JP2003168449A - Manufacturing method of film electrode conjugate for solid polymer-type fuel cell - Google Patents

Manufacturing method of film electrode conjugate for solid polymer-type fuel cell

Info

Publication number
JP2003168449A
JP2003168449A JP2002271102A JP2002271102A JP2003168449A JP 2003168449 A JP2003168449 A JP 2003168449A JP 2002271102 A JP2002271102 A JP 2002271102A JP 2002271102 A JP2002271102 A JP 2002271102A JP 2003168449 A JP2003168449 A JP 2003168449A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
coating
die
linear outlet
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002271102A
Other languages
Japanese (ja)
Other versions
JP4269611B2 (en
Inventor
Shinji Kinoshita
伸二 木下
Jun Mukoyama
純 向山
Hiroshi Shimoda
博司 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002271102A priority Critical patent/JP4269611B2/en
Publication of JP2003168449A publication Critical patent/JP2003168449A/en
Application granted granted Critical
Publication of JP4269611B2 publication Critical patent/JP4269611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a membrane electrode conjugate for a solid polymer-type fuel cell wherein the composition of a catalyst layer or the like is made to be continuously changed by simple methods and wherein reaction efficiency is homogenized. <P>SOLUTION: A guide insulation wall 9 to separate plural kinds of coating solutions A, B is formed at an injection port 31 of a die 1 for a cast film- forming, and because the direction of the partition is made to be tilted against the casting direction X, catalyst layers 105a, 105b or a polymer electrolyte membrane 103 are formed so that the plural kinds of coating solutions A, B are tilted and overlapped at least at one part of a coating layer 11. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池用膜電極接合体の製造方法に関し、特に、膜電極接
合体の面内における電流密度の不均一性を解消させるこ
とにより反応効率を向上させた固体高分子型燃料電池用
膜電極接合体を簡易な方法で製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, and more particularly to a reaction efficiency by eliminating the non-uniformity of current density in the plane of the membrane electrode assembly. The present invention relates to a method for producing a membrane electrode assembly for a polymer electrolyte fuel cell having improved temperature by a simple method.

【0002】[0002]

【従来の技術】燃料電池は発電効率が高く、環境への負
荷も小さいことから今後の普及が見込まれている。中で
も固体高分子型燃料電池は出力密度が高く、作動温度が
低いために小型化や低コスト化が他の燃料電池よりも容
易なことから、自動車などの移動体用や分散発電システ
ム、家庭用のコージェネレーションシステムとして広く
普及することが期待されている。
2. Description of the Related Art Fuel cells are expected to be widely used in the future because of their high power generation efficiency and low environmental load. Among them, polymer electrolyte fuel cells have high power density and low operating temperature, so they are easier to miniaturize and lower in cost than other fuel cells. Is expected to be widely used as a cogeneration system for

【0003】一般に固体高分子型燃料電池の膜電極接合
体101は、図4に断面図で示すように、イオン交換体
ポリマーによる固体高分子膜103の両側にアノードと
カソードの触媒層105a、105bを接合させ、その
外側にガス拡散層107a、107bとしてカーボンペ
ーパーやカーボンクロス等が配置される。
Generally, a membrane electrode assembly 101 of a polymer electrolyte fuel cell has, as shown in a sectional view in FIG. 4, catalyst layers 105a and 105b for an anode and a cathode on both sides of a polymer electrolyte membrane 103 made of an ion exchanger polymer. Are bonded to each other, and carbon paper, carbon cloth, or the like is arranged as the gas diffusion layers 107a and 107b on the outside thereof.

【0004】ガス拡散層107a、107bの外側に
は、導電性のセパレータ109が配置される。セパレー
タ109は、ガス拡散層107a、107bに面してガ
ス流路111a、111bが形成されている。ガス流路
は、具体的には、図5又は図6のように、入口109a
から出口109bに至る直列溝111c、並列溝111
d等の各種の態様がある。
A conductive separator 109 is arranged outside the gas diffusion layers 107a and 107b. Gas flow paths 111a and 111b are formed in the separator 109 so as to face the gas diffusion layers 107a and 107b. The gas flow path is specifically, as shown in FIG. 5 or 6, an inlet 109a.
Series groove 111c, parallel groove 111 from the outlet to the outlet 109b
There are various modes such as d.

【0005】前述の通り、膜電極接合体101は、高分
子電解質膜103の両側に貴金属を含む触媒層105
a、105bを接合して形成される。この触媒層105
a、105bの形成にあたっては、触媒担持カーボンと
固体高分子電解質樹脂(例えばスルホン酸基を有するパ
ーフルオロカーボン重合体)の分散液を主要成分とした
触媒層形成用インクを高分子電解質膜103に直接塗布
する方法や、当該インクを予め基材上に塗工してシート
状に形成した触媒層105a、105bを高分子電解質
膜103にホットプレスなどの手段によって作製され
る。
As described above, the membrane electrode assembly 101 includes the catalyst layer 105 containing the noble metal on both sides of the polymer electrolyte membrane 103.
It is formed by joining a and 105b. This catalyst layer 105
In forming a and 105b, a catalyst layer forming ink containing a dispersion liquid of catalyst-supporting carbon and a solid polymer electrolyte resin (for example, a perfluorocarbon polymer having a sulfonic acid group) as a main component is directly formed on the polymer electrolyte membrane 103. The coating method or the catalyst layers 105a and 105b formed by applying the ink in advance on a base material to form a sheet is formed on the polymer electrolyte membrane 103 by means such as hot pressing.

【0006】基材上に、触媒層105a、105bを作
製する具体的な方法として、図7に示すダイ121を用
いて塗工基材125上に形成する方法がある。この方法
は、塗工基材125上に、例えば上述の触媒層形成用イ
ンクを塗工して、一方の触媒層105aを形成する方法
である。さらに、ダイ121を用いてこの触媒層105
aの上にイオン交換体ポリマーの分散液をキャストして
高分子電解質膜103を積層して形成することもでき
る。逆に、先に高分子電解質膜103をキャスト製膜
し、その上に触媒層105aを形成しても良い。
As a specific method for producing the catalyst layers 105a and 105b on the substrate, there is a method of forming on the coated substrate 125 using the die 121 shown in FIG. In this method, for example, the above-mentioned catalyst layer forming ink is applied onto the coating base material 125 to form one catalyst layer 105a. Further, using the die 121, the catalyst layer 105
It is also possible to cast the dispersion liquid of the ion-exchanger polymer on a and stack the polymer electrolyte membrane 103 to form it. Conversely, the polymer electrolyte membrane 103 may be first cast-formed and the catalyst layer 105a may be formed thereon.

【0007】このように構成された固体高分子型燃料電
池の膜電極接合体101は、セパレータ109のガス流
路111a、111bにそれぞれ燃料ガスと酸化剤ガス
を通過させると同時に、ガス拡散層107a、107b
から電流を外部に伝え、電気エネルギーを取り出すこと
ができる。
The membrane electrode assembly 101 of the polymer electrolyte fuel cell configured as described above allows the fuel gas and the oxidant gas to pass through the gas passages 111a and 111b of the separator 109, and at the same time, the gas diffusion layer 107a. , 107b
Can transmit electric current to the outside and take out electric energy.

【0008】膜電極接合体101においては、セパレー
タ109から供給されるガスを受けて電池反応が起こ
る。供給されるガスは電池反応によって消費され、か
つ、水等の反応生成物が生成されることから、反応ガス
組成やガスの加湿状態等がガス流路に沿って変化し、そ
の結果反応条件もガス流路に沿って変化する。この条件
変化により、膜電極接合体101の面内で電流密度が不
均一となり、特性低下の一要因となる。
In the membrane electrode assembly 101, a cell reaction occurs when receiving gas supplied from the separator 109. The supplied gas is consumed by the cell reaction, and reaction products such as water are generated, so that the composition of the reaction gas and the humidification state of the gas change along the gas flow path, and as a result, the reaction conditions also change. It changes along the gas flow path. Due to this change in conditions, the current density becomes non-uniform within the surface of the membrane electrode assembly 101, which is one factor of deterioration in characteristics.

【0009】この問題に関し、膜電極接合体101の全
面において一様の反応効率を確保するために、ガス流路
の入口109aから出口109bに向かって触媒量を変
化させることが提案されている(例えば、特許文献1、
2等)。その具体的な方法は、スプレー塗布における距
離に応じた濃度勾配を利用し、又は、スクリーン印刷塗
布の重ね塗り回数に応じた濃度変化を利用して触媒塗布
量を変化させるものである。
Regarding this problem, in order to ensure uniform reaction efficiency over the entire surface of the membrane electrode assembly 101, it has been proposed to change the amount of catalyst from the inlet 109a to the outlet 109b of the gas passage ( For example, Patent Document 1,
2 etc.). The specific method is to change the catalyst coating amount by utilizing a concentration gradient according to the distance in spray coating or by utilizing a concentration change according to the number of times of screen printing coating overcoating.

【特許文献1】特開平3−245463号公報(特許請
求の範囲、実施例)
[Patent Document 1] Japanese Unexamined Patent Publication No. 3-245463 (Claims, Examples)

【特許文献2】特開2000−149959号公報(特
許請求の範囲、実施例1〜3)
[Patent Document 2] Japanese Patent Laid-Open No. 2000-149959 (Claims, Examples 1 to 3)

【0010】[0010]

【発明が解決しようとする課題】しかしながら、スプレ
ー塗布により膜電極接合体101の触媒層105a、1
05bの塗布量を変化させるには、塗布厚さの高度な管
理を要する。また、スクリーン印刷塗布による場合は、
複雑な塗布工程と塗布量の段階的変化を避けられない。
However, the catalyst layers 105a, 1a of the membrane electrode assembly 101 are formed by spray coating.
Changing the coating amount of 05b requires a high degree of control of the coating thickness. Also, when applying by screen printing,
Intricate coating processes and gradual changes in coating amount cannot be avoided.

【0011】本発明は、膜電極接合体の面内における電
流密度の不均一性を解消させることにより反応効率を向
上させた固体高分子型燃料電池用膜電極接合体を簡易な
方法で製造する方法を提供することを目的とする。
According to the present invention, a membrane electrode assembly for a polymer electrolyte fuel cell in which the reaction efficiency is improved by eliminating the non-uniformity of the current density in the plane of the membrane electrode assembly is manufactured by a simple method. The purpose is to provide a method.

【0012】[0012]

【課題を解決するための手段】このため本発明(請求項
1)は、高分子電解質膜と、該高分子電解質膜に隣接し
て配置される触媒層を有し前記高分子電解質膜を介して
対向するカソードとアノードとを備え、前記カソード及
び前記アノードの少なくとも一方の触媒層を、触媒とイ
オン交換樹脂とを含む塗工液を用いて形成する固体高分
子型燃料電池用膜電極接合体の製造方法であって、前記
塗工液を導入するための注入口と該塗工液が吐出される
線状出口とを備えるダイを使用し、前記ダイは、前記注
入口から前記線状出口に向けて複数の区画に仕切る案内
隔壁を有しており、前記案内隔壁の仕切る方向は、前記
線状出口に臨む塗工基材が前記ダイに対して相対的に移
動する方向に対して傾斜しており、互いに組成が異なる
複数の塗工液が互いに混ざり合わないように前記注入口
から導入されてそれぞれ異なる前記複数の区画を通って
前記線状出口に向かい、前記ダイ及び前記塗工基材の少
なくとも一方を移動させることにより前記塗工基材を前
記線状出口の長手方向とほぼ直角方向に相対的に移動さ
せて、前記塗工基材上に前記塗工液を塗布して前記触媒
層を形成することにより、前記触媒層の少なくとも一部
を、前記複数の塗工液の配分により前記ダイの前記線状
出口の長手方向に連続的に組成が変化するように形成す
ることを特徴とする。
Therefore, the present invention (Claim 1) includes a polymer electrolyte membrane and a catalyst layer disposed adjacent to the polymer electrolyte membrane, and the catalyst layer is interposed between the polymer electrolyte membrane and the catalyst layer. Membrane electrode assembly for a polymer electrolyte fuel cell, comprising a cathode and an anode facing each other, and forming a catalyst layer of at least one of the cathode and the anode using a coating liquid containing a catalyst and an ion exchange resin. In the manufacturing method, a die having an inlet for introducing the coating liquid and a linear outlet from which the coating liquid is discharged is used, and the die is the linear outlet from the inlet. Has a partition wall for partitioning into a plurality of sections, and the partitioning direction of the partition wall is inclined with respect to the direction in which the coating base material facing the linear outlet moves relative to the die. Multiple coating liquids having different compositions from each other. The coating substrate is introduced from the injection port so as not to mix with each other and goes toward the linear outlet through the different compartments, respectively, and the coating substrate is moved by moving at least one of the die and the coating substrate. At least one of the catalyst layers by relatively moving in a direction substantially perpendicular to the longitudinal direction of the linear outlet and applying the coating liquid on the coating substrate to form the catalyst layer. The part is formed so that the composition continuously changes in the longitudinal direction of the linear outlet of the die by the distribution of the plurality of coating liquids.

【0013】ダイの入口には案内隔壁が設けられている
ことから、この案内隔壁によって仕切られた区画に応じ
て複数の塗工液が互いに混合することなく導入され、こ
の複数の塗工液は層流流線に沿ってそれぞれの区画間で
互いに対応関係を維持しつつ案内されて線状出口に至
る。
Since the guide partition is provided at the entrance of the die, a plurality of coating liquids are introduced without being mixed with each other in accordance with the partition partitioned by the guide partition, and the plurality of coating liquids are introduced. The sections are guided along the laminar streamline while maintaining a corresponding relationship between the sections to reach the linear outlet.

【0014】上記案内隔壁は塗工基材がダイに対して相
対的に移動する方向に対して傾斜して注入口を仕切るこ
とから、複数の塗工液は、線状出口において塗工基材が
ダイに対して相対的に移動する方向に対して傾斜して配
分される。この傾斜配分された複数の塗工液は、塗工基
材がダイに対して相対的に移動することにより線状出口
から塗工基材上に塗布されるが、その際、複数の塗工液
が案内隔壁による区画と対応して塗工膜の厚さ方向に傾
斜して重畳された塗工膜が形成される。
Since the guide partition wall divides the injection port by inclining with respect to the direction in which the coating substrate moves relative to the die, a plurality of coating liquids are applied at the linear outlet. Are inclined and distributed with respect to the direction in which they move relative to the die. The plurality of coating liquids that have been distributed in an inclined manner are applied onto the coating base material from the linear outlet by the relative movement of the coating base material with respect to the die. A coating film is formed in which the liquid is inclined and overlapped in the thickness direction of the coating film in correspondence with the partition formed by the guide partition.

【0015】したがって、本発明の固体高分子型燃料電
池用膜電極接合体の製造方法は、固体高分子型燃料電池
用膜電極接合体の触媒層を触媒層に供給されるガスの流
れる方向(以下、ガス流という)に沿ってその組成を連
続的に変化させることができる。そのため、ガス流の上
流下流によらず面内全域にわたり効率の良い電池反応を
確保しうる固体高分子型燃料電池用膜電極接合体を製造
することができる。
Therefore, according to the method of manufacturing a membrane electrode assembly for a polymer electrolyte fuel cell of the present invention, the catalyst layer of the membrane electrode assembly for a polymer electrolyte fuel cell is fed to the catalyst layer in the flowing direction ( Hereinafter, the composition thereof can be continuously changed along with the gas flow). Therefore, it is possible to manufacture a membrane electrode assembly for a polymer electrolyte fuel cell capable of ensuring an efficient cell reaction over the entire surface regardless of the upstream and downstream of the gas flow.

【0016】なお、注入口は複数あっても良く、この場
合には、各注入口は、案内隔壁により仕切られた複数の
異なる区画にそれぞれ通じていて、塗工液をそれぞれ異
なる注入口から導入しても良い。また、線状出口も塗工
液の数に応じて複数あっても良い。
There may be a plurality of injection ports. In this case, each injection port communicates with a plurality of different compartments partitioned by a guide partition, and the coating liquid is introduced from each different injection port. You may. Further, there may be a plurality of linear outlets depending on the number of coating liquids.

【0017】また、本発明(請求項2)は、上記方法を
用いて前記触媒層の厚さを均一とすることが好ましい。
In the present invention (claim 2), it is preferable that the thickness of the catalyst layer is made uniform by using the above method.

【0018】触媒層の厚さが不均一であると、触媒層と
隣接してカーボンクロスやカーボンペーパー等からなる
ガス拡散層を配置した場合、触媒層とガス拡散層との密
着が不充分となりやすい。また、触媒層の厚さが厚くな
った部分は反応ガスの電極反応面への拡散が悪くなり、
燃料電池特性が低下するおそれがある。上記方法によれ
ば、触媒層の面内でその組成は連続的に変化していても
厚さは均一にできる。
If the thickness of the catalyst layer is not uniform, when a gas diffusion layer made of carbon cloth or carbon paper is arranged adjacent to the catalyst layer, the adhesion between the catalyst layer and the gas diffusion layer becomes insufficient. Cheap. Further, in the portion where the thickness of the catalyst layer becomes thicker, the diffusion of the reaction gas to the electrode reaction surface becomes worse,
The fuel cell characteristics may deteriorate. According to the above method, the thickness can be uniform even if the composition of the catalyst layer changes continuously in the plane.

【0019】さらに、本発明(請求項3)は、高分子電
解質膜と、該高分子電解質膜に隣接して配置される触媒
層を有し前記高分子電解質腹を介して対向するカソード
とアノードとを備え、前記高分子電解質膜をイオン交換
樹脂を含む塗工液を用いて形成する固体高分子型燃料電
池用膜電極接合体の製造方法であって、前記塗工液を導
入するための注入口と該塗工液が吐出される線状出口と
を備えるダイを使用し、前記ダイは、前記注入口から前
記線状出口に向けて複数の区画に仕切る案内隔壁を有し
ており、前記案内隔壁の仕切る方向は、前記線状出口に
臨む塗工基材が前記ダイに対して相対的に移動する方向
に対して傾斜しており、互いに組成が異なる複数の塗工
液が互いに混ざり合わないように前記注入口から導入さ
れてそれぞれ異なる前記複数の区画を通って前記線状出
口に向かい、前記ダイ及び前記塗工基材の少なくとも一
方を移動させることにより前記塗工基材を前記線状出口
の長手方向とほぼ直角方向に相対的に移動させて、前記
塗工基材上に前記塗工液を塗布して前記高分子電解質膜
を形成することにより、前記高分子電解質膜の少なくと
も一部を、前記複数の塗工液の配分により前記ダイの前
記線状出口の長手方向に連続的に組成が変化するように
形成することを特徴とする。
Furthermore, the present invention (claim 3) is directed to a cathode and an anode having a polymer electrolyte membrane and a catalyst layer disposed adjacent to the polymer electrolyte membrane and facing each other through the polymer electrolyte belly. A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, comprising: forming the polymer electrolyte membrane using a coating liquid containing an ion exchange resin, for introducing the coating liquid. Using a die having a linear inlet from which the inlet and the coating liquid are discharged, the die has a guide partition that divides into a plurality of sections from the inlet toward the linear outlet, The partitioning direction of the guide partition is inclined with respect to the direction in which the coating base material facing the linear outlet moves relative to the die, and a plurality of coating liquids having different compositions are mixed with each other. It is introduced from the inlet so that it does not match By moving at least one of the die and the coating substrate toward the linear outlet through the plurality of compartments, the coating substrate is relatively moved in a direction substantially perpendicular to the longitudinal direction of the linear outlet. By moving the coating solution onto the coating substrate to form the polymer electrolyte membrane, at least a part of the polymer electrolyte membrane is distributed among the plurality of coating solutions. Is formed so that the composition continuously changes in the longitudinal direction of the linear outlet of the die.

【0020】本発明の固体高分子型燃料電池用膜電極接
合体の製造方法は、固体高分子型燃料電池用膜電極接合
体の高分子電解質膜をガス流に沿ってその組成を連続的
に変化させることができる。したがって、簡易な操作に
より、ガス流の上流下流によらず面内全域にわたり効率
の良い電池反応を確保しうる固体高分子型燃料電池用膜
電極接合体を製造することができる。また、触媒層の場
合と同様に、高分子電解質膜も、この方法によれば面内
でその組成は連続的に変化していても厚さを均一にする
ことができる。
The method for producing a membrane electrode assembly for a polymer electrolyte fuel cell of the present invention comprises a polymer electrolyte membrane of a membrane electrode assembly for a polymer electrolyte fuel cell, the composition of which is continuously changed along a gas flow. Can be changed. Therefore, it is possible to manufacture a membrane electrode assembly for a polymer electrolyte fuel cell capable of ensuring an efficient cell reaction over the entire area of the surface regardless of the upstream and downstream of the gas flow by a simple operation. Further, similarly to the case of the catalyst layer, the thickness of the polymer electrolyte membrane can be made uniform by this method even if the composition continuously changes in the plane.

【0021】さらに、本発明(請求項4)は、前記注入
口は、1つの案内隔壁により内部が2つの区画に仕切ら
れており、2種類の塗工液がそれぞれ異なる前記区画か
ら注入されることを特徴とする。
Further, in the present invention (claim 4), the inside of the injection port is partitioned into two compartments by one guide partition, and two kinds of coating liquids are respectively injected from the different compartments. It is characterized by

【0022】このことにより、注入口を簡易に構成する
ことができる。
By this, the injection port can be simply constructed.

【0023】さらに、本発明(請求項5)は、前記線状
出口における2種類の塗工液の配分区画の境界線が、前
記線状出口の1つの対角線位置となるように、前記注入
口において対応する対角線の位置に前記案内隔壁が配置
されていることを特徴とする。
Further, according to the present invention (claim 5), the injection port is arranged so that the boundary line between the distribution sections of the two types of coating liquids at the linear outlet is one diagonal position of the linear outlet. In the above, the guide partition walls are arranged at corresponding diagonal positions.

【0024】このことにより、線状出口を簡易に構成す
ることができる。また、2種類の塗工液の組成が、線状
出口の長手方向全体にわたって、直線的な傾斜特性を有
しかつ連続的に変化するようにすることができる。
With this, the linear outlet can be simply constructed. Further, the compositions of the two kinds of coating liquids can be made to have a linear inclination characteristic and continuously change over the entire longitudinal direction of the linear outlet.

【0025】さらに、本発明(請求項6)は、前記注入
口は、矩形、円形又は楕円形であって、前記案内隔壁は
前記注入口を斜めに横断して配置されていることを特徴
とする。
Furthermore, the present invention (claim 6) is characterized in that the inlet is rectangular, circular or elliptical, and the guide partition wall is disposed diagonally across the inlet. To do.

【0026】このことにより、ダイの製造において、加
工容易な注入口の形状を選択することができる。
As a result, it is possible to select the shape of the injection port which can be easily processed in the die manufacturing.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施形態について
説明する。本発明の方法では、固体高分子型燃料電池用
膜電極接合体の触媒層又は高分子電解質膜を塗工により
製造する。以下、本発明における塗工法により製造され
る触媒層又は高分子電解質膜を塗工膜と称して説明す
る。この塗工膜製造方法に使用するダイを図1に平面図
(a)、正面図(b)、(b)のI−I線断面図(c)
により示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. In the method of the present invention, the catalyst layer or the polymer electrolyte membrane of the membrane electrode assembly for polymer electrolyte fuel cells is produced by coating. Hereinafter, the catalyst layer or the polymer electrolyte membrane produced by the coating method of the present invention will be referred to as a coating membrane for description. FIG. 1 shows a die used in this coating film manufacturing method in a plan view (a), a front view (b), and a sectional view taken along the line I-I (b) of FIG.
Indicated by.

【0028】図1(a)〜(c)において、塗工用のダ
イ1は、組成が異なる複数種類(図では2種類)の塗工
液A、Bを注入するための注入口3を上部に備え、この
注入口3から塗工液A、Bを層流流線にそって末広がり
状に拡開案内する拡開部5を介してその下端にスリット
状に開口する線状出口7を備える。
1A to 1C, a coating die 1 has an injection port 3 for injecting a plurality of types (two types in the figure) of coating liquids A and B having different compositions. In addition, a linear outlet 7 that opens in a slit shape is provided at the lower end through an expansion portion 5 that expands and guides the coating liquids A and B from the inlet 3 along the laminar streamline in a divergent manner. .

【0029】ダイ1は、複数種類の塗工液A、Bが線状
出口7において所要の区画に配分されて送出されるよう
に複数種類の塗工液A、Bを互いに仕切る案内隔壁9を
備える。案内隔壁9は、注入口3の内部を仕切り、少な
くとも拡開部5に達するまでの範囲に、また、必要によ
り、注入口3から線状出口7に及ぶ範囲に形成する。
The die 1 is provided with a guide partition wall 9 for partitioning the plural kinds of coating liquids A and B from each other so that the plural kinds of coating liquids A and B are distributed and delivered to a required section at the linear outlet 7. Prepare The guide partition 9 partitions the inside of the injection port 3 and is formed at least in a range up to the expanded portion 5 and, if necessary, in a range extending from the injection port 3 to the linear outlet 7.

【0030】案内隔壁9は、線状出口7における配分区
画の境界線Lがダイ1を塗工基材に対して相対的に移動
させる方向X(線状出口7の長手方向に垂直な方向)に
対して傾斜するように配置する。例えば、線状出口7の
1つの対角線位置を配分区画の境界線Lとする場合は、
層流流線を介して線状出口7の配分区画と対応する位置
に、すなわち、注入口3において対応する対角線の位置
に案内隔壁9を配置する。
The guide partition 9 has a direction X in which the boundary line L of the distribution section at the linear outlet 7 moves the die 1 relative to the coating substrate (direction perpendicular to the longitudinal direction of the linear outlet 7). It is arranged to be inclined with respect to. For example, in the case where one diagonal position of the linear outlet 7 is the boundary line L of the distribution section,
The guide partition wall 9 is arranged at a position corresponding to the distribution section of the linear outlets 7 via the laminar flow line, that is, at a corresponding diagonal position at the injection port 3.

【0031】次に、上記塗工膜製造方法による処理動作
について説明する。上記構成を有するダイ1において
は、案内隔壁9によって分割された注入口3の各区画に
振り分けて複数種類の塗工液A、Bを図示せぬポートか
ら同時に注入する。
Next, the processing operation of the above coating film manufacturing method will be described. In the die 1 having the above-described configuration, the plurality of types of coating liquids A and B are simultaneously injected from the ports (not shown) by dividing the injection port 3 into each section divided by the guide partition wall 9.

【0032】案内隔壁9は、注入された複数種類の塗工
液A、Bの相互の混合を回避しつつ拡開部5に導く。塗
工液A、Bは、層流流線に沿って拡開部5内を線状出口
7に向けて案内される。このとき、塗工液A、Bは、案
内隔壁9によって区画された相互間の対応関係を維持し
つつ線状出口7に送られる。
The guide partition 9 guides the plurality of types of injected coating liquids A and B to the expanding portion 5 while avoiding mutual mixing. The coating liquids A and B are guided along the laminar streamline in the expanding portion 5 toward the linear outlet 7. At this time, the coating liquids A and B are sent to the linear outlet 7 while maintaining the mutual correspondence defined by the guide partition wall 9.

【0033】膜の塗工は、図示せぬ塗工基材に対してダ
イ1をその正面方向X(拡開するダイ1の幅方向と直交
する方向)に相対的に移動させる(通常、ダイ1を固定
し塗工基材を移動させる)ことにより行う。この操作に
より、線状出口7の配分区画と対応する内部構成を有す
る塗工膜が形成される。
The coating of the film is performed by moving the die 1 relative to a coating substrate (not shown) in the front direction X (direction orthogonal to the width direction of the expanding die 1) (usually the die is used). 1 is fixed and the coated substrate is moved). By this operation, a coating film having an internal structure corresponding to the distribution section of the linear outlets 7 is formed.

【0034】すなわち、線状出口7における配分区画の
境界線Lが上記操作における方向Xに対して傾斜するこ
とから、上記操作により、塗工液A、Bが重畳されると
ともに、厚さ方向に対して組成が傾斜する内部構成を有
する塗工膜が形成される。
That is, since the boundary line L of the distribution section at the linear outlet 7 is inclined with respect to the direction X in the above operation, the coating liquids A and B are superposed by the above operation and in the thickness direction. On the other hand, a coating film having an internal structure whose composition is inclined is formed.

【0035】次に、本発明の塗工膜製造方法により形成
された塗工膜について説明する。本発明の塗工膜製造方
法により形成される塗工膜を図2の平面図(a)、その
II−II線断面図(b)により示す。
Next, the coating film formed by the coating film manufacturing method of the present invention will be described. A coating film formed by the coating film manufacturing method of the present invention is shown in a plan view (a) of FIG. 2 and a sectional view (b) taken along the line II-II.

【0036】図2(a)(b)において、上述の製造方
法により形成された塗工膜11は、ダイ1を塗工基材に
対して相対的に移動させる方向Xに対して直交する任意
の断面内において、塗工液A、Bがダイ1の線状出口7
の配分区画と対応して形成される。したがって、塗工膜
11は、厚さ方向に対して傾斜した境界線Mによって塗
工液A、Bが傾斜重畳されて構成される。
In FIGS. 2 (a) and 2 (b), the coating film 11 formed by the above-described manufacturing method is arbitrary at right angles to the direction X in which the die 1 is moved relative to the coating substrate. In the cross section of the coating liquids A and B, the linear outlet 7 of the die 1
Is formed corresponding to the distribution section of. Therefore, the coating film 11 is configured by the coating liquids A and B being inclined and overlapped by the boundary line M which is inclined with respect to the thickness direction.

【0037】この塗工膜11は、2種類の塗工液A、B
が上下に重なりつつ、その境界線Mが断面の対角線に沿
って傾斜する。すなわち、塗工膜の2種類の塗工液A、
Bは、断面の一端(図の右端)で一方の塗工液Aが塗工
膜の厚さT全体を占め、他方の一端(図の左端)で他方
の塗工液Bが塗工膜の厚さT全体を占め、塗工膜11の
幅Wの中間部ではその位置に応じた厚さ配分で傾斜重畳
される。
This coating film 11 has two types of coating liquids A and B.
Are vertically overlapped with each other, and the boundary line M is inclined along the diagonal line of the cross section. That is, two types of coating liquids A for coating films,
In B, one coating liquid A occupies the entire thickness T of the coating film at one end (the right end in the figure) of the cross section, and the other coating liquid B forms the coating film T at the other end (the left end in the figure). It occupies the entire thickness T, and in the middle portion of the width W of the coating film 11, the layers are inclined and superimposed with the thickness distribution according to the position.

【0038】このように、一方の塗工液Aの厚さは、断
面の一端から徐々に減少し、逆に、他方の塗工液Bの厚
さは、断面の一端から徐々に増加し、塗工膜11の組成
がその横断線の方向に連続的に変化する。このことか
ら、塗工膜11は、その組成変化と対応して横断線方向
に連続的に特性が変化する傾斜特性を呈する。
Thus, the thickness of one coating liquid A gradually decreases from one end of the cross section, and conversely, the thickness of the other coating liquid B gradually increases from one end of the cross section. The composition of the coating film 11 continuously changes in the direction of its transverse line. From this, the coating film 11 exhibits a tilt characteristic in which the characteristics continuously change in the transverse line direction corresponding to the composition change.

【0039】具体的には、塗工膜11の特性は、断面の
一端(図の右端)で一方の塗工液Aの特性が優位を占
め、他方の一端(図の左端)で他方の塗工液Bの特性が
優位を占め、中間位置では2種類の塗工液A、Bの配分
に応じた特性となる。
Specifically, regarding the characteristics of the coating film 11, the characteristics of one coating solution A occupy one end of the cross section (the right end in the figure), and the other end (the left end in the figure) of the other. The characteristics of the coating liquid B dominate, and the characteristics at the intermediate position correspond to the distribution of the two types of coating liquids A and B.

【0040】固体高分子型燃料電池の膜電極接合体10
1の製造においては、高分子電解質膜103及び/又は
アノードの触媒層105a及び/又はカソードの触媒層
105bについて上記傾斜特性を有する塗工膜を適用す
る。
Membrane electrode assembly 10 of polymer electrolyte fuel cell
In the production of No. 1, the polymer electrolyte membrane 103 and / or the catalyst layer 105a of the anode and / or the catalyst layer 105b of the cathode are coated films having the above-mentioned gradient characteristics.

【0041】具体的には、膜電極接合体101に作用す
る反応ガスの流路行程に沿って反応条件が徐々に変化す
ることから、この反応条件の変化に対応させて傾斜特性
を付与するべく高分子電解質膜103、触媒層105
a、105bの少なくとも1つをキャスト製膜する。
Specifically, since the reaction conditions gradually change along the flow path of the reaction gas acting on the membrane electrode assembly 101, it is necessary to provide the inclination characteristics in response to the change in the reaction conditions. Polymer electrolyte membrane 103, catalyst layer 105
At least one of a and 105b is cast-formed.

【0042】このように、高分子電解質膜103、又は
触媒層105a、105bの傾斜特性によって条件の変
化に応じた反応環境を確保することができるので、ガス
流路の全行程において電流密度が均一で高効率の電池反
応を確保することができる。したがって、本発明の製造
方法により、膜電極接合体101の全体の反応効率を向
上することができる。
As described above, since the reaction environment corresponding to the change in conditions can be secured by the inclination characteristics of the polymer electrolyte membrane 103 or the catalyst layers 105a and 105b, the current density is uniform throughout the entire process of the gas flow path. Thus, a highly efficient battery reaction can be secured. Therefore, the reaction efficiency of the entire membrane electrode assembly 101 can be improved by the manufacturing method of the present invention.

【0043】次に、塗工膜のその他の傾斜配分例につい
て説明する。図3(a)〜(d)に注入口3の案内隔壁
の配置例を示す。図3において、いずれも、ダイ1の塗
工基材に対して相対的に移動する方向X(図の上下方
向)に対して案内隔壁9、9a、9bを傾斜して構成す
る。
Next, another example of the gradient distribution of the coating film will be described. FIGS. 3A to 3D show examples of arrangement of the guide partition walls of the injection port 3. 3, in each case, the guide partition walls 9, 9a, 9b are configured to be inclined with respect to the direction X (the vertical direction in the drawing) that moves relative to the coating base material of the die 1.

【0044】図3(a)の案内隔壁9は、矩形の注入口
3の幅方向の一部を斜めに横断して配置した例である。
この案内隔壁9により仕切られた区画と対応する配分
で、塗工液A、Bが塗工膜の幅方向の一部で傾斜重畳さ
れる。
The guide partition 9 shown in FIG. 3A is an example in which a part of the rectangular inlet 3 in the width direction is diagonally crossed.
The coating liquids A and B are inclined and overlapped in a part in the width direction of the coating film in a distribution corresponding to the partition partitioned by the guide partition wall 9.

【0045】図3(b)の案内隔壁9a、9bは、注入
口3の幅方向を二分してそれぞれに斜めに横断して配置
した例である。塗工液A、Bは、塗工膜の幅方向の一半
部で傾斜重畳され、また、塗工液B、Cが塗工膜の幅方
向の他半部で傾斜重畳される。
The guide partitions 9a and 9b in FIG. 3 (b) are an example in which the width direction of the injection port 3 is divided into two and diagonally crossed. The coating liquids A and B are inclined and overlapped in one half of the width direction of the coating film, and the coating liquids B and C are inclined and overlapped in the other half of the width direction of the coating film.

【0046】図3(c)の案内隔壁9a、9bは、それ
ぞれが注入口3の幅方向の異なる一部を斜めに横断して
配置した例である。塗工液A、B、Cは、部分的に3層
に重畳し、かつ、互いに傾斜重畳する。
The guide partitions 9a and 9b shown in FIG. 3 (c) are examples in which each of the guide partitions 9a and 9b is obliquely arranged across different portions of the injection port 3 in the width direction. The coating liquids A, B, and C partially overlap with each other in three layers and also overlap each other with an inclination.

【0047】図3(d)の案内隔壁9は、円形の注入口
3aに斜めに横断して配置した例である。注入口3aを
回動可能に構成することにより、塗工液A、Bの傾斜重
畳に応じて傾斜角度を任意に選択することができる。ま
た、注入口3aは、楕円形とすることもできる。
The guide partition wall 9 in FIG. 3D is an example in which the guide partition wall 9 is arranged diagonally across the circular inlet 3a. By making the inlet 3a rotatable, the inclination angle can be arbitrarily selected according to the inclination superposition of the coating liquids A and B. Further, the injection port 3a may be elliptical.

【0048】上記注入口3、3aを有するダイ1によ
り、その区画構成と対応する配分で塗工膜が形成され
る。この塗工膜は、案内隔壁9、9a、9bが、いずれ
も、ダイ1のキャスティング方向X(図の上下方向)に
対して傾斜することから、塗工液A、B、Cが傾斜重畳
され、塗工膜の構成に応じた傾斜特性が得られる。
The coating film is formed by the die 1 having the injection ports 3 and 3a in a distribution corresponding to the partition structure. In this coating film, since the guide partition walls 9, 9a and 9b are all inclined with respect to the casting direction X of the die 1 (vertical direction in the drawing), the coating liquids A, B and C are superposed on each other. , The inclination characteristic according to the constitution of the coating film can be obtained.

【0049】なお、前述の塗工膜11の説明において、
2種類の塗工液A、Bは、境界線Mによって互いに接す
ることから、両者間で互いに浸透拡散し、いわゆるぼか
し状(境界線Mがはっきりしない状態)に連続的に組成
を変化させることができる。このぼかし状の浸透拡散の
程度は、塗工液A、Bの組成及び案内隔壁9の長さその
他の浸透拡散条件によって決定される。
In the above description of the coating film 11,
Since the two types of coating liquids A and B are in contact with each other at the boundary line M, they can permeate and diffuse between each other, and the composition can be continuously changed in a so-called blurring state (a state where the boundary line M is unclear). it can. The degree of this blur-like permeation diffusion is determined by the composition of the coating liquids A and B, the length of the guide partition 9 and other permeation diffusion conditions.

【0050】特に、案内隔壁9の範囲の選択について
は、ダイ1の注入口3から線状出口7に至る範囲におい
て、注入口3を含めることを条件に適宜選択することに
より、塗工液A、Bが塗工基材に達するまでの押出しの
段階における浸透拡散の程度を調節することができる。
In particular, with respect to the selection of the range of the guide partition wall 9, the coating liquid A can be selected by appropriately selecting the condition that the injection port 3 is included in the range from the injection port 3 of the die 1 to the linear outlet 7. , B can be adjusted to the extent of osmotic diffusion in the extrusion stage until reaching the coated substrate.

【0051】また、注入口3は2つあっても良く、その
場合、各注入口3は、案内隔壁9により仕切られた2つ
の異なる区画にそれぞれ通じていて、塗工液A、Bは、
それぞれ異なる注入口3から導入することができる。塗
工液が3種類以上の場合も同様に、3つ以上の注入口3
としても良い。さらに、線状出口7も塗工液の数に応じ
て複数あっても良い。
Further, there may be two injection ports 3, and in this case, each injection port 3 communicates with two different compartments partitioned by the guide partition 9, and the coating liquids A and B are
It can be introduced from different inlets 3. Similarly, if there are three or more types of coating liquid, three or more injection ports 3
Also good. Further, there may be a plurality of linear outlets 7 depending on the number of coating liquids.

【0052】本発明において触媒層105a、105b
及び/又は高分子電解質膜103を構成するイオン交換
樹脂としては、スルホン酸基を有する含フッ素重合体が
好ましく、特にスルホン酸基を有するパーフルオロカー
ボン重合体が好ましい。
In the present invention, the catalyst layers 105a, 105b
And / or the ion exchange resin constituting the polymer electrolyte membrane 103 is preferably a fluorinated polymer having a sulfonic acid group, and particularly preferably a perfluorocarbon polymer having a sulfonic acid group.

【0053】また、触媒層105a、105bに含まれ
る触媒は白金、白金族金属又はそれらの合金が好まし
い。塗工液に含まれる分散媒は特に限定されないが、イ
オン交換樹脂や触媒を良好に分散できるものが好まし
く、例えばアルコール類やエーテル類が挙げられる。
The catalyst contained in the catalyst layers 105a and 105b is preferably platinum, a platinum group metal or an alloy thereof. The dispersion medium contained in the coating liquid is not particularly limited, but those capable of favorably dispersing the ion exchange resin and the catalyst are preferable, and examples thereof include alcohols and ethers.

【0054】本発明の製造方法により得られる固体高分
子型燃料電池用膜電極接合体101は、例えば以下のよ
うな効果が得られる。固体高分子型燃料電池において
は、アノードに水素を含むガス、カソードに酸素を含む
ガスが供給されるが、反応により水素及び酸素が消費さ
れカソードで水が生成する。
The membrane electrode assembly 101 for a polymer electrolyte fuel cell obtained by the manufacturing method of the present invention has the following effects, for example. In the polymer electrolyte fuel cell, a gas containing hydrogen is supplied to the anode and a gas containing oxygen is supplied to the cathode, but hydrogen and oxygen are consumed by the reaction and water is produced at the cathode.

【0055】そのため、水素及び酸素ガスの濃度は、ガ
スの入口から出口に向けて連続的に徐々に低下し、また
カソードではガスが水蒸気による飽和状態で供給されな
い場合は、ガスの入口から出口に向けて生成水により連
続的に徐々にガス中の水分量が増加する。
Therefore, the concentrations of hydrogen and oxygen gases continuously and gradually decrease from the gas inlet to the outlet, and when the gas is not supplied in a saturated state by steam at the cathode, the gas inlet to the outlet. The generated water continuously and gradually increases the amount of water in the gas.

【0056】本発明の方法によれば、これらの反応ガス
濃度や水分量の連続的変化に応じ触媒層105a、10
5b又は高分子電解質膜103の面内の組成を連続的に
変化させることができ、その結果反応を面内でより均一
に行わせることが可能となる。そうすることにより、水
管理、温度管理等がより適切となり、反応効率を高める
ことができる。
According to the method of the present invention, the catalyst layers 105a, 10a and 10b are changed according to the continuous changes in the reaction gas concentration and the water content.
5b or the in-plane composition of the polymer electrolyte membrane 103 can be continuously changed, and as a result, the reaction can be carried out more uniformly in the plane. By doing so, water management, temperature management, etc. become more appropriate, and the reaction efficiency can be improved.

【0057】以下に具体的に例を挙げて説明する。例え
ば、アノードに炭化水素系ガスから改質した水素ガスを
燃料ガスとして供給する場合、通常ガス中にCOを含ん
でいるが、供給されるガス中のCOの濃度と水素ガスと
の濃度比は、水素ガスが触媒上の電気化学反応で消費さ
れ減少することにより、燃料ガスの入口から出口にかけ
て連続的に変化している。
A specific example will be described below. For example, when hydrogen gas reformed from a hydrocarbon-based gas is supplied to the anode as a fuel gas, CO is usually contained in the gas, but the concentration ratio of CO in the supplied gas and the concentration of hydrogen gas are The hydrogen gas is consumed by the electrochemical reaction on the catalyst and decreases, so that the fuel gas changes continuously from the inlet to the outlet.

【0058】ここでアノードの触媒に例えば白金と白金
ルテニウム合金を使用する場合、このCO濃度と水素ガ
スとの濃度比に対応させてガスの入口から出口にかけて
アノード触媒層105aの面内で白金と白金ルテニウム
合金の割合を連続的に変化させていけば、膜電極接合体
101の面内全体でCOによる被毒を効率よく抑制でき
る。その結果、電気化学反応の効率を高められる。
Here, for example, when platinum and a platinum ruthenium alloy are used for the catalyst of the anode, platinum is formed in the plane of the anode catalyst layer 105a from the gas inlet to the gas outlet in accordance with the concentration ratio of the CO concentration and the hydrogen gas. By continuously changing the ratio of the platinum-ruthenium alloy, poisoning by CO can be efficiently suppressed in the entire surface of the membrane electrode assembly 101. As a result, the efficiency of the electrochemical reaction can be increased.

【0059】また、カソードでは反応により水が生成す
るので、供給するガスを作動温度以上における飽和状態
で加湿して供給しない場合は、ガスの入口から出口に向
けて徐々にガス中の水分量が増えていく。したがって、
ガスの出口よりも入口付近に含水率の高い(イオン交換
容量の高い)イオン交換樹脂が多く配置されるように連
続的にイオン交換容量の高い樹脂と低い樹脂との混合割
合を変化させれば、膜電極接合体101の面内全体で反
応サイトを増加させることができ、高出力が得られる。
Further, since water is produced by the reaction at the cathode, when the gas to be supplied is not humidified and supplied in a saturated state at an operating temperature or higher, the water content in the gas gradually increases from the gas inlet to the gas outlet. Increase. Therefore,
If the mixing ratio of the resin having a high ion exchange capacity and the resin having a low ion exchange capacity is continuously changed so that many ion exchange resins having a high water content (high ion exchange capacity) are arranged near the inlet rather than the gas outlet. The reaction sites can be increased in the entire surface of the membrane electrode assembly 101, and high output can be obtained.

【0060】[0060]

【実施例】以下実施例に従って本発明を説明する。カソ
ード触媒層に組成の傾斜を連続的につけた例(実施例
1)、高分子電解質膜に組成の傾斜をつけた例(実施例
2)及び、従来の塗工方法による例(比較例1)を合わ
せ、3種の膜電極接合体101について、ガス流路の上
流、中流、下流それぞれに対応する位置の電流密度を測
定した。
EXAMPLES The present invention will be described below with reference to examples. Example in which the cathode catalyst layer was continuously graded (Example 1), Example in which the polymer electrolyte membrane was graded (Example 2), and Example using a conventional coating method (Comparative Example 1) For each of the three types of membrane electrode assemblies 101, the current densities at the positions corresponding to the upstream, midstream, and downstream of the gas flow channel were measured.

【0061】電流密度は、低密度(0.2A/cm2
と高密度(0.5A/cm2)の2つのレベルについ
て、初期の出力電圧及びアノード側の電極を電気的に3
つ(電池入口側から上流、中流、下流)に分割した電池
構成によって測定した。結果を表1に示す。
The current density is low (0.2 A / cm 2 )
For two levels of high density and high density (0.5 A / cm 2 ), the initial output voltage and the anode side electrode were electrically set to 3
It was measured by a cell configuration divided into one (upstream, midstream, and downstream from the cell inlet side). The results are shown in Table 1.

【0062】(実施例1)テトラフルオロエチレンに基
づく重合単位とCF2=CF−OCF2CF(CF 3)O
(CF22SO3Hに基づく重合単位とからなるイオン
交換容量が1.10ミリ当量/g乾燥樹脂である共重合
体(以下、「共重合体A」と呼ぶ)と白金ルテニウム合
金(白金:ルテニウムがモル比で4:6)担持カーボン
(カーボン:合金が質量比で1:1)とを5:9の質量
比で含み、エタノールに溶解又は分散させた固形分濃度
10質量%の液を作製した。これを「アノード触媒層形
成用分散液」とする。
Example 1 Based on tetrafluoroethylene
Polymerization unit and CF2= CF-OCF2CF (CF 3) O
(CF2)2SO3Ions composed of polymerized units based on H
Copolymerization with exchange capacity of 1.10 meq / g dry resin
(Hereinafter referred to as "copolymer A") and platinum ruthenium compound
Gold (platinum: ruthenium: 4: 6 molar ratio) supported carbon
(Carbon: alloy is 1: 1 by mass ratio) and 5: 9 mass
Concentration of solid content contained in the ratio and dissolved or dispersed in ethanol
A 10% by mass liquid was prepared. This is called "anode catalyst layer type"
A working dispersion ".

【0063】共重合体Aと白金担持カーボン(白金:カ
ーボンが質量比で1:1)を1:2の質量比で含み、エ
タノールを分散媒とする固形分濃度13.7質量%の分
散液を作製した。これを「カソード触媒層形成用分散液
1」とする。
A dispersion liquid containing copolymer A and platinum-supporting carbon (platinum: carbon in a mass ratio of 1: 1) in a mass ratio of 1: 2, and having ethanol as a dispersion medium and a solid content concentration of 13.7 mass%. Was produced. This is designated as "cathode catalyst layer forming dispersion liquid 1".

【0064】また、上記共重合体Aと同様にしてそのイ
オン交換容量が1.33ミリ当量/g乾燥樹脂である共
重合体(以下、「共重合体B」と呼ぶ)を用い、この共
重合体Bと白金担持カーボン(白金:カーボンが質量比
で1:1)を1:2の質量比で含み、エタノールを分散
媒とする固形分濃度14.5質量%の分散液を作製し
た。これを「カソード触媒層形成用分散液2」とする。
Further, a copolymer having an ion exchange capacity of 1.33 meq / g dry resin (hereinafter referred to as "copolymer B") was used in the same manner as the above-mentioned copolymer A. A dispersion liquid containing polymer B and platinum-supporting carbon (platinum: carbon in a mass ratio of 1: 1) in a mass ratio of 1: 2 and having ethanol as a dispersion medium and a solid content concentration of 14.5 mass% was prepared. This is designated as "cathode catalyst layer forming dispersion 2".

【0065】次に、上記アノード触媒層形成用分散液
を、厚さ50μmのポリプロピレン(以下、PPとい
う。)フィルムからなる塗工基材の片面に、白金ルテニ
ウム付着量が0.50mg/cm2となるようにダイコ
ート法で塗工し、乾燥することによりアノード触媒層1
05aを形成した。
Next, the anode catalyst layer forming dispersion was coated with platinum ruthenium (0.50 mg / cm 2 ) on one surface of a coated substrate made of a polypropylene (hereinafter referred to as PP) film having a thickness of 50 μm. The anode catalyst layer 1 by applying a die coating method so that
05a was formed.

【0066】カソード触媒層105bは、カソード触媒
層形成用分散液1とカソード触媒層形成用分散液2の2
種類の塗工液を2つのポートから導入する注入口3と、
それらが排出される線状出口7を有するダイ1を使用し
て形成した。なお、このダイ1は、図1に示すように、
注入口3から線状出口7に至るまで、ダイ1内を流れる
2種類の塗工液がその接触部で線状出口7の厚さ方向に
重なるように傾斜させた案内隔壁9を有する。
The cathode catalyst layer 105b is composed of a dispersion liquid 1 for forming a cathode catalyst layer and a dispersion liquid 2 for forming a cathode catalyst layer.
An inlet 3 for introducing two kinds of coating liquid from two ports,
It was formed using a die 1 with linear outlets 7 through which they are discharged. The die 1 is, as shown in FIG.
From the pouring port 3 to the linear outlet 7, there is a guide partition 9 that is inclined so that the two types of coating liquids flowing in the die 1 overlap at the contact portion in the thickness direction of the linear outlet 7.

【0067】このダイ1を用いて、2種類の塗工液が連
続的に偏在するように、厚さ50μmのPPフィルムか
らなる塗工基材の片面に塗工した(白金付着量は0.4
0mg/cm2)。その塗工膜を乾燥することによりカ
ソード触媒層105bを形成した。
Using this die 1, one side of a coating substrate made of a PP film having a thickness of 50 μm was coated so that the two types of coating liquids were continuously unevenly distributed (platinum adhesion amount was 0. Four
0 mg / cm 2 ). The coated film was dried to form the cathode catalyst layer 105b.

【0068】上記で得られたカソード触媒層105bが
片面に形成されたPPフィルムとアノード触媒層105
aが片面に形成されたPPフィルムとを、触媒層が形成
された面を内側に向けて対向させ、それらの間にイオン
交換膜(商品名:フレミオンHR、旭硝子社製、イオン
交換容量:1.1ミリ当量/g乾燥樹脂、乾燥膜厚30
μm)を高分子電解質膜103として挟んでホットプレ
スを行った。
The PP film having the cathode catalyst layer 105b obtained above formed on one surface and the anode catalyst layer 105
The PP film having a formed on one side is made to face with the surface on which the catalyst layer is formed facing inward, and an ion exchange membrane (trade name: Flemion HR, manufactured by Asahi Glass Co., Ltd., ion exchange capacity: 1 .1 meq / g dry resin, dry film thickness 30
(μm) was sandwiched as the polymer electrolyte membrane 103, and hot pressing was performed.

【0069】ホットプレスの条件は130℃、3MPa
で4分間とした。ホットプレス後、カソード、アノード
ともにPPフィルムを触媒層105a、105bから剥
離することでこれら触媒層を膜に転写し、触媒層とイオ
ン交換膜とからなる膜電極接合体101を得た。
The hot press conditions are 130 ° C. and 3 MPa.
For 4 minutes. After hot pressing, the PP film was peeled from the catalyst layers 105a and 105b for both the cathode and the anode to transfer these catalyst layers to the membrane, to obtain a membrane electrode assembly 101 composed of the catalyst layer and the ion exchange membrane.

【0070】上記方法で得られた膜電極接合体101を
有効電極面積が25cm2となるように切り抜き、電池
性能測定用セルに組み込んだ。この電池性能測定用セル
について、アノードに水素ガス、カソードに空気をそれ
ぞれ供給し、セル温度80℃、アノード加湿温度75
℃、カソード加湿温度50℃にて発電試験を行った。カ
ソード触媒層105bの傾斜方向は、カソード触媒層形
成用分散液2が多く塗工された部分を空気入口側に配置
し、少なく塗工された部分を空気出口側に配置した。
The membrane electrode assembly 101 obtained by the above method was cut out so as to have an effective electrode area of 25 cm 2, and incorporated into a battery performance measuring cell. Regarding this cell for battery performance measurement, hydrogen gas was supplied to the anode and air was supplied to the cathode, and the cell temperature was 80 ° C. and the anode humidification temperature was 75.
A power generation test was conducted at a temperature of 50 ° C. and a cathode humidification temperature of 50 ° C. Regarding the inclination direction of the cathode catalyst layer 105b, the portion coated with the cathode catalyst layer forming dispersion 2 in a large amount was arranged on the air inlet side, and the portion coated with a small amount was arranged on the air outlet side.

【0071】(実施例2)高分子電解質膜103の製造
には、共重合体Aを13.5質量%含み、エタノールを
溶媒とする「イオン交換膜形成用塗工液1」と、共重合
体Bを13質量%含み、エタノールを溶媒とする「イオ
ン交換膜形成用塗工液2」の2種類の塗工液をそれぞれ
2つのポートから導入する注入口3と、それらが排出さ
れる線状出口7を有する図1に示すダイ1を使用した。
(Example 2) For the production of the polymer electrolyte membrane 103, "ion exchange membrane forming coating liquid 1" containing 13.5% by mass of the copolymer A and ethanol as a solvent, and copolyester were used. Injection port 3 for introducing two kinds of coating liquids of "ion exchange membrane forming coating liquid 2" containing 13% by mass of combined B and using ethanol as a solvent, and lines for discharging them. The die 1 shown in FIG.

【0072】このダイ1は、注入口3から線状出口7に
至るまで、ダイ1内を流れる2種類の塗工液がその接触
部で線状出口7の厚さ方向に重なるように傾斜させた案
内隔壁9を有する。このダイ1を用いて、2種類の塗工
液が連続的に偏在するようにPPフィルム上に塗工し
た。その塗工膜を80℃のオーブンで10分間乾燥して
PPフィルムを剥離することにより、厚さ30μmの高
分子電解質膜103を形成した。
The die 1 is inclined so that the two types of coating liquids flowing in the die 1 from the inlet 3 to the linear outlet 7 overlap at the contact portion in the thickness direction of the linear outlet 7. It has a guide partition 9. Using this die 1, two types of coating liquids were coated on a PP film so that they were unevenly distributed continuously. The coated film was dried in an oven at 80 ° C. for 10 minutes and the PP film was peeled off to form a polymer electrolyte film 103 having a thickness of 30 μm.

【0073】次に、実施例1と同一仕様にてアノード触
媒層105aを形成した。また、カソード触媒層形成用
分散液(実施例1のカソード触媒層形成用分散液1と同
一仕様のもの)を、厚さ50μmのPPフィルムからな
る塗工基材の片面にダイコート法で塗工した(白金付着
量は0.50mg/cm2)。その塗工膜を乾燥するこ
とにより組成が均一なカソード触媒層105bを形成し
た。
Next, an anode catalyst layer 105a was formed with the same specifications as in Example 1. Further, the cathode catalyst layer-forming dispersion liquid (having the same specifications as the cathode catalyst layer-forming dispersion liquid 1 of Example 1) was applied to one side of a coating substrate made of a PP film having a thickness of 50 μm by a die coating method. (Platinum adhesion amount was 0.50 mg / cm 2 ). The coated film was dried to form a cathode catalyst layer 105b having a uniform composition.

【0074】上記方法で得られたカソード触媒層105
bが片面に形成されたPPフィルムとアノード触媒層1
05aが形成されたPPフィルムとを、触媒層が形成さ
れた面を内側に向けて対向させ、それらの間に本実施例
で製作した厚さ30μmの高分子電解質膜103として
挟んでホットプレスを行った。ホットプレスの条件は実
施例1と同一仕様にて膜電極接合体101を得た。
Cathode catalyst layer 105 obtained by the above method
PP film with b formed on one side and anode catalyst layer 1
The PP film on which 05a is formed is made to face with the surface on which the catalyst layer is formed facing inward, and sandwiched between them as the polymer electrolyte membrane 103 having a thickness of 30 μm manufactured in this example, and hot pressed. went. The hot press conditions were the same as in Example 1 to obtain a membrane electrode assembly 101.

【0075】上記で得られた膜電極接合体101を実施
例1と同一仕様にて発電試験を行った。なお、高分子電
解質膜103の傾斜方向は、共重合体Bが多く偏在した
部分を空気入口側に配置した。
The membrane electrode assembly 101 obtained above was subjected to a power generation test under the same specifications as in Example 1. In the tilt direction of the polymer electrolyte membrane 103, a portion where the copolymer B was unevenly distributed was arranged on the air inlet side.

【0076】(比較例1)カソード触媒層形成用分散液
1のみを用いて、組成が均一なカソード触媒層105b
を作製した以外は、実施例1と同様にして膜電極接合体
101を作製した。この膜電極接合体101を用いて実
施例1と同一仕様にて発電試験を行った。実施例1、実
施例2、比較例1の各セルについて、0.2(A/cm
2)、0.5(A/cm2)におけるセル電圧と、ガスの
上流付近、中流付近及び下流付近における電流密度を測
定した。結果を表1に示す。
Comparative Example 1 The cathode catalyst layer 105b having a uniform composition was prepared by using only the dispersion liquid 1 for forming the cathode catalyst layer.
A membrane electrode assembly 101 was produced in the same manner as in Example 1 except that the above was produced. Using this membrane electrode assembly 101, a power generation test was conducted under the same specifications as in Example 1. For each of the cells of Example 1, Example 2, and Comparative Example 1, 0.2 (A / cm
2 ), the cell voltage at 0.5 (A / cm 2 ) and the current densities near the upstream, midstream and downstream of the gas were measured. The results are shown in Table 1.

【0077】[0077]

【表1】 [Table 1]

【0078】表1より、実施例では比較例に比べ、電流
密度がガス流の上流、中流、下流であまり差がなく、セ
ル電圧が高いことがわかる。すなわち、膜電極接合体1
01の面内で電流密度が均一化されたためセル電圧が高
くなっている。
It can be seen from Table 1 that the cell densities of the examples are higher than those of the comparative example in the current densities in the upstream, middle and downstream of the gas flow, and the cell voltage is high. That is, the membrane electrode assembly 1
The cell voltage is high because the current density is made uniform in the plane of 01.

【0079】[0079]

【発明の効果】以上説明したように、本発明の製造方法
によれば、ダイに2種類以上の異なる組成の塗工液を供
給することで、組成が連続的に変化する塗工膜を単一の
塗工工程により形成することができる。
As described above, according to the manufacturing method of the present invention, by supplying two or more kinds of coating solutions having different compositions to a die, a coating film whose composition continuously changes can be formed. It can be formed by one coating process.

【0080】したがって、本発明の製造方法によれば、
膜電極接合体における電流密度分布が均一化されるの
で、簡易な方法によってコスト増なくして高い電池性能
を得ることができる。
Therefore, according to the manufacturing method of the present invention,
Since the current density distribution in the membrane electrode assembly is made uniform, high battery performance can be obtained by a simple method without increasing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の製造方法に使用するダイの平面図
(a)、正面図(b)、及びそのI−I線断面図(c)
FIG. 1 is a plan view (a), a front view (b), and a sectional view taken along line I-I (c) of a die used in the manufacturing method of the present invention.

【図2】 本発明の製造方法により形成される塗工膜の
平面図(a)及び、そのII−II線断面図(b)
FIG. 2 is a plan view (a) of a coating film formed by the manufacturing method of the present invention and a sectional view (b) taken along line II-II thereof.

【図3】 本発明の製造方法による注入口の案内隔壁の
各種配置例 (a)〜(d)
FIG. 3 shows various arrangement examples of guide partition walls of an injection port according to the manufacturing method of the present invention (a) to (d).

【図4】 固体高分子型燃料電池の膜電極接合体の断面
FIG. 4 is a sectional view of a membrane electrode assembly of a polymer electrolyte fuel cell.

【図5】 セパレータのガス流路の構成例1FIG. 5 is a configuration example 1 of a gas flow path of a separator.

【図6】 セパレータのガス流路の構成例2FIG. 6 is a configuration example 2 of the gas flow path of the separator.

【図7】 従来のキャスト製膜方法を示す斜視図FIG. 7 is a perspective view showing a conventional cast film forming method.

【符号の説明】[Explanation of symbols]

1 ダイ 3、3a 注入口 5 拡開部 7 線状出口 9、9a、9b 案内隔壁 11 塗工膜 101 膜電極接合体 103 高分子電解質膜 105a、105b 触媒層 A、B、C 塗工液 L、M 境界線 T 塗工膜の厚さ W 塗工膜の幅 X ダイを塗工基材に対して相対的に移動させる方向 1 die 3, 3a inlet 5 Expansion section 7 linear exit 9, 9a, 9b Guide partition 11 Coating film 101 membrane electrode assembly 103 Polymer electrolyte membrane 105a, 105b Catalyst layer A, B, C coating liquid L, M boundary line T coating film thickness Width of W coating film X Die direction to move relative to the coated substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下田 博司 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 5H018 AA06 AS01 BB01 BB03 BB06 BB08 EE03 EE05 EE18 HH03 5H026 AA06 BB04 CC03 CX05 HH03   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Shimoda             1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa             Asahi Glass Co., Ltd. F-term (reference) 5H018 AA06 AS01 BB01 BB03 BB06                       BB08 EE03 EE05 EE18 HH03                 5H026 AA06 BB04 CC03 CX05 HH03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高分子電解質膜と、該高分子電解質膜に
隣接して配置される触媒層を有し前記高分子電解質膜を
介して対向するカソードとアノードとを備え、前記カソ
ード及び前記アノードの少なくとも一方の触媒層を、触
媒とイオン交換樹脂とを含む塗工液を用いて形成する固
体高分子型燃料電池用膜電極接合体の製造方法であっ
て、前記塗工液を導入するための注入口と該塗工液が吐
出される線状出口とを備えるダイを使用し、前記ダイ
は、前記注入口から前記線状出口に向けて複数の区画に
仕切る案内隔壁を有しており、前記案内隔壁の仕切る方
向は、前記線状出口に臨む塗工基材が前記ダイに対して
相対的に移動する方向に対して傾斜しており、互いに組
成が異なる複数の塗工液が互いに混ざり合わないように
前記注入口から導入されてそれぞれ異なる前記複数の区
画を通って前記線状出口に向かい、前記ダイ及び前記塗
工基材の少なくとも一方を移動させることにより前記塗
工基材を前記線状出口の長手方向とほぼ直角方向に相対
的に移動させて、前記塗工基材上に前記塗工液を塗布し
て前記触媒層を形成することにより、前記触媒層の少な
くとも一部を、前記複数の塗工液の配分により前記ダイ
の前記線状出口の長手方向に連続的に組成が変化するよ
うに形成することを特徴とする固体高分子型燃料電池用
膜電極接合体の製造方法。
1. A cathode and an anode comprising a polymer electrolyte membrane, and a cathode and an anode having a catalyst layer disposed adjacent to the polymer electrolyte membrane and facing each other with the polymer electrolyte membrane interposed therebetween. A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, wherein at least one of the catalyst layers is formed by using a coating liquid containing a catalyst and an ion exchange resin, for introducing the coating liquid. Using a die having an injection port and a linear outlet from which the coating liquid is discharged, the die having a guide partition wall that divides into a plurality of sections from the injection port toward the linear outlet. The partitioning direction of the guide partition is inclined with respect to the direction in which the coating base material facing the linear outlet moves relatively to the die, and a plurality of coating liquids having different compositions are mutually separated. Introduced through the inlet so that they do not mix Toward the linear outlet through the plurality of different sections, and moving at least one of the die and the coating substrate to move the coating substrate in a direction substantially perpendicular to the longitudinal direction of the linear outlet. By moving the coating liquid on the coating substrate to form the catalyst layer, at least a part of the catalyst layer is distributed by the plurality of coating liquids. A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, which is characterized in that the die is formed so that the composition continuously changes in the longitudinal direction of the linear outlet.
【請求項2】 前記触媒層は、厚さが均一となるように
形成される請求項1に記載の固体高分子型燃料電池用膜
電極接合体の製造方法。
2. The method for producing a membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the catalyst layer is formed to have a uniform thickness.
【請求項3】 高分子電解質膜と、該高分子電解質膜に
隣接して配置される触媒層を有し前記高分子電解質腹を
介して対向するカソードとアノードとを備え、前記高分
子電解質膜をイオン交換樹脂を含む塗工液を用いて形成
する固体高分子型燃料電池用膜電極接合体の製造方法で
あって、前記塗工液を導入するための注入口と該塗工液
が吐出される線状出口とを備えるダイを使用し、前記ダ
イは、前記注入口から前記線状出口に向けて複数の区画
に仕切る案内隔壁を有しており、前記案内隔壁の仕切る
方向は、前記線状出口に臨む塗工基材が前記ダイに対し
て相対的に移動する方向に対して傾斜しており、互いに
組成が異なる複数の塗工液が互いに混ざり合わないよう
に前記注入口から導入されてそれぞれ異なる前記複数の
区画を通って前記線状出口に向かい、前記ダイ及び前記
塗工基材の少なくとも一方を移動させることにより前記
塗工基材を前記線状出口の長手方向とほぼ直角方向に相
対的に移動させて、前記塗工基材上に前記塗工液を塗布
して前記高分子電解質膜を形成することにより、前記高
分子電解質膜の少なくとも一部を、前記複数の塗工液の
配分により前記ダイの前記線状出口の長手方向に連続的
に組成が変化するように形成することを特徴とする固体
高分子型燃料電池用膜電極接合体の製造方法。
3. A polymer electrolyte membrane comprising: a polymer electrolyte membrane; and a cathode and an anode having a catalyst layer disposed adjacent to the polymer electrolyte membrane and facing each other through the polymer electrolyte belly. A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, which comprises forming a coating liquid containing an ion-exchange resin, wherein an inlet for introducing the coating liquid and the coating liquid are discharged. Using a die having a linear outlet, the die has a guide partition for partitioning into a plurality of sections from the inlet to the linear outlet, the partitioning direction of the guide partition is the The coating substrate facing the linear outlet is inclined with respect to the direction in which it moves relative to the die, and is introduced from the injection port so that a plurality of coating liquids having different compositions do not mix with each other. The line passing through the different sections The coating substrate by moving at least one of the die and the coating substrate toward the linear outlet, thereby relatively moving the coating substrate in a direction substantially perpendicular to the longitudinal direction of the linear outlet. By forming the polymer electrolyte membrane by applying the coating liquid on a material, at least a part of the polymer electrolyte membrane, by the distribution of the plurality of coating liquids of the linear outlet of the die A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, which is characterized in that the composition is formed so as to continuously change in the longitudinal direction.
【請求項4】 前記注入口は、1つの案内隔壁により内
部が2つの区画に仕切られており、2種類の塗工液がそ
れぞれ異なる前記区画から注入される請求項1〜3のい
ずれか1項に記載の固体高分子型燃料電池用膜電極接合
体の製造方法。
4. The injection port is internally divided into two compartments by one guide partition, and two kinds of coating liquids are respectively injected from the different compartments. Item 8. A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell according to item.
【請求項5】 前記線状出口における2種類の塗工液の
配分区画の境界線が、前記線状出口の1つの対角線位置
となるように、前記注入口において対応する対角線の位
置に前記案内隔壁が配置されている請求項4記載の固体
高分子型燃料電池用膜電極接合体の製造方法。
5. The guide is provided at a position of a corresponding diagonal line in the inlet so that a boundary line between distribution sections of the two types of coating liquids at the linear outlet is one diagonal line position of the linear outlet. The method for producing a membrane electrode assembly for a polymer electrolyte fuel cell according to claim 4, wherein partition walls are arranged.
【請求項6】 前記注入口は、矩形、円形又は楕円形で
あって、前記案内隔壁は前記注入口を斜めに横断して配
置されている請求項4記載の固体高分子型燃料電池用膜
電極接合体の製造方法。
6. The membrane for a polymer electrolyte fuel cell according to claim 4, wherein the inlet has a rectangular shape, a circular shape, or an elliptical shape, and the guide partition wall is arranged diagonally across the inlet. Method for manufacturing electrode assembly.
JP2002271102A 2001-09-19 2002-09-18 Method for producing membrane electrode assembly for polymer electrolyte fuel cell Expired - Fee Related JP4269611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271102A JP4269611B2 (en) 2001-09-19 2002-09-18 Method for producing membrane electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-284538 2001-09-19
JP2001284538 2001-09-19
JP2002271102A JP4269611B2 (en) 2001-09-19 2002-09-18 Method for producing membrane electrode assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2003168449A true JP2003168449A (en) 2003-06-13
JP4269611B2 JP4269611B2 (en) 2009-05-27

Family

ID=26622472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271102A Expired - Fee Related JP4269611B2 (en) 2001-09-19 2002-09-18 Method for producing membrane electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4269611B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285709A (en) * 2004-03-31 2005-10-13 Minoru Umeda Film electrode element, manufacturing method thereof, and fuel cell
JP2006107756A (en) * 2004-09-30 2006-04-20 Honda Motor Co Ltd Fuel cell
JP2009026539A (en) * 2007-07-18 2009-02-05 Toyota Motor Corp Membrane electrode assembly for fuel cell
JP2009059699A (en) * 2007-08-31 2009-03-19 Technical Univ Of Denmark Horizontally inclined structure for electrochemical and electronic device
JP2011008940A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Membrane-electrode assembly, and fuel battery
KR101500516B1 (en) * 2012-01-30 2015-03-09 주식회사 엘지화학 Discharge Member of Novel Structure and Coating Apparatus of Electrode Depolarizing Mix Containing the Same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285709A (en) * 2004-03-31 2005-10-13 Minoru Umeda Film electrode element, manufacturing method thereof, and fuel cell
JP4674789B2 (en) * 2004-03-31 2011-04-20 実 梅田 Membrane electrode element manufacturing method, membrane electrode element and fuel cell
JP2006107756A (en) * 2004-09-30 2006-04-20 Honda Motor Co Ltd Fuel cell
JP4627426B2 (en) * 2004-09-30 2011-02-09 本田技研工業株式会社 Fuel cell
JP2009026539A (en) * 2007-07-18 2009-02-05 Toyota Motor Corp Membrane electrode assembly for fuel cell
JP2009059699A (en) * 2007-08-31 2009-03-19 Technical Univ Of Denmark Horizontally inclined structure for electrochemical and electronic device
US8802321B2 (en) 2007-08-31 2014-08-12 Technical University Of Denmark Horizontally graded structures for electrochemical and electronic devices
JP2011008940A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Membrane-electrode assembly, and fuel battery
KR101500516B1 (en) * 2012-01-30 2015-03-09 주식회사 엘지화학 Discharge Member of Novel Structure and Coating Apparatus of Electrode Depolarizing Mix Containing the Same

Also Published As

Publication number Publication date
JP4269611B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
KR100984934B1 (en) Fuel cell
US5686199A (en) Flow field plate for use in a proton exchange membrane fuel cell
JP4233208B2 (en) Fuel cell
CA1044315A (en) Method for feeding reactant gas to fuel cells in a stack and apparatus therefor
US6555261B1 (en) Microstructured flow fields
EP1304754A1 (en) Method for producing electrolyte film-electrode joint
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP2007149694A (en) Electrochemical fuel cell with electrode substrate having in-plane ununiform structure for control of transport of reactant and product
JP2004031134A (en) Solid high polymer cell assembly
EP1366536B1 (en) Polymer electrolyte fuel cell stack and operating method thereof
EP2362470B1 (en) Fuel cell
JP7304524B2 (en) Fuel cell cathode catalyst layer and fuel cell
US7201990B2 (en) Fuel cell stack
JP2001006708A (en) Solid high polymer fuel cell
KR20200081030A (en) Polymer electrolyte membrane that suppresses side reactions caused by gas crossover phenomenon and manufacturing method of the same
JP4269611B2 (en) Method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP3813406B2 (en) Fuel cell
US6902757B2 (en) Process for producing a membrane-electrode assembly for solid polymer electrolyte fuel cells
JP2003168443A (en) Solid polymer-type fuel cell
US7060383B2 (en) Fuel cell
JP2002151098A (en) Fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP4908699B2 (en) Fuel cell stack
JPH1021944A (en) Solid polymer electrolyte fuel cell
JP2004303558A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees