢印a方向)の端部に位置し、かつ、接続用ヒンジ部31が接続されていない単位導電性基板22Aに電極端子29を備えている。
集電部12を構成する単位導電性基板12A,12B,12C、および、集電部22を構成する単位導電性基板22A,22B,22Cに使用する導電性の材料としては、電気導電性が良く、所定の強度が得られ、加工性の良いものが好ましく、ステンレス、冷間圧延鋼板、アルミニウム、銅、チタン等が挙げられる。
In addition, the current collector 12 constituting the fuel supply side separator 11 is located at the end of the three unit conductive substrates 12A, 12B, and 12C in the arrangement direction (arrow a direction) and is stretched. An electrode terminal 19 is provided on the unit conductive substrate 12 </ b> C that does not have the output member 13. On the other hand, the current collector 22 constituting the oxygen supply side separator 21 is located at the end of the three unit conductive substrates 22A, 22B, and 22C in the arrangement direction (the direction of arrow a), and the connection hinge An electrode terminal 29 is provided on the unit conductive substrate 22A to which the part 31 is not connected.
As the conductive material used for the unit conductive substrates 12A, 12B, 12C constituting the current collector 12 and the unit conductive substrates 22A, 22B, 22C constituting the current collector 22, electric conductivity is good. Those having a predetermined strength and good workability are preferable, and examples thereof include stainless steel, cold-rolled steel plate, aluminum, copper, and titanium.

また、単位導電性基板12A,12B,12Cは、少なくとも燃料電池の電解質側となる表面部に耐食性(耐酸性)、電気導電性の樹脂層からなる保護層を備えていてもよい。このような保護層の形成方法としては、樹脂にカーボン粒子、耐食性の金属等の導電材を混ぜた材料を用いて電着により膜を形成し、加熱硬化する方法、あるいは、導電性高分子からなる樹脂に導電性を高めるドーパントを含んだ状態の膜を電解重合により形成する方法等が挙げられる。
また、単位導電性基板12A,12B,12Cの表面に金めっき等のめっき処理を施して、導電性を損なうことなく、耐食性金属層を設けてもよい。さらに、このような耐食性金属層上に、耐酸性かつ電気導電性を有する保護層を配設してもよい。
尚、接続用ヒンジ部31は、絶縁性の樹脂で覆って絶縁性の被覆を施してもよい。
The unit conductive substrates 12A, 12B, and 12C may include a protective layer made of a corrosion-resistant (acid-resistant) and electrically conductive resin layer at least on the surface portion on the electrolyte side of the fuel cell. As a method for forming such a protective layer, a method of forming a film by electrodeposition using a material in which a conductive material such as carbon particles and corrosion-resistant metal is mixed in a resin and then heat-curing, or a conductive polymer is used. The method of forming the film | membrane of the state which contained the dopant which improves electroconductivity in the resin to be formed by electrolytic polymerization etc. is mentioned.
Further, the surface of the unit conductive substrates 12A, 12B, and 12C may be subjected to a plating treatment such as gold plating to provide a corrosion-resistant metal layer without impairing the conductivity. Furthermore, a protective layer having acid resistance and electrical conductivity may be disposed on such a corrosion-resistant metal layer.
The connecting hinge 31 may be covered with an insulating resin to provide an insulating coating.

各単位導電性基板12A,12B,12C,22A,22B,22Cは、機械加工、フォトリソグラフィー技術を用いたエッチング加工により、所定の形状に加工したものであり、張出部材13、切欠き部位14、燃料供給用ないし酸素供給用の貫通孔12a,22aを、これらの方法により形成したものである。
燃料供給側セパレータ11を構成する一対の絶縁性枠体15,16、および、酸素供給側セパレータ21を構成する一対の絶縁性枠体25,26の材質としては、絶縁性で、加工性が良く、軽く、機械的強度が大きいものが好ましい。このような材料としては、プリント配線基板用の基板材料等が用いられ、例えば、ガラスエポキシ、ポリイミド等が挙げられる。所望の形状を有する絶縁性枠体15,16,25,26の形成は、機械加工、レーザ加工等により行なうことができる。
Each of the unit conductive substrates 12A, 12B, 12C, 22A, 22B, and 22C is processed into a predetermined shape by machining and etching using a photolithography technique, and includes an overhang member 13 and a notch 14. The through holes 12a and 22a for supplying fuel or supplying oxygen are formed by these methods.
The material of the pair of insulating frames 15 and 16 constituting the fuel supply side separator 11 and the pair of insulating frames 25 and 26 constituting the oxygen supply side separator 21 is insulative and has good workability. It is preferable to be light and have high mechanical strength. As such a material, a substrate material for a printed wiring board is used, and examples thereof include glass epoxy and polyimide. The insulating frames 15, 16, 25, and 26 having a desired shape can be formed by machining, laser processing, or the like.

燃料供給側セパレータ11および酸素供給側セパレータ21の製造方法としては、例えば、接続用ヒンジ部31を介して連結された状態で集電部12と集電部22を作製し、このように作製された集電部12と絶縁性枠体15,16とを、また、集電部22と絶縁性枠体25,26とを、位置合せしながら固着して作製する方法が挙げられる。   As a manufacturing method of the fuel supply side separator 11 and the oxygen supply side separator 21, for example, the current collector 12 and the current collector 22 are manufactured in a state of being connected via the connection hinge 31, and thus manufactured. Further, there is a method in which the current collector 12 and the insulating frames 15 and 16 and the current collector 22 and the insulating frames 25 and 26 are fixed while being aligned.

図4は、接続用ヒンジ部31を介して接続された状態で作製された集電部12と集電部22の一例を示す図である。図4において、集電部12は、複数の貫通孔12aを有する3個の単位導電性基板12A,12B,12Cが空隙部17を介して平面的に配列されるように、各単位導電性基板12A,12B,12Cが外枠体41に複数のリブ42を介して支持されている。また、集電部22は、複数の貫通孔22aを有する3個の単位導電性基板22A,22B,22Cが空隙部27を介して平面的に配列されるように、各単位導電性基板22A,22B,22Cが外枠体41に複数のリブ42を介して支持されている。そして、単位導電性基板12A,12Bの各張出部材13と、単位導電性基板22B,22Cとが、それぞれ接続用ヒンジ部31により連結されている。   FIG. 4 is a diagram illustrating an example of the current collector 12 and the current collector 22 that are manufactured in a state of being connected via the connection hinge 31. In FIG. 4, the current collector 12 includes each unit conductive substrate such that three unit conductive substrates 12 </ b> A, 12 </ b> B, 12 </ b> C having a plurality of through holes 12 a are arranged in a plane via the gaps 17. 12A, 12B, and 12C are supported on the outer frame body 41 via a plurality of ribs. In addition, the current collector 22 includes each unit conductive substrate 22A, 22A, 22B, 22C having a plurality of through-holes 22a arranged in a plane via the gap 27. 22B and 22C are supported on the outer frame body 41 via a plurality of ribs. The projecting members 13 of the unit conductive substrates 12A and 12B and the unit conductive substrates 22B and 22C are connected by the connecting hinges 31, respectively.

上述のような単位導電性基板12A,12B,12Cに絶縁性枠体15,16を、位置合せしながら固着し、また、単位導電性基板22A,22B,22Cに絶縁性枠体25,26を、位置合せしながら固着し、その後、リブ42を切断して外枠体41を除去することにより、接続用ヒンジ部31により連結された燃料供給側セパレータ11と酸素供給側セパレータ21からなる本発明のセパレータ1が得られる。
上記の各部材の固着は、例えば、エポキシ樹脂、ポリイミド樹脂等の接着剤を塗布もしくはラミネートし、各部材を重ね合わせた状態で、接着剤を硬化させ固定する方法等がある。この場合に用いられる接着剤は、その製造のプロセスにおいて他の部材に影響を及ぼさず、かつ、燃料電池に使用された際、その動作条件に対する耐性が優れたものであれば、特に限定はされない。
また、絶縁性枠体15,16,25,26の一部あるいは全部を半硬化状態であるプリプレグにて形成し、集電部12,22に圧着して、固定する方法もある。
The insulating frames 15 and 16 are fixed to the unit conductive substrates 12A, 12B, and 12C as described above while being aligned, and the insulating frames 25 and 26 are fixed to the unit conductive substrates 22A, 22B, and 22C. The present invention is composed of the fuel supply side separator 11 and the oxygen supply side separator 21 connected by the connecting hinge 31 by cutting the rib 42 and then removing the outer frame body 41 by fixing while aligning. The separator 1 is obtained.
The fixing of each member includes, for example, a method in which an adhesive such as an epoxy resin or a polyimide resin is applied or laminated and the adhesive is cured and fixed in a state where the members are overlapped. The adhesive used in this case is not particularly limited as long as it does not affect other members in the manufacturing process and has excellent resistance to operating conditions when used in a fuel cell. .
In addition, there is a method in which a part or all of the insulating frames 15, 16, 25, and 26 are formed of a semi-cured prepreg, and are crimped to the current collectors 12 and 22 to be fixed.

上述の本発明のセパレータ1は、燃料供給側セパレータ11と酸素供給側セパレータ21を構成する所定の単位導電性基板が接続用ヒンジ部31で連結されているため、複雑な配線が存在せず、強度と軽量化を兼ね備えたものであり、平面型の高分子電解質型燃料電池に供される場合において、上記の接続用ヒンジ部31を折り曲げて燃料電池の膜電極複合体(MEA)を挟持することにより、複数の単位セルを電気的に直列に備えた平面型の高分子電解質型燃料電池を容易に作製することが可能である。   In the separator 1 of the present invention described above, since the predetermined unit conductive substrates constituting the fuel supply side separator 11 and the oxygen supply side separator 21 are connected by the connecting hinge portion 31, there is no complicated wiring, In combination with strength and weight reduction, when used in a flat polymer electrolyte fuel cell, the connecting hinge portion 31 is bent to sandwich the fuel cell membrane electrode assembly (MEA). Thus, it is possible to easily produce a planar polymer electrolyte fuel cell having a plurality of unit cells electrically connected in series.

上述の本発明のセパレータは例示であり、これらの限定されるものではない。例えば、図1〜図4に示す燃料供給側セパレータおよび酸素供給側セパレータは、単位導電性基板を3個配列したセパレータであるが、2個、あるいは4個以上の単位導電性基板を備えたものも同様である。
また、図5に示すように、単位導電性基板12A,12Bと、単位導電性基板22B,22Cとを、2個の接続用ヒンジ部31で順次連結して接続してもよい。この場合、単位導電性基板12A,12Bは張出部材13を備えておらず、また、単位導電性基板12B,12Cは切欠き部位14を備えていない。
The separator of the present invention described above is an example and is not limited thereto. For example, the fuel supply side separator and the oxygen supply side separator shown in FIGS. 1 to 4 are separators in which three unit conductive substrates are arranged, but have two or four or more unit conductive substrates. Is the same.
Further, as shown in FIG. 5, the unit conductive substrates 12 </ b> A and 12 </ b> B and the unit conductive substrates 22 </ b> B and 22 </ b> C may be sequentially connected by two connecting hinge portions 31. In this case, the unit conductive substrates 12A and 12B do not include the overhanging member 13, and the unit conductive substrates 12B and 12C do not include the notch portion 14.

また、燃料供給側セパレータ11の各単位導電性基板12A,12B,12C間に存在する空隙部17、および、酸素供給側セパレータ21の各単位導電性基板22A,22B,22C間に存在する空隙部27には、絶縁性材料、例えば、エポキシ樹脂、フッ素系樹脂などの接着剤が充填され存在するものであってもよい。
また、絶縁性枠体15,25の開口部15A,15B,15Cと開口部25A,25B,25Cは、それぞれ複数の開口の集合として構成してもよい。
さらに、例えば、本発明のセパレータは、平面型の高分子電解質型燃料電池に供される場合に、膜電極複合体(MEA)側に位置する絶縁性枠体16,26の開口部16A,16B,16C,26A,26B,26C内に、集電部12,22の単位導電性基板12A,12B,12C,22A,22B,22Cを被覆するようにガス拡散層や触媒層を備えるものであってもよい。
Further, the gap 17 that exists between the unit conductive substrates 12A, 12B, and 12C of the fuel supply side separator 11, and the gap that exists between the unit conductive substrates 22A, 22B, and 22C of the oxygen supply side separator 21. 27 may be filled with an insulating material, for example, an adhesive such as epoxy resin or fluorine resin.
Further, the openings 15A, 15B, 15C and the openings 25A, 25B, 25C of the insulating frames 15, 25 may be configured as a set of a plurality of openings, respectively.
Furthermore, for example, when the separator of the present invention is used in a planar polymer electrolyte fuel cell, the openings 16A and 16B of the insulating frames 16 and 26 located on the membrane electrode assembly (MEA) side are provided. , 16C, 26A, 26B, 26C are provided with a gas diffusion layer or a catalyst layer so as to cover the unit conductive substrates 12A, 12B, 12C, 22A, 22B, 22C of the current collectors 12, 22. Also good.

上記のガス拡散層は、多孔質の集電材からなるものであり、例えば、カーボン繊維、アルミナ等を使用することができる。ガス拡散層の厚みは、例えば、20〜500μm程度の範囲で適宜設定することができる。
また、触媒層は、セパレータが燃料供給側セパレータとして使用される場合には燃料極となり、酸素供給側セパレータとして使用される場合には酸素極となる。このような触媒層の材質としては、白金、金、パラジウム、ルテニウム、銅、白金酸化物、タングステン酸化物、鉄、ニッケル、ロジウム等を挙げることができ、これらを単独で、あるいは、2種以上組み合わせて使用することができる。また、触媒層の厚みは、例えば、10〜300μm程度の範囲で適宜設定することができる。
The gas diffusion layer is made of a porous current collector, and for example, carbon fiber, alumina or the like can be used. The thickness of the gas diffusion layer can be appropriately set within a range of about 20 to 500 μm, for example.
The catalyst layer becomes a fuel electrode when the separator is used as a fuel supply side separator, and becomes an oxygen electrode when the separator is used as an oxygen supply side separator. Examples of the material for such a catalyst layer include platinum, gold, palladium, ruthenium, copper, platinum oxide, tungsten oxide, iron, nickel, rhodium, and the like. These may be used alone or in combination of two or more. Can be used in combination. Moreover, the thickness of a catalyst layer can be suitably set, for example in the range of about 10-300 micrometers.

次に、本発明のセパレータを用いた平面型の高分子電解質型燃料電池の一例を説明する。
図6は、上述のような燃料供給側セパレータ11および酸素供給側セパレータ21からなる本発明のセパレータ1を組み込んだ平面型の高分子電解質型燃料電池の例を示す構成図である。また、図7は、図6に示される平面型の高分子電解質型燃料電池の各部材を離間させた状態を示す図である。
図6および図7において、高分子電解質型燃料電池51は、膜電極複合体(MEA)64が1組の本発明のセパレータ1を構成する燃料供給側セパレータ11および酸素供給側セパレータ21で挟持された電池本体61と、ケース体62を備えている。
Next, an example of a planar polymer electrolyte fuel cell using the separator of the present invention will be described.
FIG. 6 is a block diagram showing an example of a flat polymer electrolyte fuel cell incorporating the separator 1 of the present invention comprising the fuel supply side separator 11 and the oxygen supply side separator 21 as described above. FIG. 7 is a view showing a state in which the respective members of the planar polymer electrolyte fuel cell shown in FIG. 6 are separated.
6 and 7, a polymer electrolyte fuel cell 51 is sandwiched between a fuel supply side separator 11 and an oxygen supply side separator 21 in which a membrane electrode assembly (MEA) 64 constitutes a pair of separators 1 of the present invention. A battery body 61 and a case body 62 are provided.

電池本体61では、セパレータ1が接続用ヒンジ部31で折り曲げられて、燃料供給側セパレータ11および酸素供給側セパレータ21の各絶縁性枠体16,26が膜電極複合体(MEA)64に対向するように配置されている。また、燃料供給側セパレータ11および酸素供給側セパレータ21の集電部12,22が、カーボンペーパー63を介して膜電極複合体(MEA)64に当接している。また、膜電極複合体(MEA)64は、燃料供給側セパレータ11側に燃料極側触媒層65を備え、酸素供給側セパレータ21に酸素極側触媒層66を備えている。   In the battery body 61, the separator 1 is bent at the connection hinge portion 31, and the insulating frames 16 and 26 of the fuel supply side separator 11 and the oxygen supply side separator 21 face the membrane electrode assembly (MEA) 64. Are arranged as follows. The current collectors 12 and 22 of the fuel supply side separator 11 and the oxygen supply side separator 21 are in contact with the membrane electrode assembly (MEA) 64 through the carbon paper 63. The membrane electrode assembly (MEA) 64 includes a fuel electrode side catalyst layer 65 on the fuel supply side separator 11 side, and an oxygen electrode side catalyst layer 66 on the oxygen supply side separator 21.

これにより、3個の単位セル61A,61B,61Cが平面的に配列されたものとなっている。そして、3個の単位セル61A,61B,61C間の集電部12(単位導電性基板12A,12B,12C)と集電部22(単位導電性基板22A,22B,22C)は、接続用ヒンジ部31、張出部材13を介して電気的に接続されている。
ここで、接続用ヒンジ部31は、絶縁性の樹脂で覆って絶縁性の被覆を施してもよい。
また、上述の電池本体61は、膜電極複合体(MEA)64の両端部が1組のセパレータ外周枠部材71A,71Bにシール部材75を介して挟持されている。そして、電池本体61は、固定用ボルト77を用いてケース体62にシール部材75を介して固定されている。
Thus, the three unit cells 61A, 61B, 61C are arranged in a plane. The current collector 12 (unit conductive substrates 12A, 12B, 12C) and the current collector 22 (unit conductive substrates 22A, 22B, 22C) between the three unit cells 61A, 61B, 61C are connected to the hinges for connection. The part 31 and the overhang member 13 are electrically connected.
Here, the connecting hinge portion 31 may be covered with an insulating resin to provide an insulating coating.
In the battery body 61 described above, both ends of the membrane electrode assembly (MEA) 64 are sandwiched between a pair of separator outer peripheral frame members 71A and 71B via a seal member 75. The battery body 61 is fixed to the case body 62 via a seal member 75 using fixing bolts 77.

上記のセパレータ外周枠部材71Aは、単位セル61Aを構成する酸素供給側セパレータ21の単位導電性基板22Aに接続している電極端子29を備えている。また、セパレータ外周枠部材71Bは、単位セル61Cを構成する燃料供給側セパレータ11の単位導電性基板12Cに接続している電極端子19を備えている。これにより、以下のように3個の単位セル61A,61B,61Cが電気的に直列に接続されたものとなる。
電極端子29 → *
*→ 単位セル61A[セパレータ21の単位導電性基板22A → 膜電極複合体
(MEA)64 → セパレータ11の単位導電性基板12A → 張出部材13]
→ 接続用ヒンジ部31 → *
*→ 単位セル61B[セパレータ21の単位導電性基板22B → 膜電極複合体
(MEA)64 → セパレータ11の単位導電性基板12B → 張出部材13]
→ 接続用ヒンジ部31 → *
*→ 単位セル61C[セパレータ21の単位導電性基板22C → 膜電極複合体
(MEA)64 → セパレータ11の単位導電性基板12C] → *
*→ 電極端子19
The separator outer peripheral frame member 71A includes an electrode terminal 29 connected to the unit conductive substrate 22A of the oxygen supply side separator 21 constituting the unit cell 61A. Further, the separator outer peripheral frame member 71B includes an electrode terminal 19 connected to the unit conductive substrate 12C of the fuel supply side separator 11 constituting the unit cell 61C. As a result, the three unit cells 61A, 61B, 61C are electrically connected in series as follows.
Electrode terminal 29 → *
* → unit cell 61A [unit conductive substrate 22A of separator 21 → membrane electrode assembly (MEA) 64 → unit conductive substrate 12A of separator 11 → projecting member 13]
→ Connecting hinge 31 → *
* → unit cell 61B [unit conductive substrate 22B of separator 21 → membrane electrode assembly (MEA) 64 → unit conductive substrate 12B of separator 11 → projecting member 13]
→ Connecting hinge 31 → *
* → Unit cell 61C [Unit conductive substrate 22C of separator 21 → Membrane electrode composite
(MEA) 64 → the unit conductive substrate 12C of the separator 11] → *
* → Electrode terminal 19

このような高分子電解質型燃料電池51は、3個の単位セル61A,61B,61Cが接続用ヒンジ部31により接続されており、別途、接続部材による接続工程が不要であり、かつ、接触抵抗が極めて少なく発電特性の高いものとなる。   In such a polymer electrolyte fuel cell 51, three unit cells 61A, 61B, and 61C are connected by the connecting hinge portion 31, and a connection step using a connecting member is not required separately, and contact resistance is provided. There is very little power generation characteristics.

本発明のセパレータは平面型の高分子電解質型燃料電池に使用することができ、軽量で薄型のダイレクトメタノール型燃料電池を実現できる。   The separator of the present invention can be used in a planar polymer electrolyte fuel cell, and a lightweight and thin direct methanol fuel cell can be realized.

本発明の平面型の高分子電解質型燃料電池用のセパレータの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the separator for planar type polymer electrolyte fuel cells of this invention. 図1に示されるセパレータのA−A線矢視断面図である。It is AA arrow sectional drawing of the separator shown by FIG. 図1に示されるセパレータを構成する各部材を離間させた状態を示す斜視図である。It is a perspective view which shows the state which spaced apart each member which comprises the separator shown by FIG. セパレータの作製に使用する集電部の一例を示す図である。It is a figure which shows an example of the current collection part used for preparation of a separator. セパレータの作製に使用する集電部の他の例を示す図である。It is a figure which shows the other example of the current collection part used for preparation of a separator. 本発明のセパレータを用いた平面型の高分子電解質型燃料電池の一例を示す構成図である。It is a block diagram which shows an example of the planar type polymer electrolyte fuel cell using the separator of this invention. 図6に示される平面型の高分子電解質型燃料電池の各部材を離間させた状態を示す図である。It is a figure which shows the state which spaced apart each member of the planar type polymer electrolyte fuel cell shown by FIG.

符号の説明Explanation of symbols

1…高分子電解質型燃料電池用のセパレータ
11…燃料供給側セパレータ
12…集電部
12A,12B,12C…単位導電性基板
13…張出部材
14…切欠き部位
15,16…絶縁性枠体
17.18…空隙部
21…酸素供給側セパレータ
22…集電部
22A,22B,22C…単位導電性基板
25,26…絶縁性枠体
27…空隙部
31…接続用ヒンジ部
51…高分子電解質型燃料電池
61A,61B,61C…単位セル
64…膜電極複合体(MEA)
DESCRIPTION OF SYMBOLS 1 ... Separator for polymer electrolyte type fuel cells 11 ... Fuel supply side separator 12 ... Current collecting part 12A, 12B, 12C ... Unit conductive substrate 13 ... Overhang member 14 ... Notch part 15, 16 ... Insulating frame 17.18 ... Air gap part 21 ... Oxygen supply side separator 22 ... Current collector part 22A, 22B, 22C ... Unit conductive substrate 25, 26 ... Insulating frame 27 ... Air gap part 31 ... Connecting hinge part 51 ... Polymer electrolyte Type fuel cell 61A, 61B, 61C ... unit cell 64 ... membrane electrode assembly (MEA)

Claims (3)

単位セルを平面的に配列した平面型の高分子電解質型燃料電池用のセパレータにおいて、
燃料もしくは酸素を通過させるための複数の貫通孔を有する単位導電性基板が空隙部を介して平面的にn個(nは2以上の整数)配列された集電部と、前記単位導電性基板の配列位置に対応したn個の開口部を有し前記集電部を挟持するように一体化された一対の絶縁性枠体と、を備えた燃料供給側セパレータおよび酸素供給側セパレータからなり、
燃料供給側セパレータおよび酸素供給側セパレータの一方の前記集電部を構成するn個の単位導電性基板のうち、配列方向の一方の端部の1番目から(n−1)番目までの各単位導電性基板と、燃料供給側セパレータおよび酸素供給側セパレータの他方の前記集電部を構成するn個の単位導電性基板のうち、配列方向の一方の端部の2番目からn番目までの各単位導電性基板とが、(n−1)個の接続用ヒンジ部を介して順次連結され、該接続用ヒンジ部で折り曲げて、前記燃料供給側セパレータと前記酸素供給側セパレータとが膜電極複合体を挟持するように対向可能であることを特徴とする平面型の高分子電解質型燃料電池用のセパレータ。
In a separator for a planar polymer electrolyte fuel cell in which unit cells are arranged in a plane,
A current collecting portion in which n unit conductive substrates having a plurality of through holes for allowing fuel or oxygen to pass therethrough are arranged in a plane via a gap (n is an integer of 2 or more), and the unit conductive substrate A fuel supply side separator and an oxygen supply side separator provided with a pair of insulating frames having n openings corresponding to the arrangement positions of
Of the n unit conductive substrates constituting one of the current collectors of the fuel supply side separator and the oxygen supply side separator, each unit from the first to (n−1) th one end in the arrangement direction Among the n unit conductive substrates constituting the current collector of the other of the conductive substrate and the fuel supply side separator and the oxygen supply side separator, each of the second to nth one end portions in the arrangement direction Unit conductive substrates are sequentially connected via (n-1) connecting hinge portions, bent at the connecting hinge portions, and the fuel supply side separator and the oxygen supply side separator are combined with a membrane electrode. the separator for a polymer electrolyte fuel cell of the planar, wherein opposable der Rukoto so as to sandwich the body.
燃料供給側セパレータおよび酸素供給側セパレータの一方は、前記集電部を構成するn個の単位導電性基板のうち、配列方向の一方の端部の1番目から(n−1)番目までの単位導電性基板が、隣接する単位導電性基板方向に張り出している張出部材を隅部に有し、前記配列方向の前記端部の2番目からn番目までの単位導電性基板が、配列方向上流側に隣接する単位導電性基板の前記張出部材に対応し、かつ、前記張出部材との間に空隙部が形成される形状の切欠き部位を隅部に有し、
前記張出部材を有する(n−1)個の単位導電性基板は、単位導電性基板の配列方向と略直交する方向に突出した前記接続用ヒンジ部を各張出部材に備え、(n−1)個の該接続用ヒンジ部を介して、燃料供給側セパレータおよび酸素供給側セパレータの他方の前記集電部を構成するn個の単位導電性基板のうち、配列方向の一方の端部の2番目からn番目までの単位導電性基板が、前記張出部材に連結されていることを特徴とする請求項1に記載の平面型の高分子電解質型燃料電池用のセパレータ。
One of the fuel supply side separator and the oxygen supply side separator is a unit from the first to (n-1) th of one end in the arrangement direction among the n unit conductive substrates constituting the current collector. The conductive substrate has a protruding member protruding in the direction of the adjacent unit conductive substrate at the corner, and the second to nth unit conductive substrates at the end in the arrangement direction are arranged upstream in the arrangement direction. Corresponding to the projecting member of the unit conductive substrate adjacent to the side, and has a notch portion in the shape of a gap formed between the projecting member and the corner,
Each of the (n−1) unit conductive substrates having the projecting member includes the connection hinge portion protruding in a direction substantially orthogonal to the arrangement direction of the unit conductive substrates, and each projecting member includes (n− 1) One of the n unit conductive substrates constituting the current collector of the other of the fuel supply side separator and the oxygen supply side separator is connected to one end in the arrangement direction via the connection hinges. 2. The separator for a planar polymer electrolyte fuel cell according to claim 1, wherein second to n-th unit conductive substrates are connected to the projecting member.
燃料供給側セパレータの集電部を構成するn個の単位導電性基板と、酸素供給側セパレータの集電部を構成するn個の単位導電性基板とにおいて、それぞれ配列方向の端部に位置し、かつ、前記接続ヒンジ部が接続されていない単位導電性基板に電極端子を備えていることを特徴とする請求項1または請求項2に記載の平面型の高分子電解質型燃料電池用のセパレータ。   The n unit conductive substrates constituting the current collecting part of the fuel supply side separator and the n unit conductive substrates constituting the current collecting part of the oxygen supply side separator are positioned at the ends in the arrangement direction, respectively. 3. A separator for a planar polymer electrolyte fuel cell according to claim 1 or 2, wherein an electrode terminal is provided on a unit conductive substrate to which the connecting hinge portion is not connected. .
JP2004292269A 2004-10-05 2004-10-05 Flat type polymer electrolyte fuel cell separator Expired - Fee Related JP4862258B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004292269A JP4862258B2 (en) 2004-10-05 2004-10-05 Flat type polymer electrolyte fuel cell separator
DE112005000131T DE112005000131T5 (en) 2004-10-05 2005-10-04 Separating device for flat polymer electrolyte fuel cells
US10/584,902 US8039168B2 (en) 2004-10-05 2005-10-04 Separator for flat-type polymer electrolyte fuel cells
KR1020067013595A KR100755211B1 (en) 2004-10-05 2005-10-04 Flat type polyelectrolytic fuel cell-use separators
PCT/JP2005/018715 WO2006038701A1 (en) 2004-10-05 2005-10-04 Flat type polyelectrolytic fuel cell-use separators
US13/232,605 US20120003567A1 (en) 2004-10-05 2011-09-14 Separator for flat-type polymer electrolyte fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292269A JP4862258B2 (en) 2004-10-05 2004-10-05 Flat type polymer electrolyte fuel cell separator

Publications (2)

Publication Number Publication Date
JP2006107900A JP2006107900A (en) 2006-04-20
JP4862258B2 true JP4862258B2 (en) 2012-01-25

Family

ID=36377362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292269A Expired - Fee Related JP4862258B2 (en) 2004-10-05 2004-10-05 Flat type polymer electrolyte fuel cell separator

Country Status (1)

Country Link
JP (1) JP4862258B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658281B1 (en) 2005-11-17 2006-12-14 삼성에스디아이 주식회사 Electron collector pair and single-plate multi-cell stack
JP2008192506A (en) * 2007-02-06 2008-08-21 Toshiba Corp Fuel cell
FR2925228B1 (en) * 2007-12-17 2010-12-24 Commissariat Energie Atomique FUEL CELL WITH PLANAR ASSEMBLY WITH SIMPLIFIED SEALING
CN102598385B (en) * 2009-08-17 2016-02-03 莫西德矿业(私人)有限公司 Fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689502B2 (en) * 2001-03-16 2004-02-10 Samsung Electronics Co., Ltd. Monopolar cell pack of direct methanol fuel cell
JP4498664B2 (en) * 2002-05-15 2010-07-07 大日本印刷株式会社 Separator member for flat-type polymer electrolyte fuel cell and polymer electrolyte fuel cell using the separator member
JP2004241198A (en) * 2003-02-04 2004-08-26 Sekisui Chem Co Ltd Fuel cell stack and fuel cell system

Also Published As

Publication number Publication date
JP2006107900A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US8039168B2 (en) Separator for flat-type polymer electrolyte fuel cells
US7569290B2 (en) Flat panel direct methanol fuel cell and method for making the same
US7229564B2 (en) Method for manufacturing bipolar plate and direct methanol fuel cell
US7531263B2 (en) Method of fabricating a flat panel direct methanol fuel cell
US8039171B2 (en) Current-collecting composite plate for fuel cell and fuel cell fabricated using same
US20090035638A1 (en) Fuel cell module
JP2006253135A (en) Stack for fuel cell and fuel cell system using stack for fuel cell
US7340818B2 (en) Method of improving the contact between bipolar plates and membrane electrode assembly of a flat panel fuel cell
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
WO2008050663A1 (en) Electrochemical device
US20050191517A1 (en) Separator and direct methanol type fuel cell therewith
JP2006269333A (en) Fuel cell
JP4862258B2 (en) Flat type polymer electrolyte fuel cell separator
JP4872287B2 (en) Separator assembly and planar polymer electrolyte fuel cell for planar polymer electrolyte fuel cell
JP4862256B2 (en) Flat type polymer electrolyte fuel cell separator
JP2007273433A (en) Cell unit, cell connection method, and fuel cell
JP4872286B2 (en) Separator assembly and planar polymer electrolyte fuel cell for planar polymer electrolyte fuel cell
JP4862257B2 (en) Flat type polymer electrolyte fuel cell separator
JP4445280B2 (en) Separator for planar type polymer electrolyte fuel cell and method for producing the same
JP4362058B2 (en) Separator for planar type polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
US20070172717A1 (en) Fuel cell device
JP2007213830A (en) Membrane-electrode assembly for fuel cell and manufacturing method of the same
JP2002198072A (en) Solid polymer fuel cell
WO2012124326A1 (en) Fuel cell, and fuel cell manufacturing method
JP2008047319A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees